Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.415
Filter
1.
Infect Dis Poverty ; 13(1): 40, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822386

ABSTRACT

BACKGROUND: Opisthorchiid flukes, particularly Opisthorchis viverrini, Opisthorchis felineus, Clonorchis sinensis, and Metorchis spp. are the most common fish-borne zoonotic human liver flukes (hLFs). Liver fluke infections are more prevalent in resource-deprived and underprivileged areas. We herein estimated the prevalence of the metacercariae (MC) of major hLFs in common large freshwater fishes (lFWF) marketed for human consumption from some selected areas of Bangladesh along with detection of their molluscan vectors and reservoirs. METHODS: The current status of fish-borne zoonotic hLF infections in lFWF was investigated along with their molluscan vectors and mammalian reservoir hosts in Mymensingh and Kishoreganj in Bangladesh from July 2018-June 2022 using conventional and multiple molecular techniques, such as PCR, PCR-restriction fragment length polymorphism (RFLP), sequencing, and bioinformatic analyses. The infection rate of fishes was analyzed using the Z-test and the loads of MC were compared using the chi-squared (χ2) test. RESULTS: The MC of C. sinensis, Opisthorchis spp., and Metorchis spp. were detected in 11 species of common and popular lFWF. In lFWF, the estimated prevalence was 18.7% and the mean load was 137.4 ± 149.8 MC per 100 g of fish. The prevalence was the highest (P < 0.05) in spotted snakehead fishes (Channa punctata, 63.6%). The highest rate of infection (P < 0.05) was observed with the MC of C. sinensis (11.8%). Metacercariae were almost equally (P > 0.05) distributed between the head and body of fishes. The infection rate was slightly higher in cultured (19.6%) fishes. The MC of C. sinensis, O. felineus, O. viverrini, and Metorchis orientalis in fishes were confirmed using PCR, PCR-RFLP and bioinformatics. The cercariae of opisthorchiid (Pleurolophocercus cercariae) flukes were only recovered from Bithynia spp. (3.9%, 42 out of 1089). The ova of hLFs from dogs (4.3%, 5 out of 116) and cats (6.0%, 6 out of 100), and adult flukes (M. orientalis) from ducks (41.1% 113 out of 275) were detected. CONCLUSIONS: The MC of hLFs are highly prevalent in fresh water fishes in Bangladesh. Reservoir hosts, such as street dogs, cats, and ducks carried the patent infection, and residents of Bangladesh are at risk.


Subject(s)
Disease Reservoirs , Fish Diseases , Fishes , Fresh Water , Zoonoses , Animals , Bangladesh/epidemiology , Fishes/parasitology , Fresh Water/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Humans , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/transmission , Disease Vectors , Prevalence , Opisthorchis/genetics , Opisthorchis/isolation & purification , Metacercariae/genetics , Metacercariae/isolation & purification , Clonorchis sinensis/genetics , Clonorchis sinensis/isolation & purification , Mollusca/parasitology
2.
Curr Biol ; 34(11): R549-R551, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834031

ABSTRACT

Anglerfish are creatures of the deep ocean, featuring glowing lures, huge, toothy mouths and parasitic males physically attached to females. A new study finds that genomic degradation of the immune system facilitated the origin of parasitic males as anglerfishes invaded the deep zone where they experienced an adaptive radiation.


Subject(s)
Biological Evolution , Animals , Male , Fishes/genetics , Fishes/parasitology , Genetic Speciation , Female , Oceans and Seas
3.
Syst Parasitol ; 101(3): 37, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700664

