Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70.857
Filter
1.
PLoS One ; 19(5): e0291886, 2024.
Article in English | MEDLINE | ID: mdl-38768157

ABSTRACT

Duoculture has been reported to increase growth rates of some fishes when reared in combination, due to "shading" effects between the species. Two experiments, one involving outdoor cage-rearing in a reservoir, and the other, indoor tank-rearing, were conducted within each of three temperatures ranges (means of ~18.0°C, ~22.0°C and ~26.5°C), to determine whether duoculture of bluegill (BG) Lepomis macrochirus and yellow perch (YP) Perca flavescens would lead to improved growth relative to when the two species were reared separately. Juvenile bluegill and yellow perch were reared in triplicated groups each involving monoculture sets of 100% BG and 100% YP, and a duoculture set of 50% BG + 50% YP. Experiments in cages (Exp. 1) ran for 150 days while those in tanks ran for 126 days (Exp. 2). In Experiment 1, bluegill exhibited significantly greater (P<0.05) mean weight (P<0.05) in duoculture than in monoculture, under the high summer-like range of temperature (~26.5°C) over most of the experiment, whereas yellow perch showed no significant difference in mean weight in duoculture versus monoculture. By the end of a 150-d experiment, bluegill in duoculture outweighed those in monoculture by 62.5%. In Experiment 2, yellow perch in duoculture grew significantly larger than in monoculture (P<0.05) under the warm thermal regime (mean of ~22°C), while no significant differences were detected in mean weight of bluegill in monoculture versus duoculture. Yellow perch in duoculture outweighed those in monoculture by 33.1% at the end of the experiment. Yellow perch performed better in duoculture than in monoculture under the low thermal regime (mean of ~18°C) in both experiments. A significantly greater reduction of CVwt was observed for both bluegill and yellow perch in duoculture than in monoculture in Experiment 1, while no differences in CVwt reduction were detected for bluegill in Experiment 2. Feed conversion ratios (FCR) of bluegill and yellow perch reared in duoculture were significantly lower than for both fishes reared in monoculture in Experiment 1, while there were no significant differences in FCR among the three groups throughout most of Experiment 2. Findings indicate that duoculture of yellow perch and bluegill holds good potential to improve growth and FCR, and to reduce size variation by diminishing social interaction costs.


Subject(s)
Perches , Temperature , Animals , Perches/growth & development , Perches/physiology , Fishes/growth & development , Fishes/physiology , Perciformes/growth & development , Perciformes/physiology , Social Behavior
2.
Proc Biol Sci ; 291(2023): 20232207, 2024 May.
Article in English | MEDLINE | ID: mdl-38772423

ABSTRACT

Population and species persistence in a rapidly warming world will be determined by an organism's ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unknown. We aimed to disentangle the effects of two critical ontogenetic stages (juvenile development and reproduction) to the new-generation acclimation potential, by exposing the spiny chromis damselfish Acanthochromis polyacanthus to simulated ocean warming across two generations. By using hepatic transcriptomics, we discovered that the post-hatching developmental environment of the offspring themselves had little effect on their acclimation potential at 2.5 months of life. Instead, the developmental experience of parents increased regulatory RNA production and protein synthesis, which could improve the offspring's response to warming. Conversely, parental reproduction and offspring embryogenesis in warmer water elicited stress response mechanisms in the offspring, with suppression of translation and mitochondrial respiration. Mismatches between parental developmental and reproductive temperatures deeply affected offspring gene expression profiles, and detrimental effects were evident when warming occurred both during parents' development and reproduction. This study reveals that the previous generation's developmental temperature contributes substantially to thermal acclimation potential during early life; however, exposure at reproduction as well as prolonged heat stress will likely have adverse effects on the species' persistence.


