Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.655
Filter
1.
J Environ Sci (China) ; 145: 97-106, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844327

ABSTRACT

Sediment is the ultimate sink of environmental pollutants. A total of 128 surface sediment samples were collected from 8 rivers and 3 reservoirs in Maoming City, Guangdong Province. This study assessed the content and distribution of brominated flame retardants in sediments. The acute toxicity effects of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) in sediments were evaluated using Caenorhabditis elegans as model organisms. The concentration of TBBPA in sediments ranged from not detected (ND) to 12.59 µg/kg and was mainly distributed in the central area, which was affected by the emission of TBBPA from residential and factory. The concentration of HBCDs ranged from ND to 6.31 µg/kg, and the diastereoisomer distribution was consistent, showing a trend close to the South China Sea. The composition pattern of HBCDs in the surface sediments from rivers were 41.73%-62.33%, 7.89%-25.54%, and 18.76%-40.65% for α-, ß-, and γ-HBCD, respectively, and in the sediments from reservoirs were 26.15%-45.52%, 7.44%-19.23%, and 47.04%-61.89% for α-, ß-, and γ-HBCD, respectively. When the sum of concentrations of TBBPA and HBCD in sediments were above high levels, reactive oxygen species in nematodes significantly increased, resulting in an oxidative stress response. Intestinal permeability was also enhanced, causing intestinal damage. In addition, in terms of this study, TBBPA had a greater impact on biotoxicity compared to HBCDs, and more attention should be paid to the toxic effects of the river ecosystem organisms in Maoming City, Guangdong Province. This study can complement the pollution database in the study area and provide basic data for pollution control.


Subject(s)
Caenorhabditis elegans , Environmental Monitoring , Flame Retardants , Geologic Sediments , Hydrocarbons, Brominated , Water Pollutants, Chemical , Animals , Flame Retardants/toxicity , Flame Retardants/analysis , China , Caenorhabditis elegans/drug effects , Geologic Sediments/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Hydrocarbons, Brominated/analysis , Hydrocarbons, Brominated/toxicity , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/analysis
2.
Syst Rev ; 13(1): 148, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831309

ABSTRACT

BACKGROUND: Due to their adverse environmental and health impacts, brominated flame retardants (BFRs) are listed in Annex A of the Stockholm Convention for global elimination of production and use. Their health impacts include endocrine disruption, cancer, reproductive effects, and neurobehavioral and developmental disorders in children. Emerging literature suggests that legacy POP-BFRs are increasingly found in consumer products, including those used for and by children. The presence of legacy POP-BFRs in children's products is a big concern. Children are more vulnerable to chemical exposure risks than adults because their bodies are still developing and fragile. The rising problem is contributed to by the global push towards a circular economy that encourages responsible production and consumption by practising the recycling of waste materials. Waste materials such as electronic and electrical equipment plastics often contain POP-BFRs. POP-BFRs in waste materials are transferred into new products through recycling. The recycled products have become a potential source of exposure to legacy POP-BFRs for vulnerable populations, particularly children. Our scoping review aims to map and summarise the emerging literature. This information is needed to inform evidence-based policies to protect children from toxic exposures. METHODS: Our scoping review will follow a methodological framework proposed by Arksey and O'Malley. Peer-reviewed and grey literature on the topic will be retrieved from electronic databases and other relevant sites. Two reviewers will screen titles and abstracts, followed by a full-text review of studies for eligibility based on the established inclusion and exclusion criteria. Data will be extracted, and findings will be mapped in a table according to study settings, types of children's products tested, and concentration of legacy POP-BFRs in contaminated products. A map chart will be created to display how contaminated products are spread globally. DISCUSSION: Because of their unique vulnerabilities, children continue to suffer disproportionate exposures to toxic chemicals compared to adults. Information on potential exposures, particularly for children, is crucial to make evidence-based policies. We intend to map and summarise the emerging literature on legacy POP-BFRs in children's products. Findings will be disseminated to relevant stakeholders through publishing in a peer-reviewed scientific journal and policy briefs. SYSTEMATIC REVIEW REGISTRATION: The protocol is registered with the Open Science Framework ( https://doi.org/10.17605/OSF.IO/7KDE5 ).


