Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 432
Filter
1.
Food Chem ; 453: 139649, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38762947

ABSTRACT

The effects of ultra-high pressure (UHP) pretreatment (50-250 MPa) on the fish curing were studied. UHP increased the overall volatile compound concentration of cured fish. Among 50-250 MPa five treatment groups, 150 MPa UHP group exhibited the highest total free amino acid content (294.34 mg/100 g) with that of the control group being 92.39 mg/100 g. The activity of cathepsin L was increased under 50-200 MPa UHP treatment (62.28-58.15 U/L), compared with that in the control group (53.80 U/L). UHP treatment resulted in a significant increase in small molecule compounds, especially the amino acid dipeptides and ATP metabolic products. Under UHP treatments, the bacterial phyla Actinobacteriota (1.04-5.25 %), Bacteroidota (0.20-4.47 %), and Deinococcota (0.00-0.05 %) exhibited an increased abundance, and they promoted taste and flavor formation. Our results indicated that UHP is a promising pretreatment method to improve taste and flavour in cured fish by affecting the microorganisms, cathepsin, and proteins.


Subject(s)
Computational Biology , Flavoring Agents , Metabolomics , Taste , Animals , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Fish Products/analysis , Fish Products/microbiology , Pressure , Cyprinidae/metabolism , Cyprinidae/microbiology , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Humans , Food Handling , Amino Acids/metabolism , Amino Acids/analysis
2.
Food Res Int ; 187: 114456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763686

ABSTRACT

Single starter can hardly elevate the gel property of fermented freshwater fish sausage. In this work, in order to improve the physical properties of tilapia sausage, two newly isolated strains of lactic acid bacteria (LAB), Latilactobacillus sakei and Pediococcus acidilactici were used for cooperative fermentation of tilapia sausage, followed by the revelation of their formation mechanisms during cooperative fermentation and their improvement mechanisms after comparison with natural fermentation. Both strains, especially L. sakei possessed good growth, acidification ability, and salt tolerance. The gel strength, hardness, springiness, chewiness, whiteness, acidification, and total plate count significantly elevated during cooperative fermentation with starters. Pediococcus, Acinetobacter, and Macrococcus were abundant before fermentation, while Latilactobacillus quickly occupied the dominant position after fermentation for 18-45 h with the relative abundance over 51.5 %. The influence of each genus on the physical properties was calculated through the time-dimension and group-dimension correlation networks. The results suggested that the increase of Latilactobacillus due to the good growth and metabolism of L. sakei contributed the most to the formation and improvement of gel strength, texture properties, color, acidification, and food safety of tilapia sausage after cooperative fermentation. This study provides a novel analysis method to quantitatively evaluate the microbial contribution on the changes of various properties. The cooperative fermentation of LAB can be used for tilapia sausage fermentation to improve its physical properties.


Subject(s)
Fermentation , Fish Products , Food Microbiology , Tilapia , Animals , Tilapia/microbiology , Fish Products/microbiology , Hydrogen-Ion Concentration , Latilactobacillus sakei/metabolism , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Lactobacillales/growth & development , Pediococcus acidilactici/metabolism , Fermented Foods/microbiology , Meat Products/microbiology
3.
J Agric Food Chem ; 72(18): 10558-10569, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38668637

ABSTRACT

As a traditional Thai condiment, Pla-ra is used to add flavor and richness to dishes. Nine treatment combinations of Pla-ra formulations created from 3 types of fish (Mor fish, Kradee fish, and Mor + Kradee fish) and 4 different carbohydrate sources (none, rice bran, roasted rice, and rice bran─roasted rice mixture) were studied through a 12 month fermentation period (1, 3, 5, 7, 8, 9, 10, 11, and 12 months). 16S rRNA Next Generation Sequencing (NGS) and LC-MS/MS techniques were used to analyze the microbial diversity and identify taste-enhancing peptides. Descriptive sensory analysis was performed on the extracts of the 108 Pla-ra samples mixed in a model broth. Koku perception and saltiness-enhancing attributes were clearly perceived and dominant in all samples, even though glutamyl peptides, including γ-Glu-Val-Gly, were found at subthreshold levels. The samples from mixed fish and Mor fish fermented with roasted ground rice and rice bran for 12 months had the most typical Pla-ra odors and tastes and had high taste-enhancing activities. NGS analysis revealed the presence of bacteria containing a large number of protease and aminopeptidase genes in the samples. Bacillus spp., Gallicola spp., and Proteiniclasticum spp. correlated well with the generation of glutamyl and arginyl peptides and typical odors in the samples. These results confirmed the typical sensory quality of Pla-ra depended on protein sources, carbohydrate sources, and bacteria communities. Further optimization of the microbial composition found could lead to the development of starter cultures to control and promote flavor development in fermented fish products.