ABSTRACT

A synopsis of Ortholinea Shulman, 1962 (Cnidaria: Myxosporea: Ortholineidae) is presented and identifies 26 nominal species presently allocated within this genus. Species morphological and morphometric features, tissue tropism, type-host, and type-locality are provided from original descriptions. Data from subsequent redescriptions and reports is also given. Accession numbers to sequences deposited in GenBank are indicated when available, and the myxospores were redrawn based on original descriptions. The information gathered shows that Ortholinea infect a wide taxonomic variety of freshwater and marine fish. Nonetheless, the broad host specificity reported for several species is not fully supported by morphological descriptions and requires molecular corroboration. The members of this genus are coelozoic and mainly parasitize the urinary system, with few species occurring in the gallbladder. Ortholinea visakhapatnamensis is the only exception, being histozoic in the visceral peritoneum. Molecular data of the small subunit ribosomal RNA gene (SSU rDNA) is available for about one third of Ortholinea species, with genetic interspecific variation ranging between 1.65% and 29.1%. Phylogenetic analyses reveal Ortholinea to be polyphyletic, with available SSU rDNA sequences clustering within the subclades of the highly heterogenous freshwater urinary clade of the oligochaete-infecting lineage. The life cycles of two Ortholinea species have been clarified based on molecular inferences and identify triactinomyxon actinospores as counterparts, and marine oligochaetes of the family Naididae as permissive hosts to this genus.


Subject(s)
Myxozoa , Species Specificity , Animals , Myxozoa/classification , Myxozoa/genetics , Myxozoa/anatomy & histology , Phylogeny , Host Specificity , Fishes/parasitology , DNA, Ribosomal/genetics
4.
J Parasitol ; 110(3): 186-194, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700436

ABSTRACT

Leech specimens of the genus Pontobdella (Hirudinida: Piscicolidae) were found off the coast of the state of Oaxaca (Pacific) as well as in Veracruz and Tabasco (Gulf of Mexico), Mexico. Based on the specimens collected in Oaxaca, a redescription of Pontobdella californiana is provided, with emphasis on the differences in the reproductive organs with the original description of the species. In addition, leech cocoons assigned to P. californiana were found attached to items hauled by gillnets and studied using scanning electron microscopy and molecular approaches. Samples of Pontobdella macrothela were found in both Pacific and Atlantic oceans, representing new geographic records. The phylogenetic position of P. californiana is investigated for the first time, and with the addition of Mexican samples of both species, the phylogenetic relationships within Pontobdella are reinvestigated. Parsimony and maximum-likelihood phylogenetic analysis were based on mitochondrial (cytochrome oxidase subunit I [COI] and 12S rRNA) and nuclear (18S rRNA and 28S rRNA) DNA sequences. Based on our results, we confirm the monophyly of Pontobdella and the pantropical distribution of P. macrothela with a new record in the Tropical Eastern Pacific.


Subject(s)
Leeches , Microscopy, Electron, Scanning , Phylogeny , Animals , Leeches/classification , Leeches/genetics , Leeches/anatomy & histology , Mexico , Microscopy, Electron, Scanning/veterinary , Pacific Ocean , Atlantic Ocean , DNA, Ribosomal/chemistry , RNA, Ribosomal, 28S/genetics , Fish Diseases/parasitology , Gulf of Mexico/epidemiology , Electron Transport Complex IV/genetics , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , RNA, Ribosomal, 18S/genetics , Molecular Sequence Data , Sequence Alignment/veterinary , Likelihood Functions , Fishes/parasitology
5.
J Helminthol ; 98: e38, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721629

ABSTRACT

The deepest recorded depth for trematodes currently stands at approximately 6200 m. This depth record was achieved solely through sequence datasets of Lepidapedon sp. obtained from a gastropod. Given that trematodes of this genus typically use fish as definitive hosts, the origin of the trematode sequence was thought to be larval stages. However, the specific species remained unclear owing to the absence of reported adult-stage sequences. In the present study, we definitively identified the deepest trematode as Lepidapedon oregonense by comparing 28S ribosomal DNA sequences from adult worms from the macrourid fish Coelorinchus gilberti with data from the gastropod in the previous study.