Subject(s)
Acclimatization , Coral Reefs , Animals , Reproduction , Global Warming , Perciformes/physiology , Transcriptome , Oceans and Seas , Fishes/physiology , Temperature
3.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773003

ABSTRACT

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Rivers/chemistry , Biomarkers/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Metals/analysis , Characidae , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Geologic Sediments/chemistry , Fishes/metabolism
4.
PLoS One ; 19(5): e0301456, 2024.
Article in English | MEDLINE | ID: mdl-38718023

ABSTRACT

The round goby (Neogobius melanostomus) is an invasive benthic fish first introduced to the Laurentian Great Lakes in 1990 that has negatively impacted native fishes through increased competition for food and habitat, aggressive interactions, and egg predation. While complete eradication of the round goby is currently not possible, intensive trapping in designated areas during spawning seasons could potentially protect critical native fish spawning habitats. Baited minnow traps were spaced 10 meters apart in shallow water along a 100-meter stretch of shoreline within the Duluth-Superior Harbor during the round goby breeding period (June to October) with captured round gobies removed from interior traps (N = 10) every 48 hours. These traps were bracketed by two pairs of reference traps deployed weekly for 48 hours, from which round gobies were also tagged and released. The number of round gobies captured in the interior traps declined by 67% compared to reference traps over the course of the study, with extended periods of no captures. The tagged round gobies showed high site affinity, with 82.8% of tagged fish recaptured at the previous release site. The results indicate that even at open water sites, which allow natural migration of round gobies into the area, extensive trapping could reduce local population numbers.


Subject(s)
Introduced Species , Animals , Ecosystem , Population Density , Perciformes/physiology , Fishes/physiology , Lakes
5.
Glob Chang Biol ; 30(5): e17273, 2024 May.
Article in English | MEDLINE | ID: mdl-38727723

ABSTRACT

Rapid warming at high latitudes triggers poleward shifts of species' distributions that impact marine biodiversity. In the open sea, the documented redistributions of fish lead to a borealization of Arctic fauna. A climate-driven borealization and increased species diversity at high latitudes are also expected in coastal fish communities, but they have not been previously documented on a large, biogeographic scale. Here, we investigate the impact of temperature change over the last 25 years on fish communities along the coast of Norway. The study area, spanning different ecoclimatic zones between 62° and 71° N, harbors over 200 species of boreal and Arctic fish. Several of these fish species are harvested by coastal and indigenous communities, influencing settlement geography and livelihood. The long-term data on coastal water temperatures and fish species were obtained from monitoring stations and scientific surveys. Water temperature measured at three fixed sampling stations distributed along the coast show increased temperatures during the study period. The fish species distribution and abundance data were obtained from the annually standardized scientific bottom trawl survey program. Fish species richness, which was highest in the south, increased with warming first in the south and then, gradually, further north, eventually affecting biodiversity in the whole study area. Fish community composition showed a distinct latitudinal pattern early in the study, with Arctic fish species confined to the north and boreal species dominating the south. The poleward shifts eventually eroded this zoogeographic pattern, resulting in more boreal fish species in the north and an increased homogenization of species composition along the Norwegian coast. The climate-driven reorganization of fish communities affects coastal ecosystems that are exposed to fisheries, aquaculture, and other rapidly expanding human activities, stressing the urgent need for a climate adaptation of integrated coastal management.


Subject(s)
Biodiversity , Climate Change , Fishes , Temperature , Animals , Fishes/physiology , Norway , Arctic Regions
6.
PeerJ ; 12: e17353, 2024.
Article in English | MEDLINE | ID: mdl-38737736

ABSTRACT

A series of 12 contiguous caudal vertebrae of an ichthyodectiform fish from the Smoky Hill Chalk Member of the Niobrara Formation is described. The vertebral centra exhibit extensive overgrowth of pathological bone and there is additional pathological bone within the centra and intervertebral spaces, which together resulted in the coossification of most centra. The extent of the pathology is greatest on preural vertebrae 1-3 and decreases anteriorly, which suggests that the pathology began posteriorly and progressed anteriorly. In addition to the pathological overgrowth on bones, the specimen preserves features interpreted as calcified and/or ossified soft tissues associated with the neural and haemal canals. The pathologies are unlike previously described examples of bony pathologies in fish, and it is suggested that they resulted from combined bacterial and fungal infections. As the pathologies developed, they would have adversely impacted the fish's swimming and feeding abilities, and presumably eventually led to the fish's death.