Subject(s)
Bacteria , Fermentation , Fishes , Flavoring Agents , Microbiota , Peptides , Taste , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Fishes/microbiology , Thailand , Humans , Peptides/metabolism , Fish Products/analysis , Fish Products/microbiology , Fermented Foods/analysis , Fermented Foods/microbiology , Odorants/analysis , Male , Female , Adult , Oryza/chemistry , Oryza/microbiology , Oryza/metabolism , RNA, Ribosomal, 16S/genetics , Condiments/analysis , Condiments/microbiology , Southeast Asian People
4.
Food Chem ; 449: 139239, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604034

ABSTRACT

Single starter can hardly improve the volatile flavor of fermented fish surimi. In this study, the changes of volatile compounds (VCs) and microbial composition during cooperative fermentation of Latilactobacillus sakei and Pediococcus acidilactici were studied by headspace solid-phase microextraction gas chromatography-mass spectrometry and 16S rRNA gene high-throughput sequencing. During cooperative fermentation, most VCs and the abundance of Latilactobacillus and Lactococcus significantly increased, while Pediococcus, Acinetobacter, and Macrococcus obviously decreased. After evaluation of correlation and abundance of each genus, Latilactobacillus and Lactococcus possessed the highest influence on the formation of volatile flavor during cooperative fermentation. Compared with the natural fermentation, cooperative fermentation with starters significantly enhanced most of pleasant core VCs (odor activity value≥1), but inhibited the production of trimethylamine and methanethiol, mainly resulting from the absolutely highest influence of Latilactobacillus. Cooperative fermentation of starters is an effective method to improve the volatile flavor in the fermented tilapia surimi.


Subject(s)
Fermentation , Fish Products , Latilactobacillus sakei , Pediococcus acidilactici , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Animals , Pediococcus acidilactici/metabolism , Fish Products/analysis , Fish Products/microbiology , Latilactobacillus sakei/metabolism , Tilapia/microbiology , Tilapia/metabolism , Tilapia/growth & development , Taste , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Fermented Foods/microbiology , Fermented Foods/analysis , Gas Chromatography-Mass Spectrometry
5.
Food Chem ; 449: 139329, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38615634

ABSTRACT

Cured Spanish mackerel has a promising market owing to its nutritious nature as well as ease of transportation and preservation. However, the nutritional and flavor formation mechanism of Spanish mackerel after curing and drying is unclear. To overcome this problem, the effects of different processing conditions on the free amino acid, microbial community, and flavor of Spanish mackerel were explored. Staphylococcus and Cobetia are the main microorganisms in cured mackerel and are closely associated with the formation of their quality. Compared with fresh mackerel, cured mackerel contains increased levels of protein, fat, and chloride, contributing to its distinctive flavor. The contents of free amino acids in the BA64 group were substantially higher than those in other groups, particularly the contents of threonine, glycine, and tyrosine. These findings will contribute to the development of high-quality cured Spanish mackerel products and cured aquatic products.


Subject(s)
Amino Acids , Microbiota , Perciformes , Animals , Amino Acids/analysis , Amino Acids/metabolism , Amino Acids/chemistry , Perciformes/microbiology , Perciformes/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Food Handling , Taste , Fish Products/analysis , Fish Products/microbiology , Desiccation , Food Preservation/methods
6.
Food Chem ; 450: 139342, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631198

ABSTRACT

Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.