Subject(s)
DNA, Helminth , DNA, Ribosomal , Phylogeny , RNA, Ribosomal, 28S , Trematoda , Animals , Trematoda/classification , Trematoda/genetics , Trematoda/isolation & purification , RNA, Ribosomal, 28S/genetics , DNA, Helminth/genetics , DNA, Ribosomal/genetics , Gastropoda/parasitology , Sequence Analysis, DNA , Fishes/parasitology , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary
6.
Syst Parasitol ; 101(3): 39, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733439

ABSTRACT

Myxosporean infection in marine water fishes has drawn less attention than in freshwater fishes, which resulted in a higher taxonomic variety in freshwater in Malaysia. This study aimed to address the gap by conducting a myxosporean survey on two commercially significant marine fish species, Nemipterus furcosus (Valenciennes) (Eupercaria incertae sedis: Nemipteridae) and Selar crumenophthalmus (Bloch) (Carangiformes: Carangidae), collected from the northeastern part of peninsular Malaysia. During the examination of the organs, two distinct Myxobolus Bütschli, 1882 species were discovered in the brain tissue of these fishes, despite the absence of any observable pathological signs. The two Myxobolus species were characterized through morphometry, morphology, and analysis of partial small subunit ribosomal RNA (18S rDNA) gene. As a result, Myxobolus acanthogobii Hoshina, 1952, which infects 2.3% of N. furcosus, is synonymous with a myxobolid species commonly found in Japanese waters, based on its morphological traits, tissue tropism, and molecular diagnostics. Furthermore, a novel species, Myxobolus selari n. sp., was described, infecting the brain of one (11%) individual S. crumenophthalmus. This unique species displayed distinctive features, placing it within a well-supported subclade primarily comprising brain-infecting myxobolids. Maximum likelihood analysis further revealed the close relationships among these brain-infecting myxobolids, underscoring the significance of tissue tropism and host taxonomy for myxobolids. This study represents the initial documentation of Myxobolus species within the southern South China Sea, shedding light on the potential diversity of marine myxosporean in this region. This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as urn:lsid:zoobank.org:pub:7C400E35-7CB8-4DEE-92B7-F75FF3926441.


Subject(s)
Brain , Myxobolus , Phylogeny , Species Specificity , Animals , Myxobolus/classification , Myxobolus/genetics , Myxobolus/anatomy & histology , Malaysia , Brain/parasitology , Fishes/parasitology , RNA, Ribosomal, 18S/genetics , Fish Diseases/parasitology
7.
Fish Shellfish Immunol ; 149: 109613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710341

ABSTRACT

Aporocotylids (Trematoda: Digenea), also known as fish blood flukes infect the circulatory system of fish leading to serious health problems and mortality. Aporocotylids are a particular concern for farmed fish as infection intensity can increase within the farming environment and lead to mortalities. In the context of managing these infections, one of the most crucial aspects to consider is the host response of the infected fish against these blood flukes. Understanding the response is essential to improving current treatment strategies that are largely based on the use of anthelmintic praziquantel to manage infections in aquaculture. This review focuses on the current knowledge of farmed fish host responses against the different life stages of aporocotylids. New treatment strategies that are able to provide protection against reinfections should be a long-term goal and is not possible without understanding the fish response to infection and the interactions between host and parasite.


Subject(s)
Aquaculture , Fish Diseases , Fishes , Trematoda , Trematode Infections , Animals , Trematode Infections/veterinary , Trematode Infections/immunology , Trematode Infections/parasitology , Trematode Infections/drug therapy , Fish Diseases/immunology , Fish Diseases/parasitology , Trematoda/physiology , Fishes/immunology , Fishes/parasitology , Host-Parasite Interactions , Anthelmintics/therapeutic use , Anthelmintics/pharmacology
8.
An Acad Bras Cienc ; 96(1): e20230706, 2024.
Article in English | MEDLINE | ID: mdl-38656057

ABSTRACT

Over recent years, fish parasites of the genus Cymothoa Fabricius, 1793, have received increased attention due to both their ecological and their economic importance to aquaculture and fishery. As the studies about Cymothoa have increased this improve our understanding on the host specificity and distribution of these parasites. The aim of this paper was to review the current global geographic distribution, distribution patterns and parasite-host interactions patterns of Cymothoa spp. associated with fish from marine and brackish water bodies around the world. A total of 144 samples were analyzed, from which 23 species of Cymothoa were found parasitizing 84 teleost fish species of 35 families and 20 orders. Most of these parasites were found in the mouth of the host fish, including in wild fish. The highest occurrence of parasites was found in host species belonging to the families Carangidae and Lutjanidae. Host specificity was an important factor in the geographic distribution of Cymothoa species as also environmental temperature. Cymothoa indica, Cymothoa exigua and Cymothoa excisa were the species with lowest specificity for host family and widest geographic distribution.