Subject(s)
Fishes , Spine , Animals , Fishes/anatomy & histology , Kansas , Spine/pathology , Spine/anatomy & histology , Fossils , Fish Diseases/parasitology , Fish Diseases/pathology
7.
Curr Microbiol ; 81(7): 174, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753164

ABSTRACT

The Oscar fish (Astronotus ocellatus) is among the most commonly domesticated and exported ornamental fish species from Kerala. The ornamental fish industry faces a significant challenge with the emergence of diseases caused by multi-drug-resistant bacteria. In the present study, six isolates were resolved from the diseased Oscar fish showing haemorrhages, necrosis, and loss of pigmentation. After phenotypic and genotypic characterization, the bacteria were identified as Edwardsiella tarda, Klebsiella pneumoniae, Enterococcus faecalis, Escherichia coli, Brevibacillus borstelensis, and Staphylococcus hominis. Experimental challenge studies in healthy Oscar fish showed that E. tarda caused 100% mortality within 240 h with 6.99 × 106 CFU/fish as LD50 and histopathology revealed the typical signs of infection. The pathogen was re-recovered from the moribund fish thereby confirming Koch's postulates. E. tarda was confirmed through the positive amplification of tarda-specific gene and virulence genes viz., etfD and escB were also detected using PCR. Antibiotic susceptibility tests using disc diffusion displayed that the pathogen is multi-drug-resistant towards antibiotics belonging to aminoglycosides, tetracyclines, and quinolones categories with a MAR index of 0.32, which implicated the antibiotic pressure in the farm. Plasmid curing studies showed a paradigm shift in the resistance pattern with MAR index of 0.04, highlighting the resistance genes are plasmid-borne except for the chromosome-borne tetracycline resistance gene (tetA). This study is the first of its kind in detecting mass mortality caused by E. tarda in Oscar fish. Vigilant surveillance and strategic actions are crucial for the precise detection of pathogens and AMR in aquaculture.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Edwardsiella tarda , Enterobacteriaceae Infections , Fish Diseases , Microbial Sensitivity Tests , Animals , Fish Diseases/microbiology , Fish Diseases/mortality , Edwardsiella tarda/genetics , Edwardsiella tarda/pathogenicity , Edwardsiella tarda/isolation & purification , Edwardsiella tarda/drug effects , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/mortality , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Fishes/microbiology , Virulence/genetics , Virulence Factors/genetics
9.
Compr Rev Food Sci Food Saf ; 23(3): e13368, 2024 05.
Article in English | MEDLINE | ID: mdl-38720574

ABSTRACT

Spoilage and deterioration of aquatic products during storage are inevitable, posing significant challenges to their suitability for consumption and the sustainability of the aquatic products supply chain. Research on the nonthermal processing of fruit juices, probiotics, dairy products, and meat has demonstrated positive outcomes in preserving quality. This review examines specific spoilage bacteria species and mechanisms for various aquatic products and discusses the principles, characteristics, and applications of six nonthermal processing methods for bacterial inhibition to maintain microbiological safety and physicochemical quality. The primary spoilage bacteria groups differ among fish, crustaceans, and shellfish based on storage conditions and durations. Four metabolic pathways utilized by spoilage microorganisms-peptides and amino acids, nitrogen compounds, nucleotides, and carbohydrates-are crucial in explaining spoilage. Nonthermal processing techniques, such as ultrahigh pressure, irradiation, magnetic/electric fields, plasma, and ultrasound, can inactivate microorganisms, thereby enhancing microbiological safety, physicochemical quality, and shelf life. Future research may integrate nonthermal processing with other technologies (e.g., modified atmosphere packaging and omics) to elucidate mechanisms of spoilage and improve the storage quality of aquatic products.


Subject(s)
Food Handling , Food Microbiology , Animals , Food Handling/methods , Food Preservation/methods , Food Safety/methods , Seafood/microbiology , Seafood/standards , Bacteria , Shellfish/microbiology , Shellfish/standards , Dairy Products/microbiology , Dairy Products/standards , Probiotics , Fishes/microbiology
10.
Article in English | MEDLINE | ID: mdl-38717929

ABSTRACT

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Fishes , Flavobacterium , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/isolation & purification , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Animals , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Fishes/microbiology , Genome, Bacterial , Aquaculture , Phosphatidylethanolamines
11.
Trends Genet ; 40(1): 24-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707509

ABSTRACT

How genotype determines phenotype is a well-explored question, but genotype-environment interactions and their heritable impact on phenotype over the course of evolution are not as thoroughly investigated. The fish Astyanax mexicanus, consisting of surface and cave ecotypes, is an ideal emerging model to study the genetic basis of adaptation to new environments. This model has permitted quantitative trait locus mapping and whole-genome comparisons to identify the genetic bases of traits such as albinism and insulin resistance and has helped to better understand fundamental evolutionary mechanisms. In this review, we summarize recent advances in A. mexicanus genetics and discuss their broader impact on the fields of adaptation and evolutionary genetics.


