Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.139
Filter
1.
Sci Rep ; 14(1): 10947, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740811

ABSTRACT

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Subject(s)
Aeromonas salmonicida , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Fish Diseases , Salmo salar , Animals , Salmo salar/immunology , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Omega-3/pharmacology , Aeromonas salmonicida/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/virology , Head Kidney/immunology , Animal Feed , Soybean Oil/pharmacology , Fish Oils/pharmacology , Aquaculture/methods
2.
Sci Rep ; 14(1): 11783, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782944

ABSTRACT

Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.


Subject(s)
Carps , Fish Diseases , Herpesviridae Infections , Herpesviridae , Molecular Docking Simulation , Vaccines, Subunit , Animals , Vaccines, Subunit/immunology , Carps/virology , Carps/immunology , Herpesviridae/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/virology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Viral Vaccines/immunology , Epitopes/immunology , Epitopes/chemistry , Computational Biology/methods , Herpesvirus Vaccines/immunology , Immunoinformatics
3.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802892

ABSTRACT

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Cichlids , Diet , Dietary Supplements , Fish Diseases , Gram-Negative Bacterial Infections , Moringa oleifera , Animals , Moringa oleifera/chemistry , Cichlids/growth & development , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Antioxidants/metabolism , Animal Feed/analysis , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology , Diet/veterinary , Plant Leaves/chemistry , Fermentation , Seeds/chemistry
4.
Fish Shellfish Immunol ; 150: 109663, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821228

ABSTRACT

Persistent nocardiosis has prompted exploration of the effectiveness of heterologous approaches to prevent severe infections. We have previously reported the efficacy of a nucleic acid vaccine in protecting groupers from highly virulent Nocardia seriolae infections. Ongoing research has involved the supplementation of recombinant cholesterol oxidase (rCho) proteins through immunization with a DNA vaccine to enhance the protective capacity of orange-spotted groupers. Recombinant rCho protein exhibited a maturity and biological structure comparable to that expressed in N. seriolae, as confirmed by Western blot immunodetection assays. The immune responses observed in vaccinated groupers were significantly higher than those observed in single-type homologous vaccinations, DNA or recombinant proteins alone (pcD:Cho and rCho/rCho), especially cell-mediated immune and mucosal immune responses. Moreover, the reduction in N. seriolae occurrence in internal organs, such as the head, kidney, and spleen, was consistent with the vaccine's efficacy, which increased from approximately 71.4 % to an undetermined higher percentage through heterologous vaccination strategies of 85.7 %. This study underscores the potential of Cho as a novel vaccine candidate and a heterologous approach for combating chronic infections such as nocardiosis.


Subject(s)
Bacterial Vaccines , Fish Diseases , Nocardia Infections , Nocardia , Animals , Nocardia Infections/veterinary , Nocardia Infections/prevention & control , Nocardia Infections/immunology , Nocardia/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Bass/immunology , Cholesterol Oxidase/immunology , Cholesterol Oxidase/genetics , Recombinant Proteins/immunology , Recombinant Proteins/administration & dosage
5.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740228

ABSTRACT

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Subject(s)
Apoptosis , Autophagy , Cardiotoxicity , Carps , Endoplasmic Reticulum Stress , Inflammation , Ivermectin , Oxidative Stress , Silybin , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Endoplasmic Reticulum Stress/drug effects , Autophagy/drug effects , Carps/immunology , Apoptosis/drug effects , Oxidative Stress/drug effects , Cardiotoxicity/etiology , Silybin/pharmacology , Silybin/administration & dosage , Inflammation/chemically induced , Inflammation/veterinary , Fish Diseases/chemically induced , Fish Diseases/prevention & control , Fish Diseases/immunology , Mitochondria/drug effects , Anthelmintics/toxicity , Anthelmintics/pharmacology
6.
Sci Rep ; 14(1): 9399, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658654