Subject(s)
Flame Retardants , Plastics , Flame Retardants/analysis , Flame Retardants/adverse effects , Humans , Child , Plastics/adverse effects , Plastics/toxicity , Recycling , Play and Playthings , Environmental Exposure/adverse effects
3.
Sci Total Environ ; 932: 173031, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723961

ABSTRACT

The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , Particulate Matter , Plastics , Polymers , Microplastics/analysis , Polymers/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollutants/analysis , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Humans , Flame Retardants/analysis , Dust/analysis
4.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712863

ABSTRACT

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Subject(s)
Flame Retardants , Flame Retardants/analysis , Humans , Temperature , Environmental Exposure , Motor Vehicles
5.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697247

ABSTRACT

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Subject(s)
Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
6.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791552

ABSTRACT

Polyurethanes are among the most significant types of polymers in development; these materials are used to produce construction products intended for work in various conditions. Nowadays, it is important to develop methods for fire load reduction by using new kinds of additives or monomers containing elements responsible for materials' fire resistance. Currently, additive antipyrines or reactive flame retardants can be used during polyurethane material processing. The use of additives usually leads to the migration or volatilization of the additive to the surface of the material, which causes the loss of the resistance and aesthetic values of the product. Reactive flame retardants form compounds containing special functional groups that can be chemically bonded with monomers during polymerization, which can prevent volatilization or migration to the surface of the material. In this study, reactive flame retardants are compared. Their impacts on polyurethane flame retardancy, combustion mechanism, and environment are described.


Subject(s)
Flame Retardants , Polyurethanes , Flame Retardants/analysis , Polyurethanes/chemistry , Green Chemistry Technology/methods
7.
J Hazard Mater ; 472: 134529, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723482

ABSTRACT

Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.


Subject(s)
Aquatic Organisms , Ecosystem , Estuaries , Flame Retardants , Water Pollutants, Chemical , Flame Retardants/metabolism , Flame Retardants/analysis , Animals , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Aquatic Organisms/metabolism , Oceans and Seas , Fishes/metabolism , Bioaccumulation , Species Specificity , Environmental Monitoring , China , Invertebrates/metabolism
8.
Environ Sci Pollut Res Int ; 31(24): 35429-35441, 2024 May.
Article in English | MEDLINE | ID: mdl-38727973

ABSTRACT

An extensive analysis of the distribution patterns of three distinct classes of semi-volatile organic chemicals (SVOCs)-phthalates (PAEs), organophosphate flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs)-across four distinct size fractions of dust (25, 50, 100, and 200 µm) was conducted. The dust samples were sourced from AC filter, covered car parking lots, households, hotels, mosques, and car floors. To generate the four fractions, ten dust samples from each microenvironment were pooled and sieved utilizing sieving apparatus with the appropriate mesh size. Selected SVOCs were quantified utilizing gas chromatography-mass spectrometry in electron impact (EI) mode. Results unveiled diverse contamination levels among dust fractions, showcasing car parking lot dust with the lowest chemical contamination, while car floor dust displayed the highest levels of PAHs and OPFRs, peaking at 28.3 µg/g and 43.2 µg/g, respectively. In contrast, mosque and household floor dust exhibited the highest concentrations of phthalates, with values of 985 µg/g and 846 µg/g, respectively. Across the analyzed microenvironments, we observed a trend where concentrations of SVOCs tended to rise as dust particles decreased in size, forming a visually striking pattern. This phenomenon was particularly pronounced in dust samples collected from car floors and parking lots. Among SVOCs, PAEs emerged as the predominant contributors with > 90% followed by OPFRs and PAHs. The high levels of OPFRs in car floor dust align logically with the fact that numerous interior components of cars are treated with OPFRs, within a compact indoor microenvironment, to comply to fire safety regulations. Furthermore, petroleum products are a major source of PAHs in the environment and all the sampled cars in the study had combustion engines. Consequently, car dust is more likely to be polluted with PAHs stemming from petroleum combustion. Although previous investigations have noted an increase in heavy metals and brominated flame retardants with decreasing dust particles, this is the first study analyzing these SVOCs in different fractions of dust from various microenvironments. However, aside from two specific microenvironments, the observed pattern of escalating SVOC concentrations with smaller dust particle sizes was not corroborated among the examined microenvironments. This divergence in concentration trends suggests the potential involvement of supplementary variables in influencing SVOC distributions within dust particles.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Monitoring , Particle Size , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Dust/analysis , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Flame Retardants/analysis , Air Pollutants/analysis
9.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792195