Subject(s)
Fish Diseases , Fishes , Host Specificity , Host-Parasite Interactions , Isopoda , Animals , Isopoda/classification , Isopoda/parasitology , Fishes/parasitology , Fishes/classification , Fish Diseases/parasitology , Animal Distribution
9.
Article in Chinese | MEDLINE | ID: mdl-38604688

ABSTRACT

OBJECTIVE: To investigate the prevalence of Anisakis infections in coastal marine fishes and awareness of anisakiasis control knowledge among local residents in Yantai City, Shandong Province in 2021, so as to provide insights into formulation of anisakiasis control interventions. METHODS: Marine fishes were purchased from Shunxin Port, Yantai City, Shandong Province in November 2021, and the presence of Anisakis was detected in different species of fishes and different fish sites. The correlations between body length and weight of marine fish and intensity of Anisakis infections were examined using Spearman's rank correlation analysis, and the dietary habits and anisakiasis control knowledge were investigated using questionnaire surveys among local residents. RESULTS: A total of 201 marine fishes belonging to 20 species were dissected, and Anisakis was detected in 77 marine fishes (38.31%) belonging to 11 species (55.00%), with a mean infection intensity of 45.04 parasites per fish (3 468/77). Spearman's rank correlation analysis revealed that the body length (rs = 0.74, P < 0.05) and weight (rs = 0.79, P < 0.01) of the monkfish correlated positively with the intensity of Anisakis infections, and the body length (rs = 0.68, P < 0.05) of the flatfish correlated positively with the intensity of Anisakis infections, while no correlations were examined between the body length or weight of other marine fishes and the intensity of Anisakis infections. Of all respondents, 53.38% men and 56.67% women did not know anisakiasis control knowledge at all, and there was a significant difference in the proportion of respondents using separate chopping boards for raw and cooked food from different villages (χ2 = 17.89, P < 0.01), while there was an age-specific proportion of respondents with habitats of eating raw or semi-raw seafood (χ2 = 28.27, P < 0.01). CONCLUSIONS: The prevalence and intensity of Anisakis infections were high in coastal marine fishes in Yantai City in 2021, and the awareness of anisakiasis control knowledge was low among local residents. Intensified health education pertaining to anisakiasis control knowledge is recommended to reduce the risk of Anisakis infections.


Subject(s)
Anisakiasis , Anisakis , Fish Diseases , Animals , Male , Female , Humans , Anisakiasis/epidemiology , Anisakiasis/veterinary , Larva , Fishes/parasitology , Seafood/parasitology , Fish Diseases/parasitology
10.
J Helminthol ; 98: e31, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584424

ABSTRACT

Acanthocephalans are a group of obligate endoparasites that alternate between vertebrates and invertebrates to complete their life cycles. Occasionally, the same individual host acts as a definitive or paratenic host for different acanthocephalan species. In this study, acanthocephalans were sampled in marine fish in three localities of the Yucatán Peninsula; adults and cystacanths were recovered from the intestine and body cavity, respectively, of Haemulon plumierii from off the coast of Sisal, Yucatán. Ribosomal DNA sequences (small and large subunits) were used to test the phylogenetic position of the species of the genus Dollfusentis, whereas the mtDNA gene cox 1 was used for assessing species delimitation. The cox 1 analysis revealed an independent genetic lineage, which is recognized herein as a new species, Dollfusentis mayae n. sp. The new species is morphologically distinguished from the other six congeners by having a cylindrical proboscis armed with 22-25 longitudinal rows bearing 12 hooks each. The cystacanths were morphologically identified as Gorgorhynchus medius by having a cylindrical trunk covered with tiny irregular spines on the anterior region, and a cylindrical proboscis armed with 17-18 longitudinal rows of 21 hooks each; small and large subunit phylogenetic analyses yielded G. medius within the family Isthomosacanthidae, suggesting that Gorgorhynchus should be transferred to this family from Rhadinorhynchidae where it is currently allocated.