ABSTRACT

Edwardsiella piscicida causes significant economic losses to the aquaculture industry worldwide. Phage-based biocontrol methods are experiencing a renaissance because of the spread of drug-resistant genes and bacteria resulting from the heavy use of antibiotics. Here, we showed that the novel Edwardsiella phage EPP-1 could achieve comparable efficacy to florfenicol using a zebrafish model of Edwardsiella piscicida infection and could reduce the content of the floR resistance gene in zebrafish excreta. Specifically, phage EPP-1 inhibited bacterial growth in vitro and significantly improved the zebrafish survival rate in vivo (P = 0.0035), achieving an efficacy comparable to that of florfenicol (P = 0.2304). Notably, integrating the results of 16S rRNA sequencing, metagenomic sequencing, and qPCR, although the effects of phage EPP-1 converged with those of florfenicol in terms of the community composition and potential function of the zebrafish gut microbiota, it reduced the floR gene content in zebrafish excreta and aquaculture water. Overall, our study highlights the feasibility and safety of phage therapy for edwardsiellosis control, which has profound implications for the development of antibiotic alternatives to address the antibiotic crisis.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Edwardsiella , Enterobacteriaceae Infections , Thiamphenicol/analogs & derivatives , Zebrafish , Animals , Zebrafish/microbiology , Edwardsiella/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/therapy , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome , Phage Therapy/methods , RNA, Ribosomal, 16S/genetics , Fish Diseases/microbiology , Fish Diseases/therapy , Fish Diseases/prevention & control , Thiamphenicol/pharmacology , Aquaculture/methods
7.
Arch Microbiol ; 206(5): 219, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627275

ABSTRACT

Aeromonas hydrophila is one of the major freshwater fish pathogens. In the current study, a cocktail of D6 and CF7 phages was given orally to Labeo rohita to assess phage survival in fish organs as well as to determine the therapeutic efficacy of phage treatment against fish mortality caused by A. hydrophila. In the phage-coated feed, prepared by simple spraying method, phage counts were quite stable for up to 2 months with a decline of ≤ 0.23 log10 and ≤ 1.66 log10 PFU/g feed during 4 oC and room temperature storage. Throughout the experimental period of 7 days, both phages could be detected in the gut of fish fed with phage-coated feed. Besides, both CF7 and D6 phages were also detected in fish kidneys indicating the ability of both the phage to cross the intestinal barrier. During challenge studies with LD50 dose of A. hydrophila, phage cocktail doses of 1 × 106 - 1 × 108 PFU/g feed prevented the mortality in L. rohita with relative percentage survival (RPS) of 8.7-65.2. When challenged with LD90 dose of A. hydrophila, an RPS value of 28.6 was obtained at a phage cocktail dose of 1 × 108 PFU/g feed. The RPS data showed that orally-fed phage cocktail protected the fish against the mortality caused by A. hydrophila in a dose-dependent manner. Simple practical approaches for phage cocktail development, medicated feed preparation and oral administration along with phage survival and protection data make the current study useful for farmer-level application.


Subject(s)
Bacteriophages , Cyprinidae , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary
8.
Fish Shellfish Immunol ; 149: 109557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608847

ABSTRACT

Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1ß, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.


Subject(s)
Bacterial Vaccines , Chitosan , Fish Diseases , Vaccination , Vibrio Infections , Vibrio , Animals , Vibrio/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Chitosan/administration & dosage , Vibrio Infections/veterinary , Vibrio Infections/prevention & control , Vibrio Infections/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Vaccination/veterinary , Oxygen , Bass/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
9.
Fish Shellfish Immunol ; 149: 109572, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636739

ABSTRACT

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Cichlids/immunology , Administration, Oral , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics
10.
Fish Shellfish Immunol ; 149: 109567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641215

ABSTRACT

Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.


Subject(s)
Adjuvants, Immunologic , Cichlids , Fish Diseases , Immunity, Innate , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Cichlids/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Administration, Oral , Animal Feed/analysis , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Vaccination/veterinary
11.
Dev Comp Immunol ; 157: 105188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38677664

ABSTRACT

Emerging and re-emerging diseases in fish cause drastic economic losses in the aquaculture sector. To combat the impact of disease outbreaks and prevent the emergence of infections in culture systems, understanding the advanced strategies for protecting fish against infections is inevitable in fish health research. Therefore, the present study aimed to evaluate the induction of trained immunity and its protective efficacy against Streptococcus agalactiae in tilapia. For this, Nile tilapia and the Tilapia head kidney macrophage primary culture were primed using ß-glucan @200 µg/10 g body weight and 10 µg/mL respectively. Expression profiles of the markers of trained immunity and production of metabolites were monitored at different time points, post-priming and training, which depicted enhanced responsiveness. Higher lactate and lactate dehydrogenase (LDH) production in vitro suggests heightened glycolysis induced by priming of the cells using ß-glucan. A survival rate of 60% was observed in ß-glucan trained fish post challenge with virulent S. agalactiae at an LD50 of 2.6 × 107 cfu/ml, providing valuable insights into promising strategies of trained immunity for combating infections in fish.