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) have been used for many years as flame retardants. Due to their physicochemical and toxicological properties, they are considered to be persistent organic pollutants (POPs). BDE-209 is the main component of deca-BDE, the one PBDE commercial mixture currently approved for use in the European Union. The aim of this study was to analyse BDE-209 in surface soil samples from Warsaw and surrounding areas (Poland) as an indicator of environmental pollution with PBDEs, and to characterise the associated health risk. A total of 40 samples were analysed using gas chromatography with electron capture detection (GC-µECD). Concentrations of BDE-209 in soil ranged from 0.4 ng g-1 d.w. (limit of quantification) to 158 ng g-1 d.w. Overall, 52.5% of results were above the method's limit of quantification. The highest levels were found at several locations with heavy traffic and in the vicinity of a CHP plant in the city. The lowest concentrations were observed in most of the samples collected from low industrialized or green areas (<0.4 to 1.68 ng g-1 d.w.). Exposure to BDE-209 was estimated for one of the most sensitive populations, i.e., young children. The following exposure routes were selected: oral and dermal. No risk was found to young children's health.


Subject(s)
Halogenated Diphenyl Ethers , Soil Pollutants , Soil , Halogenated Diphenyl Ethers/analysis , Humans , Soil Pollutants/analysis , Soil/chemistry , Poland , Environmental Monitoring/methods , Environmental Exposure/analysis , Flame Retardants/analysis , Risk Assessment , Administration, Oral
10.
Sci Total Environ ; 937: 173182, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38740192

ABSTRACT

Organophosphate flame retardants (OPFRs) are widely used as alternatives to brominated flame retardants in a variety of consumer products and their consumption has continuously increased in recent years. However, their concentrations and human exposures in indoor microenvironments, particularly in a university environment, have received limited attention. In this study, the concentrations and seasonal variations of 15 OPFRs were assessed in typical microenvironments of two universities, including dormitories, offices, public microenvironments (PMEs: classroom, dining hall, gymnasium and library), and laboratories on the northern coast of China. Analysis of the OPFRs in both air and dust samples indicated widespread distribution in college campuses. The average concentration of ∑15OPFRs in the winter (12,774.4 ng/g and 5.3 ng/m3 for dust and air, respectively) was higher than in the summer (2460.4 ng/g and 4.6 ng/m3 for dust and air, respectively). The dust and air samples collected from PMEs and laboratories exhibited higher concentrations of OPFRs, followed by offices and dormitories. An equilibrium was reached between dust and air in all collected microenvironments. The daily intakes of OPFRs were significantly lower than the reference dose. Dust ingestion was the primary intake pathway in the winter, while inhalation and dust ingestion were the main intake pathways in the summer. The non-carcinogenic hazard quotients fell within the range of 10-7-10-3 in both the summer and winter, which are below the theoretical risk threshold. For the carcinogenic risk, the LCR values ranged from 10-10 to 10-8, indicating no elevated carcinogenic risk due to TnBP, TCEP, and TDCP in indoor dust and air.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Organophosphates , Seasons , Flame Retardants/analysis , China , Dust/analysis , Humans , Risk Assessment , Universities , Organophosphates/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Students/statistics & numerical data , Air Pollutants/analysis
11.
Environ Pollut ; 352: 124110, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723705