Subject(s)
Acanthocephala , Helminthiasis, Animal , Perciformes , Animals , Mexico , Phylogeny , Helminthiasis, Animal/parasitology , Fishes/parasitology , Perciformes/parasitology
11.
Folia Parasitol (Praha) ; 712024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567394

ABSTRACT

The present paper comprises a systematic survey of trematodes found in 13 species of freshwater fishes in Venezuela collected in 1992, 1996 and 2001. The following 15 trematode species were recorded: Adults: Genarchella venezuelaensis sp. n., Thometrema dissimilis sp. n., Megacoelium spinicavum Thatcher et Varella, 1981, Doradamphistoma bacuense Thatcher, 1999, Crassicutis cichlasomae Manter, 1936, Parspina carapo Ostrowski de Núñez, Arredonto et Gil de Pertierra, 2011, Phyllodistomoides hoplerythrini sp. n. Larvae (metacercariae): Clinostomatopsis sorbens (Braun, 1899), Clinostomum marginatum (Rudolphi, 1819), C. detruncatum Braun, 1899, Ithyoclinostomum dimorphum (Diesing, 1850), Odhneriotrema microcephala (Travassos, 1922), Tylodelphys sp., Posthodiplostomum sp., Sphincterodiplostomum sp. All these parasites are reported from Venezuela for the first time and many of these findings represent new host records. The new species G. venezuelaensis sp. n., T. dissimilis sp. n. and P. hoplerythrini sp. n. were collected from the accessory respiratory organ of Loricariichthys brunneus (Hancock) (Loricariidae), from the stomach of Hoplerythrinus unitaeniatus (Spix et Agassiz) (Erythrinidae) and from the intestine of H. unitaeniatus, respectively. All parasites are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed. Megacoelium spinispecum Thatcher et Varella, 1981 is considered a junior synonym of M. spinicavum Thatcher et Varella, 1981, and Crassicutis opisthoseminis Bravo-Hollis et Arroyo, 1962 as a junior synonym of C. cichlasomae Manter, 1936.


Subject(s)
Catfishes , Characiformes , Fish Diseases , Parasites , Trematoda , Trematode Infections , Animals , Venezuela/epidemiology , Fishes/parasitology , Fresh Water , Fish Diseases/epidemiology , Fish Diseases/parasitology , Trematode Infections/epidemiology , Trematode Infections/veterinary , Trematode Infections/parasitology
12.
Exp Parasitol ; 261: 108751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604302

ABSTRACT

Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 µg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.


Subject(s)
Anisakis , Anthelmintics , Ivermectin , Larva , Pyrantel , Animals , Anisakis/drug effects , Anisakis/genetics , Anisakis/growth & development , Ivermectin/pharmacology , Larva/drug effects , Larva/genetics , Anthelmintics/pharmacology , Pyrantel/pharmacology , Actins/metabolism , Actins/genetics , Actins/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/drug effects , Xenobiotics/pharmacology , Xenobiotics/metabolism , Gene Expression/drug effects , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Anisakiasis/parasitology , Anisakiasis/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/drug effects , Catalase/genetics , Catalase/metabolism , Catalase/drug effects , Fishes/parasitology , Fish Diseases/parasitology
13.
Syst Parasitol ; 101(3): 32, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647716

ABSTRACT

Seven species belonging to Pennellidae are reported from marine teleosts caught off southern Africa. Additionally, complete re-descriptions are provided for Propeniculus stromatei and Sarcotretes scopeli. Examination of Lernaeenicus gonostomae, deposited in the Iziko South African Museum, indicated that it has the morphological features of Sarcotretes rather than Lernaeenicus and thus should be moved to Sarcotretes i.e. S. gonostomae n. comb. for which a re-description is also provided. Reports of new host records include those of Pennella instructa from Seriola lalandi; Propeniculus stromatei from Rhabdosargus holubi and Pomadasys commersonnii; Sarcotretes scopeli from Nansenia tenera, and Sarcotretes longirostris from Centrolophus niger. New geographical records include those of P. instructa, P. stromatei, S. scopeli, S. longirostris, and L. longiventris off southern Africa. Additionally, an attempt to estimate the evolutionary relationships amongst some genera is done from partial COI sequences deposited in Genbank.