Subject(s)
Cichlids , Fish Diseases , Macrophages , Streptococcal Infections , Streptococcus agalactiae , beta-Glucans , Animals , beta-Glucans/metabolism , Streptococcus agalactiae/immunology , Cichlids/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Macrophages/immunology , Cells, Cultured , Head Kidney/immunology , Aquaculture , Immunity, Innate , Glycolysis , L-Lactate Dehydrogenase/metabolism , Immunologic Memory , Trained Immunity
12.
Microb Pathog ; 190: 106614, 2024 May.
Article in English | MEDLINE | ID: mdl-38492825

ABSTRACT

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Eleutherococcus , Fermentation , Fish Diseases , Lacticaseibacillus rhamnosus , Probiotics , Animals , Lacticaseibacillus rhamnosus/metabolism , Carps/microbiology , Probiotics/pharmacology , Probiotics/administration & dosage , Antioxidants/metabolism , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Animal Feed , Inflammation/prevention & control , Cytokines/metabolism , Aquaculture
13.
J Fish Dis ; 47(7): e13943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38481095

ABSTRACT

Streptococcosis and aeromoniasis are the main obstacles to sustainable tilapia production. Vaccination offered an effective method to control microbial infections. Previously, a feed-based bivalent vaccine (FBBV) containing killed whole organisms of Streptococcus agalactiae and Aeromonas hydrophila mixed with 10% palm oil was successfully developed, which provided good protection against streptococcosis and aeromoniasis in Oreochromis sp. However, the mechanisms of immunities in vaccinated fish still need clarification. Here, the hindgut transcriptome of vaccinated and control fish was determined, as the gut displays higher affinity towards antigen uptake and nutrient absorption. The efficacy of FBBV to improve fish immunity was evaluated according to the expression of immune-related genes in the vaccinated fish hindgut throughout the 8-week experimental period using RT-qPCR. The vaccinated fish hindgut at week 6 was further subjected to transcriptomic analysis due to the high expression of immune-related genes and contained killed whole organisms. Results demonstrated the expression of immune-related genes was in correlation with the presence of killed whole organisms in the vaccinated fish hindgut. Transcriptomic analysis has allowed the prediction of robust immune-related pathways, including innate and adaptive immunological responses in vaccinated fish hindgut than control fish. Pathways related to the regulation of lipid metabolism and modulation of the immune system were also significantly enriched (p ≤ .05). Overall, results offer a fundamental study on understanding the immunological response in Oreochromis sp. following vaccination with the FBBV pellet and support further application to prevent bacterial diseases in aquaculture.


Subject(s)
Aeromonas hydrophila , Bacterial Vaccines , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Streptococcus agalactiae , Transcriptome , Vaccination , Animals , Fish Diseases/prevention & control , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Vaccination/veterinary , Aeromonas hydrophila/immunology , Cichlids/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Streptococcus agalactiae/immunology , Animal Feed/analysis , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Gene Expression Profiling/veterinary
14.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523313

ABSTRACT

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Subject(s)
Fish Diseases , Flatfishes , Nodaviridae , RNA Virus Infections , Vaccines, Inactivated , Viral Vaccines , Animals , Fish Diseases/prevention & control , Fish Diseases/virology , Fish Diseases/immunology , Flatfishes/immunology , Flatfishes/virology , Nodaviridae/immunology , RNA Virus Infections/veterinary , RNA Virus Infections/prevention & control , RNA Virus Infections/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage
15.
J Fish Dis ; 47(7): e13944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523320

ABSTRACT

Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.


Subject(s)
Adaptive Immunity , Aeromonas salmonicida , Bacterial Vaccines , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas salmonicida/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Bacterial Vaccines/immunology , Furunculosis/immunology , Furunculosis/prevention & control , Furunculosis/microbiology , Perciformes/immunology , Antigens, Bacterial/immunology
16.
J Fish Dis ; 47(7): e13941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523339

ABSTRACT

The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.