ABSTRACT

Due to differences in chemical properties and half-lives, best practices for exposure assessment may differ for legacy versus novel brominated flame retardants (BFRs). Our objective was to identify the environment matrix that best predicted biomarkers of children's BFR exposures. Paired samples were collected from children aged 3-6 years and their homes, including dust, a small piece of polyurethane foam from the furniture, and a handwipe and wristband from each child. Biological samples collected included serum, which was analyzed for 11 polybrominated diphenyl ethers (PBDEs), and urine, which was analyzed for tetrabromobenzoic acid (TBBA), a metabolite of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). Significant positive correlations were typically observed between BFRs measured in dust, handwipes and wristbands, though wristbands and handwipes tended to be more strongly correlated with one another than with dust. PBDEs, EH-TBB and BEH-TEBP were detected in 30% of the sofa foam samples, suggesting that the foam was treated with PentaBDE or Firemaster® 550/600 (FM 550/600). PBDEs were detected in all serum samples and TBBA was detected in 43% of urine samples. Statistically significant positive correlations were observed between the environmental samples and serum for PBDEs. Urinary TBBA was 6.86 and 6.58 times more likely to be detected among children in the highest tertile of EH-TBB exposure for handwipes and wristbands, respectively (95 % CI: 2.61, 18.06 and 1.43, 30.05 with p < 0.001 and 0.02, respectively). The presence of either PentaBDE or FM 550/600 in furniture was also associated with significantly higher levels of these chemicals in dust, handwipes and serum (for PBDEs) and more frequent detection of TBBA in urine (p = 0.13). Our results suggest that children are exposed to a range of BFRs in the home, some of which likely originate from residential furniture, and that silicone wristbands are a practical tool for evaluating external exposure to both legacy and novel BFRs.


Subject(s)
Environmental Exposure , Flame Retardants , Halogenated Diphenyl Ethers , Flame Retardants/analysis , Humans , Halogenated Diphenyl Ethers/blood , Child , Child, Preschool , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Female , Male , Dust/analysis , Environmental Pollutants/urine , Environmental Pollutants/blood , Environmental Monitoring , Housing , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/analysis
12.
Chemosphere ; 359: 142324, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740339

ABSTRACT

Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.


Subject(s)
Anthozoa , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Chlorinated , Persistent Organic Pollutants , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , China , Halogenated Diphenyl Ethers/analysis , Flame Retardants/analysis , Seawater/chemistry , Polychlorinated Biphenyls/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Coral Reefs , Oceans and Seas
13.
Chemosphere ; 355: 141822, 2024 May.
Article in English | MEDLINE | ID: mdl-38561157

ABSTRACT

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Flame Retardants/analysis , Environmental Exposure/analysis , Phosphates/analysis , Water Quality , Organophosphates/analysis
14.
J Affect Disord ; 355: 385-391, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38574866