Subject(s)
Caves , Characidae , Quantitative Trait Loci , Animals , Quantitative Trait Loci/genetics , Characidae/genetics , Adaptation, Physiological/genetics , Biological Evolution , Phenotype , Genotype , Evolution, Molecular , Gene-Environment Interaction , Fishes/genetics
12.
PLoS One ; 19(5): e0302738, 2024.
Article in English | MEDLINE | ID: mdl-38709717

ABSTRACT

Thousands of offshore oil and gas platforms have been installed throughout the world's oceans and more structures are being installed as part of the transition to renewable energy. These structures increase the availability of ecological niches by providing hard substrate in midwater and complex 3D habitat on the seafloor. This can lead to 'hotspots' of biodiversity, or increased densities of flora and fauna, which potentially spill over into the local area. However, the distances over which these higher densities extend (the 'range of influence') can be highly variable. Fish aggregate at such structures, but the range of influence and any implications for wider fish populations, are unclear. We investigated the relationship between fish and platform areal densities using high resolution fisheries acoustic data. Data were collected in the waters surrounding the vessel exclusions zones around 16 oil and gas platforms in the North Sea, and throughout the wider area. We estimated densities of schooling fish using echo-integration, and densities of non-schooling fish using echo-counting. At 10 platforms, non-schooling fish densities were elevated near the platform relative to background levels in the equivalent wider area. The range of influence, defined here as the range to which fish densities were elevated above background, varied from 0.8 to 23 km. In areas of high platform density, fish schools were encountered more often, and non-schooling fish densities were higher, when controlling for other sources of environmental variation. This is the first time such long-range effects have been identified; previously, ranges of influence have been reported in the order of just 10s-100s of metres. These findings suggest that the environmental impact of these structures may extend further than previously thought, which may be relevant in the context of upcoming management decisions around the decommissioning of these structures.


Subject(s)
Fishes , Oil and Gas Fields , Animals , Fishes/physiology , Population Density , Ecosystem , Oil and Gas Industry , North Sea
13.
Sci Rep ; 14(1): 10624, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724555

ABSTRACT

To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).


Subject(s)
Biological Evolution , Fishes , Fossils , Pulmonary Artery , Animals , Pulmonary Artery/anatomy & histology , Fishes/anatomy & histology , Vertebrates/anatomy & histology , Lung/blood supply , Phylogeny
14.
PLoS One ; 19(5): e0301689, 2024.
Article in English | MEDLINE | ID: mdl-38728315

ABSTRACT

Acoustic methods are often used for fisheries resource surveys to investigate fish stocks in a wide area. Commercial fisheries echo sounders, which are installed on most small fishing vessels, are used to record a large amount of data during fishing trips. Therefore, it can be used to collect the basic information necessary for stock assessment for a wide area and frequently. To carry out the quantification for the fisheries echo sounder, we devised a simple method using the backscattering strength of the seabed to perform calibration periodically and easily. In this study, seabed secondary reflections were used instead of primary reflection because the fisheries echo sounders were not equipped with a time-varied gain (TVG) function, and the primary backscattering strength of the seabed was saturated. It was also necessary to use standard values of seabed backscattering strength averaged over a certain area for calibration to eliminate some of the effects of differences in seabed sediment and vessel motions. By using standard values of the seabed secondary reflections, the fisheries echo sounder was calibrated accurately. Our study can provide a reliable framework to calibrate commercial fisheries echo sounders, to improve the estimation and management of fishery resources.


Subject(s)
Fisheries , Calibration , Animals , Acoustics/instrumentation , Fishes/physiology , Conservation of Natural Resources/methods
15.
Sci Adv ; 10(19): eadi6580, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728390

ABSTRACT

The impact of dams on global migratory fish stocks is a major challenge and remains seriously underestimated. China has initiated a dozen fish rescue programs for the dams on the Yangtze River, focusing on five flagship species-Chinese sturgeon, Chinese paddlefish, Yangtze sturgeon, Chinese sucker, and Coreius guichenoti. Despite 40 years of effort, these five fishes are on the verge of extinction. Here, we propose an analytical tool that includes a framework of fish migration taxonomy and six life cycle models, the concepts of invalid stock and the dam impact coefficient, and a simplified population model. We then clarify the migration patterns and life cycles of these fishes and show that the Yangtze dams have severely disrupted the life cycle integrity of these species, causing seven types of invalid stocks and their exponential population declines. Last, we discuss six scientific misjudgments underpinning the fish rescue programs and recommend reforms to China's fish rescue strategy.