Subject(s)
Fish Products , Proteomics , Pseudomonas , Animals , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Pseudomonas/classification , Pseudomonas/chemistry , Fish Products/analysis , Fish Products/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/analysis , Fish Diseases/microbiology , Proteome/analysis , Proteome/metabolism , Virulence Factors/metabolism , Fishes/microbiology
7.
Braz J Microbiol ; 55(2): 1745-1751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38337126

ABSTRACT

Lactic acid bacteria (LAB) were isolated from naturally fermented foods of India, viz., sidra, a dried fish product; kinema, a naturally fermented sticky soybean food; and dahi, a naturally fermented milk product. Five strains of LAB, based on 16S rRNA gene sequence, were identified: Lactococcus lactis FS2 (from sidra), Lc. lactis C2D (dahi), Lc. lactis SP2C4 (kinema), Lactiplantibacillus plantarum DHCU70 (=Lactobacillus plantarum) (from dahi), and Lactiplantibacillus plantarum KP1 (kinema). The PICRUSt2 software, a bioinformatic tool, was applied to infer the raw sequences obtained from LAB strains mapped against KEGG database for predictive functionality. Functional features of LAB strains showed genes associated with metabolism (36.47%), environmental information processing (31.42%), genetic information processing (9.83%), and the unclassified (22.28%). KEGG database also showed abundant genes related to predictive membrane transport (29.25%) and carbohydrate metabolism (11.91%). This study may help in understanding the health-promoting benefits of the culturable LAB strains in fermented foods.


Subject(s)
Fermented Foods , Food Microbiology , Lactobacillales , Phylogeny , RNA, Ribosomal, 16S , Fermented Foods/microbiology , India , Lactobacillales/genetics , Lactobacillales/classification , Lactobacillales/isolation & purification , Lactobacillales/metabolism , RNA, Ribosomal, 16S/genetics , Fermentation , Fish Products/microbiology
8.
J Food Prot ; 85(6): 956-960, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35202455

ABSTRACT

ABSTRACT: Histamine-forming bacteria (HFB) were isolated from the 70 salted fish samples bought from town markets of Guangdong Province of south China. In addition, the histamine-forming ability of HFB was analyzed. There were 31 strains of HFB isolated from 36 salted fish pickled overnight. They were identified as six bacteria species: Vibrio alginolyticus, Vibrio rumoiensis, Staphylococcus saprophyticus, Staphylococcus xylosus, Lactococcus lactis, and Morganella morganii. The rate of confirmation of V. alginolyticus was highest (23 of 31), exceeding 200 mg/kg histamine. In particular, M. morganii produced a histamine amount that exceeded 2,000 mg/kg, although it was only one isolate in this study. In addition, five bacteria species of HFB were isolated from 34 dried salted fish. Among them, S. saprophyticus was dominant in the dried salted fish but produced histamines below 200 mg/kg. However, Enterobacter aerogenes from dried salted fish formed a histamine amount exceeding 200 mg/kg. The study showed that the dominant strain of HFB was different in two kinds of salted fish. Both kinds of salted fish contained HFB whose histamine-forming capacity exceeded 200 mg/kg. As a result, the safety of salted fish should be of concern, especially salted fish pickled overnight.


Subject(s)
Histamine , Morganella morganii , Animals , Bacteria , Fish Products/microbiology , Fishes/microbiology , Prevalence , Sodium Chloride
9.
J Sci Food Agric ; 102(1): 105-112, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34048077

ABSTRACT

BACKGROUND: The effect of nanoemulsions prepared with grape seed and cinnamon essential oils on the shelf-life of flathead mullet (Mugil cephalus) fillets was evaluated by determining physicochemical (pH, free fatty acids, peroxide value, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARs)), sensory and microbiological (mesophilic aerobic bacteria, total psychrophilic bacteria, and Enterobacteriaceae counts) properties during 14 day storage at 2 °C. RESULTS: The nanoemulsions showed good stability and low average droplet size. The results indicated that nanoemulsion treatments significantly prolonged the shelf-life of the fillets. Treatment inhibited increases in pH and TVB-N, and retarded lipid oxidation and hydrolysis. Sensory assessment revealed that treatment induced shelf-life extension from 10 to 14 days, compared with controls. Microbiological analyses showed nanoemulsion treatment caused shelf-life extension from 10 to 12 days with reduction of microbiological contamination by up to 1 log cfu g-1 in mesophilic and 1.5 log cfu g-1 in psychrotrophic bacteria. CONCLUSION: Considering the results, grape seed and cinnamon essential oil nanoemulsions could be considered as novel antimicrobial and antioxidant materials for shelf-life extension of flathead mullet fillets during cold storage. © 2021 Society of Chemical Industry.