ABSTRACT

BACKGROUND: Organophosphorus flame retardants (OPFRs) can damage the brain and may cause abnormal behaviors. There was no population-based study to reveal the relationship between OPFRs and the occurrence of depression. This study utilized a publicly available database to investigate the correlation between OPFRs exposure and the risk of depression, and the mediation effect of inflammation on the correlation. METHODS: Data in this study was from the database of the National Health and Nutrition Examination Survey. Multifactorial logistic regression was used to estimate the relationship between OPFRs exposure and the risk of depression, and a mediation effect model was constructed to explore the impact of inflammation on the correlation. RESULTS: Data of 1273 participants was included in the study. It was found that individuals with high urinary concentration of bis-(2-chloroethyl) phosphate had an increased risk of developing depression (OR = 1.217, 95 % CI: 1.032-1.435). Combined exposure to OPFRs was significantly associated with the increased risk of depression than single OPFRs exposure. Subgroup analyses based on inflammatory levels in the body revealed that inflammation might exert the mediation effect on the association between OPFRs exposure and the risk of depression, with the contribution proportion of 8.23 %. LIMITATIONS: Cross-sectional data and rapid metabolism of OPFRs lead to uncertainty in revealing long-term exposure in the body. CONCLUSIONS: There was a correlation between OPFRs exposure and the risk of depression, which may be mediated by inflammation in the body to some extent.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Humans , Organophosphorus Compounds/analysis , Flame Retardants/adverse effects , Flame Retardants/analysis , Nutrition Surveys , Cross-Sectional Studies , Depression/epidemiology , Inflammation
15.
Environ Pollut ; 349: 123877, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574945

ABSTRACT

Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Flame Retardants , Silicones , Humans , Adult , Flame Retardants/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods , Male , Female , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Pesticides/analysis , Young Adult , Wrist , Phthalic Acids/analysis
16.
Sci Total Environ ; 929: 172762, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670350

ABSTRACT

Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.


Subject(s)
Air Pollutants , Environmental Monitoring , Esters , Organophosphates , China , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis , Seasons , India , Atmosphere/chemistry , Air Pollution/statistics & numerical data
17.
Chemosphere ; 356: 141946, 2024 May.
Article in English | MEDLINE | ID: mdl-38604518

ABSTRACT

End-of-life electric and electronic devices stand as one of the fastest growing wastes in the world and, therefore, a rapidly escalating global concern. A relevant fraction of these wastes corresponds to polymeric materials containing a plethora of chemical additives. Some of those additives fall within the category of hazardous organic compounds (HOCs). Despite the significant advances in the capabilities of analytical methods, the comprehensive characterization of WEEE plastic remains as a challenge. This research strives to identify the primary additives within WEEE polymers by implementing a non-target and suspect screening approach. Gas chromatography coupled to time-of-flight mass spectrometry (GC-QTOF-MS), using electron ionization (EI), was applied for the detection and identification of more than 300 substances in this matrix. A preliminary comparison was carried out with nominal resolution EI-MS spectra contained in the NIST17 library. BPA, flame retardants, UV-filters, PAHs, and preservatives were among the compounds detected. Fifty-one out of 300 compounds were confirmed by comparison with authentic standards. The study establishes a comprehensive database containing m/z ratios and accurate mass spectra of characteristic compounds, encompassing HOCs. Semi-quantification of the predominant additives was conducted across 48 WEEE samples collected from handling and dismantling facilities in Galicia. ABS plastic demonstrated the highest median concentrations, ranging from 0.154 to 4456 µg g-1, being brominated flame retardants and UV filters, the families presenting the highest concentrations. Internet router devices revealed the highest concentrations, containing a myriad of HOCs, such as tetrabromobisphenol A (TBBPA), tribromophenol (TBrP), triphenylphosphate (TPhP), tinuvin P and bisphenol A (BPA), most of which are restricted in Europe.


Subject(s)
Electronic Waste , Gas Chromatography-Mass Spectrometry , Plastics , Electronic Waste/analysis , Plastics/analysis , Plastics/chemistry , Flame Retardants/analysis , Hazardous Substances/analysis , Organic Chemicals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Phenols/analysis , Benzhydryl Compounds/analysis , Environmental Monitoring/methods , Polymers/chemistry , Polymers/analysis
18.
Int J Hyg Environ Health ; 259: 114381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652941