Subject(s)
Animal Migration , Conservation of Natural Resources , Fishes , Population Dynamics , Animals , Fishes/physiology , Animal Migration/physiology , China , Rivers
16.
Syst Parasitol ; 101(3): 39, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733439

ABSTRACT

Myxosporean infection in marine water fishes has drawn less attention than in freshwater fishes, which resulted in a higher taxonomic variety in freshwater in Malaysia. This study aimed to address the gap by conducting a myxosporean survey on two commercially significant marine fish species, Nemipterus furcosus (Valenciennes) (Eupercaria incertae sedis: Nemipteridae) and Selar crumenophthalmus (Bloch) (Carangiformes: Carangidae), collected from the northeastern part of peninsular Malaysia. During the examination of the organs, two distinct Myxobolus Bütschli, 1882 species were discovered in the brain tissue of these fishes, despite the absence of any observable pathological signs. The two Myxobolus species were characterized through morphometry, morphology, and analysis of partial small subunit ribosomal RNA (18S rDNA) gene. As a result, Myxobolus acanthogobii Hoshina, 1952, which infects 2.3% of N. furcosus, is synonymous with a myxobolid species commonly found in Japanese waters, based on its morphological traits, tissue tropism, and molecular diagnostics. Furthermore, a novel species, Myxobolus selari n. sp., was described, infecting the brain of one (11%) individual S. crumenophthalmus. This unique species displayed distinctive features, placing it within a well-supported subclade primarily comprising brain-infecting myxobolids. Maximum likelihood analysis further revealed the close relationships among these brain-infecting myxobolids, underscoring the significance of tissue tropism and host taxonomy for myxobolids. This study represents the initial documentation of Myxobolus species within the southern South China Sea, shedding light on the potential diversity of marine myxosporean in this region. This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as urn:lsid:zoobank.org:pub:7C400E35-7CB8-4DEE-92B7-F75FF3926441.


Subject(s)
Brain , Myxobolus , Phylogeny , Species Specificity , Animals , Myxobolus/classification , Myxobolus/genetics , Myxobolus/anatomy & histology , Malaysia , Brain/parasitology , Fishes/parasitology , RNA, Ribosomal, 18S/genetics , Fish Diseases/parasitology
17.
PLoS One ; 19(5): e0303198, 2024.
Article in English | MEDLINE | ID: mdl-38701057

ABSTRACT

The study of morphological characteristics and growth information in fish scales is a crucial component of modern fishery biological research, while it has been less studied in fossil materials. This paper presents a detailed morphological description and growth analysis of a fossil ctenoid scale obtained from the Upper Cretaceous Campanian lacustrine deposits in northeastern China. The morphological features of this fossil scale are well-preserved and consistent with the structures found in ctenoid scales of extant fish species and display prominent ring ornamentation radiating outward from the central focus, with grooves intersecting the rings. A comparative analysis of the morphological characteristics between the fossil ctenoid scale and those well-studied extant fish Mugilidae allows us to explore the applicability of modern fishery biological research methods to the field of fossil scales. The scale length, scale width, the vertical distance from the focus to the apex of the scale, and the total number of radii have been measured. The age of the fish that possessed this ctenoid scale has been estimated by carefully counting the annuli, suggesting an age equal to or more than seven years. The distribution of growth rings on the scale potentially reflects the warm paleoclimatic condition and fish-friendly paleoenvironment prevalent during that period. This paper, moreover, serves as a notable application of fishery biological methods in the examination of fossil materials.


Subject(s)
Fossils , China , Animals , Fishes/anatomy & histology , Fishes/growth & development , Animal Scales/anatomy & histology
18.
Sci Adv ; 10(18): eadk6808, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701216

ABSTRACT

Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating.