Subject(s)
Copepoda , Species Specificity , Animals , Copepoda/classification , Copepoda/anatomy & histology , Female , Africa, Southern , South Africa , Fishes/parasitology
14.
Parasitol Int ; 101: 102890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38522781

ABSTRACT

We examined gelatinous zooplankton from off eastern Australia for lepocreadiid trematode metacercariae. From 221 specimens of 17 species of cnidarian medusae and 218 specimens of four species of ctenophores, infections were found in seven cnidarian and two ctenophore species. Metacercariae were distinguished using cox1 mtDNA, ITS2 rDNA and morphology. We identified three species of Prodistomum Linton, 1910 [P. keyam Bray & Cribb, 1996, P. orientale (Layman, 1930), and Prodistomum Type 3], two species of Opechona Looss, 1907 [O. kahawai Bray & Cribb, 2003 and O. cf. olssoni], and Cephalolepidapedon saba Yamaguti, 1970. Two species were found in cnidarians and ctenophores, three only in cnidarians, and one only in a ctenophore. Three Australian fishes were identified as definitive hosts; four species were collected from Scomber australasicus and one each from Arripis trutta and Monodactylus argenteus. Transmission of trematodes to these fishes by ingestion of gelatinous zooplankton is plausible given their mid-water feeding habits, although such predation is rarely reported. Combined morphological and molecular analyses of adult trematodes identified two cox1 types for C. saba, three cox1 types and species of Opechona, and six cox1 types and five species of Prodistomum of which only two are identified to species. All three genera are widely distributed geographically and have unresolved taxonomic issues. Levels of distinction between the recognised species varied dramatically for morphology, the three molecular markers, and host distribution. Phylogenetic analysis of 28S rDNA data extends previous findings that species of Opechona and Prodistomum do not form monophyletic clades.


Subject(s)
Fish Diseases , Trematoda , Trematode Infections , Zooplankton , Animals , Trematoda/classification , Trematoda/genetics , Trematoda/isolation & purification , Trematoda/anatomy & histology , Trematode Infections/veterinary , Trematode Infections/parasitology , Trematode Infections/epidemiology , Australia , Fish Diseases/parasitology , Fish Diseases/epidemiology , Japan , Cnidaria/classification , Fishes/parasitology , Metacercariae/isolation & purification , Phylogeny , DNA, Ribosomal Spacer/analysis , DNA, Mitochondrial/analysis , DNA, Helminth/analysis , DNA, Ribosomal/analysis , East Asian People
15.
Syst Parasitol ; 101(2): 26, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478214

ABSTRACT

Brucethoa isro n. sp., a new species of deep-sea cymothoid is described and illustrated from the host fish Spinyjaw greeneye, Chlorophthalmus corniger Alcock, 1894, at depths of 265 to 458 metres from the southwest coast of India. Brucethoa isro n. sp. is recovered from the base of the gill cavity, facing the head towards the anterior, and the dorsal body closely adpressed against the gill, while the ventral brood presses against the inner wall of the operculum. Brucethoa isro n. sp., the second species of the genus, is characterized by: head weakly immersed in pereonite 1, very elongated body (3.15 times as long as wide); body dorsum not vaulted, almost flat; all coxae short, 0.5 times as the length of corresponding pereonites; sternite 7 with prominent posterior lobes. All adult life stages of the new species are described [including females (ovigerous and non-ovigerous), males, transitional, and juvenile. The species is currently known from the southwest coast of India and is the type locality. Additionally, this research provides valuable ecological insights into Brucethoa isro n. sp. and its habitat. As part of the taxonomic contributions, two species, Brucethoa alvaradoensis (Rocha-Ramírez, Chávez-López & Bruce, 2005) comb. n. and Brucethoa epinepheli (Trilles & Justine, 2010) comb. n., are transferred from the Elthusa genus to the Brucethoa genus.