Subject(s)
Cinnamomum zeylanicum/chemistry , Fish Products/analysis , Food Preservation/methods , Food Preservatives/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Vitis/chemistry , Animals , Bacteria/drug effects , Emulsions/chemistry , Fish Products/microbiology , Food Storage , Humans , Smegmamorpha/microbiology , Taste , Water/analysis
10.
ScientificWorldJournal ; 2021: 3119958, 2021.
Article in English | MEDLINE | ID: mdl-34594160

ABSTRACT

Fish and fish products are considered a fundamental part of the human diet due to their high nutritional value. Food-borne diseases are considered a major public health challenge worldwide due to their incidence, associated mortality, and negative economic repercussions. Food safety is the guarantee that foods will not cause harm to the health of those who consume them, and it is a fundamental property of food quality. Food safety can be at risk of being lost at any stage of the food chain if the food is contaminated by pathogenic microorganisms. Many diverse bacteria are present in the environment and as part of the microbiota of food that can be transmitted to humans during the handling and consumption of food. Plesiomonas shigelloides has been mainly associated with outbreaks of gastrointestinal diseases due to the consumption of fish. This bacterium inhabits the environment and aquatic animals and is associated with the microbiota of fish such as tilapia, a fish of importance in fishing, aquaculture, commercialization, and consumption worldwide. The purpose of this document is to provide, through a bibliographic review of databases (Scopus, Web of Science, and Google Scholar, among others), a general informative perspective on food-borne diseases and, in particular, the consumption of fish and tilapia. Diseases derived from contamination by Plesiomonas shigelloides are included, and control and prevention actions and sanitary regulations for fishery products established in several countries around the world are discussed to promote the safety of foods of aquatic origin intended for human consumption and to protect public health.


Subject(s)
Fish Diseases/microbiology , Food Contamination , Food Microbiology , Gastroenteritis/microbiology , Gram-Negative Bacterial Infections/veterinary , Plesiomonas/isolation & purification , Seafood/microbiology , Tilapia/microbiology , Animals , Aquaculture , Bacterial Load , Cryopreservation , Disease Reservoirs , Fish Products/microbiology , Food Handling , Food Preservation , Food Safety , Gastroenteritis/epidemiology , Gastroenteritis/etiology , Gastroenteritis/prevention & control , Gram-Negative Bacterial Infections/microbiology , Humans , Plesiomonas/growth & development , Prevalence , Quality Control , Water Pollution
11.
J Food Sci ; 86(10): 4628-4636, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34549438

ABSTRACT

This study investigated the effect of antioxidants on lipid stability of mackerel (Scomber japonicus) fish balls. Oat phenolic acid compounds (OPC) and ascorbate palmitoyl (AP) were used to prolong the shelf life of steamed mackerel fish balls. Fish balls were stored at 4°C for 21 days, and the total bacterial count, hardness, whiteness, water holding capacity (WHC), pH, total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) value were monitored regularly. The results indicated that OPC+AP composite as a biological preservative could significantly inhibit the increase of the total bacterial count. Meanwhile, OPC and AP could maintain better hardness, whiteness, and WHC of fish balls during refrigerated storage. Furthermore, OPC and AP slowed down the increase of TVB-N and TBARS values. The results showed that OPC+AP had a synergistic effect on the storage time and could prolong the shelf life within the storage time. Adding OPC and AP was a promising strategy to improve the quality and shelf life of fish balls. PRACTICAL APPLICATION: The research provided a new application of OPC and AP for improving fish balls quality and shelf life during cold storage (4°C). OPC is a natural plant secondary metabolite from oat which exhibits excellent anti-oxidation. The research showed that OPC and AP combined with synergistic effect as biological preservatives can effectively inhibit the total bacterial count and reduce TBARS and TVB-N value of fish balls during the shelf life and maintain the hardness, which improved the quality and shelf life of fish balls.


Subject(s)
Ascorbic Acid/analogs & derivatives , Avena , Fish Products , Food Preservation , Phenols , Animals , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Avena/chemistry , Bacterial Load/drug effects , Cold Temperature , Fish Products/analysis , Fish Products/microbiology , Fish Products/standards , Food Preservation/methods , Food Storage , Oxidation-Reduction/drug effects , Phenols/pharmacology
12.
Nat Commun ; 12(1): 5384, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508079

ABSTRACT

Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals-the fastest growing food animal sector globally-AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000-2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia's major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.