Subject(s)
Aquaculture , Fish Diseases , Probiotics , Quorum Sensing , Quorum Sensing/drug effects , Aquaculture/methods , Probiotics/pharmacology , Animals , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fishes , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial
17.
Fish Shellfish Immunol ; 148: 109494, 2024 May.
Article in English | MEDLINE | ID: mdl-38499217

ABSTRACT

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.


Subject(s)
Fish Diseases , Vaccines, DNA , Vibrio Infections , Vibrio , Animals , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Valine , Bacterial Vaccines , Fishes , Fish Diseases/prevention & control
18.
Fish Shellfish Immunol ; 146: 109419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301812

ABSTRACT

Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.


Subject(s)
Carps , Fish Diseases , Orthoreovirus , Reoviridae Infections , Reoviridae , Animals , Carps/genetics , Carps/metabolism , Reactive Oxygen Species , Peroxiredoxins/genetics , Escherichia coli , Hydrogen Peroxide , Reoviridae Infections/prevention & control , Oxidative Stress , Autophagy , Fish Diseases/prevention & control
19.
J Aquat Anim Health ; 36(2): 181-191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402543

ABSTRACT

OBJECTIVE: Pseudomoans plecoglossicida has been identified as a fish pathogen since 2000 and has caused serious infections in cultured Large Yellow Croakers Larimiththys crocea in coastal eastern China during recent years. METHODS: Published literatures of this pathogen have been reviewed. RESULT: Several strains with high genomic similarity have been isolated and identified; the bacteria induce natural infection at lower water temperatures (12.0-25.5°C) and induce numerous granulomas and nodules in the visceral organs of croakers. Researchers have investigated the epidemiology of P. plecoglossicida infection, identified major virulence factors, searched for pathogenic genes, analyzed host-pathogen interactions, and endeavored to develop efficient vaccines. CONCLUSION: This paper provides an overview of these research advances to elucidate the virulence mechanisms of the pathogen and to promote vaccine development against infection.


Subject(s)
Bacterial Vaccines , Fish Diseases , Host-Pathogen Interactions , Pseudomonas Infections , Pseudomonas , Virulence Factors , Animals , Virulence Factors/genetics , Pseudomonas/pathogenicity , Pseudomonas/genetics , Fish Diseases/microbiology , Fish Diseases/epidemiology , Fish Diseases/prevention & control , Bacterial Vaccines/immunology , Pseudomonas Infections/epidemiology , Pseudomonas Infections/veterinary , Pseudomonas Infections/prevention & control , Pseudomonas Infections/microbiology , Vaccine Development
20.
Prev Vet Med ; 224: 106134, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325114

ABSTRACT

The effective control of ectoparasitic salmon lice, Lepeophtheirus salmonis, in fish farms is challenged by the salmon lice having developed resistance towards several antiparasitic drugs and by the effectiveness of non-medicinal treatments being limited by considerations of fish welfare. When new antiparasitics are introduced to the market, these should be used sparingly to slow resistance development. Using a population model for salmon lice parameterised for salmonid fish farms in Norway, we quantified how reduced treatment effectiveness influences treatment frequency and lice abundance. Furthermore, we investigated when in the production cycle a highly effective lice treatment leads to the largest reduction in the total number of treatments, mean lice abundance and lice larvae production. Results showed that reductions in treatment effectiveness to lower than 50% led to the steepest increases in treatment frequency and mean lice abundance, as well as to increased risk that lice abundance increased beyond control. The timing of the most effective treatment had only moderate effects on the total treatment need and the mean number of adult female lice through the production cycle, but large effect on the production of lice larvae in spring. These findings imply that farmers can optimise the timing of the most effective treatment to reduce the release of lice larvae in the period of year when wild salmonids are in coastal waters, without compromising total treatment need or mean lice levels.


Subject(s)
Copepoda , Fish Diseases , Salmo salar , Salmonidae , Animals , Female , Fisheries , Antiparasitic Agents/therapeutic use , Larva , Fish Diseases/drug therapy , Fish Diseases/prevention & control , Fish Diseases/epidemiology , Salmon/parasitology , Aquaculture/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...