Subject(s)
Isopoda , Parasites , Female , Male , Animals , Indian Ocean , Species Specificity , Fishes/parasitology
16.
Braz J Biol ; 84: e281415, 2024.
Article in English | MEDLINE | ID: mdl-38511782

ABSTRACT

Diseases in fish due to helminth parasites, especially Philometra species, are the primary worry in aquaculture. Philometra are responsible for health problem in fishes they directly affect fish growth and population parameters. A comprehensive survey was conducted involving the examination of the marine fish species Terapon jarbua, gathered from the coastal waters of Sindh, Pakistan In this research different Philometra species from marine fish Terapon jarbua during 2021 and 2022. Philometra nematodes, belonging to the family Philometridae, are common parasitic organisms inhabiting both marine and freshwater environments. Their prevalence, particularly when existing in high numbers within host organisms, can lead to severe and potentially lethal consequences. Employing light microscopy techniques, diverse species of Philometra were identified, including Philometra teraponi, P. jarbuai, P. arabiai, P. karachii, and P. awarii, localized primarily within the ovaries of the host fish. A total of 140 fish samples were examined and 76 were infected. The intensity of infected fish was 54.28%. The identification process encompassed meticulous analysis of crucial parameters, such as body size, esophagus length, positioning of the nerve ring, dimensions of the ventriculus, and ligament size. Intriguingly, the parasites were found in varying contexts; while some were free within the ovaries, others were embedded within tissues, inducing severe muscular dystrophy. This research presents novel findings of Philometra nematodes in the marine waters of Pakistan, extending their host and geographical distribution records. Future studies are needed to better evaluate and describe the dynamics and the epidemiology of Philometra infection in wild and cultured fish species.


Subject(s)
Dracunculoidea , Fish Diseases , Animals , Pakistan , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fishes/parasitology , Dracunculoidea/physiology , Body Size
17.
Acta Parasitol ; 69(1): 874-888, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468018

ABSTRACT

PURPOSE: The present paper describes two new genera and species of the parasitic copepod family Chondracanthidae Milne Edwards, 1840 based on specimens collected from two species of deep-sea fishes at a depth of 212 m off Suruga Bay, Japan. Avatar nishidai gen. et sp. nov. is described from the host fish Chaunax abei Le Danois, 1978 (Chaunacidae). Kokeshioides surugaensis gen. et sp. nov. is described from the host fish Setarches longimanus (Alcock, 1894) (Setarchidae). METHODS: Fresh specimens of chondracanthids were collected from the buccal cavity of two species of deep-sea fishes (fish hosts were frozen), Chaunax abei Le Danois, 1978 (Lophiiformes: Chaunacidae) and Setarches longimanus (Alcock, 1894) (Perciformes: Setarchidae), caught at a depth of 212 m in Suruga Bay, Japan (34° 37'48.87″ N, 138° 43'2.958″ E). Both the species are described and illustrated based on ovigerous females. RESULTS: The genus Avatar gen. nov. can readily be distinguished from all other chondracanthid genera by the following combination of features: cephalothorax slightly wider than long with anterior pair of large and posterior pair of small lateral lobes, and two pairs of ventro-lateral processes; the very posteriormost part of the first pedigerous somite contributes to the neck; cylindrical trunk with two pairs of blunt proximal fusiform processes; antennule with small knob terminally; antenna bearing distal endopodal segment; labrum protruding ventrally; two pairs of biramous legs each with 2-segmented rami. Kokeshioides gen. nov. has the following combinations of features that distinguish it from other chondracanthid genera: body flattened, without lateral processes; cephalothorax much wider than long, with paired anterolateral and posterolateral lobes, folded ventrally; the very posteriormost part of the first pedigerous somite contributes to the neck; mandible elongate; legs unique, heavily sclerotized, represented by two pairs of acutely pointed processes. CONCLUSION: With the addition of two new genera presently reported, the family Chondracanthidae currently includes 52 valid genera. Among the described genera Avatar gen. nov. seems to be very primitive, while Kokeshioides gen. nov. is highly advanced. The deduced evolutionary history of chondracanthid genera is also discussed.