Subject(s)
Anti-Bacterial Agents/adverse effects , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Fish Diseases/drug therapy , Fisheries/trends , Animals , Anti-Bacterial Agents/administration & dosage , Asia , Bacteria/isolation & purification , Fish Diseases/epidemiology , Fish Diseases/microbiology , Fish Products/microbiology , Fisheries/statistics & numerical data , Fishes/microbiology , Prevalence
13.
Int J Food Microbiol ; 352: 109265, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34116257

ABSTRACT

Listeria monocytogenes is a potentially fatal foodborne pathogen that can be found in various ready-to-eat (RTE) products. It tolerates adverse conditions such as high salt concentrations and refrigerated storage, thus, the elimination of the pathogen in food processing often relies on heat processing. The objective of this study was to create a model to predict the effect of salt on heat tolerance of L. monocytogenes in meat and seafood products during heat treatments conducted at 57 to 65 °C to reduce numbers by ≥3 log10 cycles. Salt concentrations, up to 6% in the water phase (WPS%), were applied to cover a variety of lightly salted RTE meat and seafood products. The experimental work involved samples of ground pork tenderloin, ground chicken breast fillet and skinned, ground salmon fillet adjusted to different WPS% i.e., 3.6 and 5.2 WPS% for pork samples, 2.0, 3.0, 3.5 and 6.0 WPS% for chicken samples and 3.0 and 6.0 WPS% for salmon samples. All samples were inoculated with late-stationary phase L. monocytogenes cultures. For pork samples, a two-strain mixture of a pork isolate (MS22254) and an environmental isolate (MS22246) was applied. For chicken and salmon samples, a seafood isolate (MS22258) and isolate MS22246 was applied as single cultures. Samples were vacuum-packed in sterile bags, immerged in water bath, and held at constant temperatures of 57, 60 and 65 °C for pork samples and 58, 61 and 62.5 °C for chicken and salmon samples. For survivor curves, where at least 3 log10-reduction were obtained, heat tolerance was expressed as decimal reduction times, D-values. D-values were observed to increase with increasing WPS%. The effect of salt on heat tolerance of L. monocytogenes was defined as the relative increase (RI-value) in D-value obtained when salt had been added to the food. The effect of WPS% on RI-values was independent of heating temperatures, foods and strains. For secondary modelling, RI-values were transformed using the natural logarithm, ln(RI) and fitted to a linear model as a function of WPS%. Model validation, with 56 independent values collected from the scientific literature, resulted in bias and accuracy factors of 0.89 and 1.26, respectively, suggesting acceptable performance with tendency to slightly under-predict. The developed predictive model can be used to guide the design of heat processes for manufacturers of lightly preserved and mildly processed meat and seafood products requiring more than 3 log10 reduction of L. monocytogenes to ensure safety.


Subject(s)
Fish Products/microbiology , Food Handling/methods , Listeria monocytogenes/drug effects , Meat Products/microbiology , Models, Biological , Sodium Chloride/pharmacology , Thermotolerance/drug effects , Animals , Colony Count, Microbial , Consumer Product Safety , Food Microbiology , Hot Temperature
14.
Food Chem ; 358: 129863, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33940298

ABSTRACT

Traditional high-salt fermented Suanyu is an ethnic fermented fish product in southwest China. Lactic acid bacteria (LAB) are the most appropriate strains because of their technological properties during ripening fermentation. The diversity of LAB in high-salt fermented Chinese Suanyu was examined through high-throughput sequencing (HTS), and the most suitable LAB strain was acquired through strain isolation and characterization, surimi simulation fermentation system, and principal component analysis (PCA). The processing adaptability of the strain was examined via Suanyu fermentation. Results showed that Lactobacillus, Tetragenococcus, and Weissella were the dominant bacteria in Suanyu, and their contributions were 53.99%, 35.60%, and 4.10%, respectively. The most suitable strain (Lactobacillus plantarum B7) rapidly produced acid, exhibited a strong antibacterial activity, showed salt tolerance, and had no amino acid decarboxylase activity. pH decreased to about 3.6. Eventually, the ability to tolerate 20% salt was observed, and the activity of amino acid decarboxylase was negative. Fermented Suanyu with B7 rapidly produced acid (11.7% d-1). The non-protein nitrogen (NPN) and total free amino acid (FAA) contents of fermented Suanyu were higher and its total volatile base nitrogen (TVB-N), thiobarbituric acid (TBARS), and biogenic amines (BAs) levels were lower than those of naturally fermented Suanyu. Therefore, B7 is a potential microbial starter for Suanyu industrial production.