Subject(s)
Anthozoa , Coral Reefs , Animals , Anthozoa/physiology , Caribbean Region , Fishes , Ecosystem
19.
PeerJ ; 12: e17216, 2024.
Article in English | MEDLINE | ID: mdl-38699190

ABSTRACT

This study is the first to determine the levels of heavy metals in commercially important fish species, namely Lates niloticus and Oreochromis niloticus and the potential human health risks associated with their consumption. A total of 120 fish samples were collected from the lower Omo river and Omo delta, with 60 samples from each water source. The fish tissue samples (liver and muscle) were analyzed using a flame atomic absorption spectrometer for nine heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The human health risk assessment tools used were the target hazard quotient (THQ), the hazard index (HI), and the target cancer risk (TCR). The mean levels of heavy metals detected in the liver and muscle of L. niloticus from the lower Omo river generally occurred in the order Fe > Zn > Pb> Cu > Mn> Cr > Co > Ni and Pb > Cu > Mn > Co > Ni, respectively. The mean levels of metals in the muscle and liver tissues of O. niloticus were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Zn > Mn > Fe > Cu > Co > Ni, respectively. Similarly, the mean levels of heavy metals detected in the liver and muscle of L. niloticus from Omo delta occurred in the order Fe > Zn > Pb > Cu > Mn > Cr > Co > Ni and Fe > Pb > Zn > Mn > Cu > Co > Cr > Ni, respectively. The mean levels in the muscle and liver tissues of O. niloticus from the Omo delta were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Fe > Zn > Mn > Co > Cu > Ni, respectively. The study revealed that the THQ values were below 1, indicating that consumption of L. niloticus and O. niloticus from the studied sites does not pose a potential non-carcinogenic health risk. Although the TCR values for Pb in this study were within the tolerable range, it's mean concentration in the muscle and liver tissues of both fish species from the two water bodies exceeded the permissible limit established by FAO/WHO. This is a warning sign for early intervention, and it emphasizes the need for regular monitoring of freshwater fish. Therefore, it is imperative to investigate the pollution levels and human health risks of heavy metals in fish tissues from lower Omo river and Omo delta for environmental and public health concerns.


Subject(s)
Food Contamination , Lakes , Metals, Heavy , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , Humans , Animals , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Food Contamination/analysis , Lakes/chemistry , Ethiopia , Fishes , Environmental Monitoring/methods , Liver/chemistry , Liver/metabolism , Cichlids/metabolism , Muscles/chemistry , Muscles/metabolism
20.
Sci Rep ; 14(1): 10585, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719868

ABSTRACT

Here, a comprehensive study was designed to estimate the human risk assessment attributed to exposure of polycyclic aromatic hydrocarbons (PAHs)in sediment and fish in most polluted shore area in north of Persian Gulf. To this end, a total of 20 sediment and inhabitual Fish, as one of most commercial fish, samples were randomly collected from 20 different stations along Bushehr Province coastline. The 16 different components of PAHs were extracted from sediment and edible parts of inhabitual fish and measured with high-performance liquid chromatography (HPLC) and gas chromatography (GC), respectively. In addition, dietary daily intake (DDI) values of PAHs via ingestion Indian halibut and the incremental lifetime cancer risk (ILCR) attributed to human exposure to sediments PAHs via (a) inhalation, (b) ingestion, and (c) dermal contact for two groups of ages: children (1-11 years) and adults (18-70 years) were estimated. The results indicated that all individual PAHs except for Benzo(b)flouranthene (BbF) and Benzo(ghi) perylene (BgP) were detected in different sediment sample throughout the study area with average concentration between 2.275 ± 4.993 mg.kg-1 dw. Furthermore, Naphthalene (Nap) with highest average concentration of 3.906 ± 3.039 mg.kg-1 dw was measured at the Indian halibut. In addition, the human risk analysis indicated that excess cancer risk (ECR) attributed to PAHs in sediment and fish in Asaluyeh with high industrial activities on oil and derivatives were higher the value recommended by USEPA (10-6). Therefore, a comprehensive analysis on spatial distribution and human risk assessment of PAHs in sediment and fish can improve the awareness on environmental threat in order to aid authorities and decision maker to find a sustainable solution.


Subject(s)
Fishes , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Geologic Sediments/analysis , Geologic Sediments/chemistry , Indian Ocean , Animals , Risk Assessment , Adult , Water Pollutants, Chemical/analysis , Child , Adolescent , Middle Aged , Young Adult , Child, Preschool , Aged , Infant , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...