Subject(s)
Copepoda , Fish Diseases , Animals , Copepoda/classification , Copepoda/anatomy & histology , Japan , Fish Diseases/parasitology , Female , Bays , Male , Fishes/parasitology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Perciformes/parasitology
18.
Acta Parasitol ; 69(1): 898-909, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472688

ABSTRACT

OBJECTIVES: The present work aims to expand the knowledge of the digenean species Prosogonotrema bilabiatum (Sclerodistomidae), a parasite of Chaetodipterus faber (Acanthuriformes) from Brazil, with an integrative taxonomic approach, using light microscopy, scanning electron microscopy, histology, and molecular biology. METHODS: Forty-one digenean specimens were stained with hydrochloric carmine for morphological studies. Eleven parasites were dehydrated through a graded ethanol series, critical point dried with carbon dioxide, and coated with gold for scanning electron microscopy analysis. Four specimens were processed following histological routine and stained with hematoxylin and eosin and Gomori trichrome. DNA extracted was amplified using 28S partial primer D1-D3. Maximum likelihood and Bayesian inference were performed for phylogenetic analysis. RESULTS: Morphometric and morphological data of the specimens studied ranged in accordance as observed in previous descriptions of the species. Observations from scanning electron microscopy and histology corroborated with those observed in stained whole mounts. Molecular analysis showed that specimens of P. bilabiatum from Brazil clustered with another two sequences of this species from different hosts and localities, with a high node support value. CONCLUSIONS: The integrative taxonomic approach allowed to record and describe new characteristics of P. bilabiatum related to the tegument, the structure and the arrangement of its tissues. The use of molecular markers confirmed that specimens identified as P. bilabiatum from different hosts and localities are all conspecific. Further studies, mainly molecular with less conserved genetic markers, should be carried out to better understand the phylogenetic relationships of Prosogonotrema with Hemiuroidea.


Subject(s)
Fish Diseases , Microscopy, Electron, Scanning , Phylogeny , Trematoda , Trematode Infections , Animals , Brazil/epidemiology , Fish Diseases/parasitology , Trematoda/classification , Trematoda/genetics , Trematoda/ultrastructure , Trematoda/anatomy & histology , Trematoda/isolation & purification , Microscopy, Electron, Scanning/veterinary , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Fishes/parasitology , DNA, Helminth/genetics , RNA, Ribosomal, 28S/genetics
20.
Parasitology ; 151(5): 485-494, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443982

ABSTRACT

Members of the genus Ortholinea are among the worldwide distributed myxozoan parasites that mainly infect marine fish. In this study, a new myxosporean species, Ortholinea hamsiensis n. sp., was isolated from the urinary bladder of European anchovy Engraulis engrasicolus collected from the Sinop coasts of the Black Sea. The prevalence and density values of infection were 1.4% and 1­5 individuals in the field of view (1 + ), respectively. Mature myxospores are subspherical with slight tapering down to the less pronounced tip in the frontal view and subspherical in the sutural view. Myxospores measured 9.1 ± 0.25 (8.8­9.9) µm in length, 9.2 ± 0.11 (8.9­9.4) µm in thickness, and 8.4 ± 0.33 (8.2-9.1) µm in width. Two polar capsules equal in size measured 3.1 ± 0.11 (3.0­3.3) µm in length and 2.7 ± 0.11 (2.6­2.9) µm in width. The polar tubule had 3­4 coils. Along with morphological peculiarities, the results of the 18S rDNA also revealed it to be a new species for science compared to the other species of the genus. In this study, another myxosporean species O. gobiusi was also detected in round goby Neogobius melanostomus with a prevalence of infection value of 4.8% and a density of 1­5 individuals in the field of view (1 + ). The present study also provided the first data of 18S rDNA of O. gobiusi from N. melanostomus and type species of the genus O. divergens from Gobius niger and the phylogenetic relationships of these species with other Ortholinea species have been revealed.


Subject(s)
Fish Diseases , Fishes , Myxozoa , Parasitic Diseases, Animal , Phylogeny , Urinary Bladder , Animals , Fish Diseases/parasitology , Fishes/parasitology , Black Sea , Myxozoa/genetics , Myxozoa/classification , Myxozoa/isolation & purification , Myxozoa/physiology , Urinary Bladder/parasitology , Parasitic Diseases, Animal/parasitology , Parasitic Diseases, Animal/epidemiology , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Prevalence , Urinary Bladder Diseases/parasitology , Urinary Bladder Diseases/veterinary , DNA, Ribosomal
SELECTION OF CITATIONS
SEARCH DETAIL
...