Subject(s)
Bacteria/metabolism , Fermented Foods/microbiology , Fish Products/microbiology , Amino Acids/analysis , Animals , Bacteria/genetics , Biogenic Amines/analysis , Fermentation , Food Microbiology , Hydrogen-Ion Concentration , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/metabolism , RNA, Ribosomal, 16S , Weissella/isolation & purification
15.
Food Microbiol ; 98: 103686, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875196

ABSTRACT

This study aimed to achieve deeper insights into the microbiota composition and dynamic succession of the dry-cured black carp during storage using a high-throughput sequencing technique (HTS). The effect of lipid oxidation on microorganisms was also evaluated. Over 651 bacterial genera belonging to 37 phyla were identified. Firmicutes, Proteobacteria and Actinobacteria were the main bacterial phylum, some are highly associated with meat spoilage. Staphylococcus, Macrococcus and Acinetobacter were the most three microbial genera throughout the entire storage period (30 days). Between two different storage temperature, refrigeration at 4 °C could facilitate maintaining the microbial diversity, while 25 °C storage led to the formation of dominant microflora and the reduction of community diversity. Canonical correspondence analysis (CCA) showed that acid value (AV), malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE) contents were three key environmental factors (oxidation products) affecting the profile of the microbiota. Staphylococcus presented a positive correlation with HHE content, while Macrococcus and Acinetobacter were negatively correlated with HHE content. These results could expand our knowledge on the effect of lipid oxidation on change of microbial distribution, it could also present an guideline to develop advanced storage methods for the vacuum packed dry-cured fish products.


Subject(s)
Bacteria/isolation & purification , Fish Products/microbiology , Lipids/chemistry , Microbiota , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Carps/microbiology , Fish Products/analysis , Food Microbiology , Food Packaging/instrumentation , Food Packaging/methods , Food Storage , High-Throughput Nucleotide Sequencing , Oxidation-Reduction , Refrigeration , Vacuum
16.
Food Microbiol ; 98: 103756, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875198

ABSTRACT

Phenotypic and genotypic resistance to benzalkonium chloride (BC), cadmium and arsenic was tested (by susceptibility assays and molecular methods) in 287 Listeria monocytogenes strains isolated from fish and fish products, and food-producing factories in Poland. Overall, 40% of the isolates were resistant to BC, 56% to cadmium and 41% to arsenic (57% displayed resistance to more than one of the tested compounds). Among BC-resistant isolates, the most commonly detected resistance determinant was the qacH gene (83%). Three distinct types of cadA gene determining resistance to cadmium were detected, with the cadA1 variant predominant (88%), while most arsenic-resistant isolates (86%) harbored the arsA gene associated with a Tn554-like transposon (one strain harbored two copies of arsA in different arsenic resistance cassettes). 53% of all tested isolates contained plasmids (from 4 kb to > 90 kb in size), which were classified into 11 groups (p1-p11) based on their restriction patterns. Interestingly, 12 isolates harbored the small mobilizable pLMST6-like plasmid pLIS3 encoding multidrug efflux pump EmrC. Clustering analysis of PFGE patterns revealed that these isolates represent several diverse bacterial populations, which strongly suggests mobility of the pLMST6-like plasmids among L. monocytogenes strains and their role in dissemination of BC resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arsenic/pharmacology , Benzalkonium Compounds/pharmacology , Drug Resistance, Bacterial , Fish Products/microbiology , Fishes/microbiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/isolation & purification , Animals , Fishes/classification , Food Contamination/analysis , Listeria monocytogenes/classification , Listeria monocytogenes/genetics , Poland
17.
PLoS One ; 16(1): e0245227, 2021.
Article in English | MEDLINE | ID: mdl-33444386

ABSTRACT

DNA-sequencing was performed on the V3-V4 regions of 16S rRNA genes to investigate the microbial diversity of five samples of fermented freshwater fish (pla-ra) from three provinces in northeastern Thailand. The samples had salt concentrations ranging from 7 to 10%, pH values from 4.83 to 7.15, and D-/L-lactic acid concentrations of 90 to 450 mg/l. A total of 598 operational taxonomic units were annotated at various taxonomic ranks based on the SILVA Database. The lactic-acid and halophilic genera Tetragenococcus, Halanaerobium and Lactobacillus were among the dominant taxa of bacteria. The top 20 non-redundant taxa were considered in more detail. In two pla-ra samples, Tetragenococcus muriaticus was commonly identified. Halanaerobium fermentans was the most abundant species in a third sample and co-dominant in another sample. Lactobacillus rennini was dominant in the pla-ra sample from Roi Et Province. Additionally, other beneficial bacteria were detected including Staphylococcus nepalensis, Lactobacillus sakei, Lactobacillus pentosus, Weissella confusa, and Bifidobacterium bifidum. Differences between samples may be due to use of different raw materials, salt concentrations, recipes, processes and fermentation periods. The microbial communities in pla-ra provide a better understanding of the production outcomes of traditional products. Further optimization of the fermentation process, for example by using dominant bacterial taxa in starter cultures, may improve processes of food fermentation, food quality and flavor control, providing useful guidelines for industrial applications.


Subject(s)
Fermentation , Fish Products/microbiology , Microbiota , Biodiversity , Hydrogen-Ion Concentration , Lactic Acid/analysis , Salinity , Species Specificity , Thailand
18.
Food Microbiol ; 95: 103705, 2021 May.
Article in English | MEDLINE | ID: mdl-33397623

ABSTRACT

Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and ß diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. ß-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. ß-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, ß-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.


Subject(s)
Bacteria/isolation & purification , DNA, Bacterial/isolation & purification , Fish Products/microbiology , Genetic Techniques , Microbiota , RNA, Ribosomal, 16S/isolation & purification , Salmon/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/isolation & purification , Food Handling/instrumentation , RNA, Ribosomal, 16S/genetics
19.
Bioengineered ; 12(1): 54-62, 2021 12.
Article in English | MEDLINE | ID: mdl-33350336

ABSTRACT

This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial cell density of 5.106 CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, temperature of 45°C and cultivation time of 72 h were found to be the optimal culture conditions for highest production of GABA, reaching 27.9 ± 0.42 mM, by this strain. The cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully optimized, providing a foundation for the development of fermented foods enriched with GABA.


Subject(s)
Fermented Foods/microbiology , Fish Products/microbiology , Pediococcus pentosaceus/metabolism , gamma-Aminobutyric Acid , Cell Culture Techniques , Culture Media , Sodium Glutamate , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism
20.
Food Microbiol ; 94: 103649, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279074

ABSTRACT

In this study, the bioprotective potential of Lactobacillus sakei CTC494 against Listeria monocytogenes CTC1034 was evaluated on vacuum packaged hot-smoked sea bream at 5 °C and dynamic temperatures ranging from 3 to 12 °C. The capacity of three microbial competition interaction models to describe the inhibitory effect of L. sakei CTC494 on L. monocytogenes was assessed based on the Jameson effect and Lotka-Volterra approaches. A sensory analysis was performed to evaluate the spoiling capacity of L. sakei CTC494 on the smoked fish product at 5 °C. Based on the sensory results, the bioprotection strategy against the pathogen was established by inoculating the product at a 1:2 ratio (pathogen:bioprotector, log CFU/g). The kinetic growth parameters of both microorganisms were estimated in mono-culture at constant storage (5 °C). In addition, the inhibition function parameters of the tested interaction models were estimated in co-culture at constant and dynamic temperature storage using as input the mono-culture kinetic parameters. The growth potential (δ log) of L. monocytogenes, in mono-culture, was 3.5 log on smoked sea bream during the experimental period (20 days). In co-culture, L. sakei CTC494 significantly reduced the capability of L. monocytogenes to grow, although its effectiveness was temperature dependent. The LAB strain limited the growth of the pathogen under storage at 5 °C (<1 log increase) and at dynamic profile 2 (<2 log increase). Besides, under storage at dynamic profile 1, the growth of L. monocytogenes was inhibited (<0.5 log increase). These results confirmed the efficacy of L. sakei CTC494 for controlling the pathogen growth on the studied fish product. The Lotka-Volterra competition model showed slightly better fit to the observed L. monocytogenes growth response than the Jameson-based models according to the statistical performance. The proposed modelling approach could support the assessment and establishment of bioprotective culture-based strategies aimed at reducing the risk of listeriosis linked to the consumption of RTE hot-smoked sea bream.


Subject(s)
Fish Products/microbiology , Food Preservation/methods , Latilactobacillus sakei/physiology , Listeria monocytogenes/growth & development , Animals , Antibiosis , Food Packaging , Listeria monocytogenes/physiology , Sea Bream/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...