ABSTRACT

Health risks to humans after "fume and smell events", short-term incidents on aircrafts that are accompanied by unpleasant odour or visible smoke, remain a subject of controversy. We assessed exposure to volatile organic compounds (VOC) and organophosphorus compounds (OPC) by biomonitoring in 375 aircrew members after self-reported "fume and smell events" and in 88 persons of the general population. A total of 20 parameters were analysed in blood and urine by gas chromatography and mass spectrometry. Median levels of acetone in blood and urine and 2-propanol in blood were elevated in aircrews compared to controls (p < 0.0001). Additionally, elevated peak exposures, best estimated by the 95th percentiles, were observed in aircrews for n-heptane and n-octane in blood, and acetone, 2,5-hexanedione and o-cresol in urine. Only the maximum observed levels of 2,5-hexandione in urine (768 µg/L) and toluene in blood (77 µg/L) in aircrew members were higher than the current biological exposure indices (BEI® levels) (500 and 20 µg/L, respectively) of the American Conference of Governmental Industrial Hygienists (US-ACGIH) for workers occupationally exposed to n-hexane and toluene, two well-accepted human neurotoxicants. Low-level exposures to n-hexane and toluene could be also observed in controls. The majority of OPC parameters in urine, including those of neurotoxic ortho-isomers of tricresylphosphate, were below the limit of quantitation in both aircrews and controls. Our comparative VOC and OPC analyses in biological samples of a large number of aircrew members and controls suggest that exposures are similar in both groups and generally low.


Subject(s)
Biological Monitoring , Flame Retardants , Occupational Exposure , Organophosphorus Compounds , Volatile Organic Compounds , Humans , Volatile Organic Compounds/urine , Volatile Organic Compounds/blood , Flame Retardants/analysis , Adult , Organophosphorus Compounds/urine , Organophosphorus Compounds/blood , Male , Occupational Exposure/analysis , Female , Middle Aged , Aircraft , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/urine , Acetone/urine , Acetone/blood , Acetone/analysis , Environmental Monitoring/methods , Young Adult , Toluene/analysis
19.
Chemosphere ; 358: 142095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663681

ABSTRACT

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Housing , Dust/analysis , Humans , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Beijing , Flame Retardants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Child , Adult , Child, Preschool , Air Pollutants/analysis , Organophosphates/analysis , Infant , China , Adolescent
20.
Chemosphere ; 358: 142172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685322

ABSTRACT

In excess of 13,000 chemicals are added to plastics ('additives') to improve performance, durability, and production of plastic products. They are categorized into numerous chemical classes including flame retardants, light stabilizers, antioxidants, and plasticizers. While research on plastic additives in the marine environment has increased over the past decade, there is a lack of methodological standardization. To direct future measurement of plastic additives, we compiled a first-of-its-kind dataset of literature assessing plastic additives in marine environments, delineated by sample type (plastic debris, seawater, sediment, biota). Using this dataset, we performed a meta-analysis to summarize the state of the science. Currently, our dataset includes 217 publications published between 1978 and May 2023. The majority of publications analyzed plastic additives in biota collected from Europe and Asia. Analyses concentrated on plasticizers, brominated flame retardants, and bisphenols. Common sample preparation techniques included Solvent - Agitation extraction for plastic, sediment, and biota samples, and Solid Phase Extraction for seawater samples with dichloromethane and solvent mixtures including dichloromethane as the organic extraction solvent. Finally, most analyses were performed utilizing gas chromatography/mass spectrometry. There are a variety of data gaps illuminated by this meta-analysis, most notably the small number of compounds that have been targeted for detection compared to the large number of additives used in plastic production. The provided dataset facilitates future investigation of trends in plastic additive concentration data in the marine environment (allowing for comparison to toxicity thresholds) and acts as a starting point for optimizing and harmonizing plastic additive analytical methods.


Subject(s)
Environmental Monitoring , Flame Retardants , Plastics , Water Pollutants, Chemical , Plastics/analysis , Water Pollutants, Chemical/analysis , Flame Retardants/analysis , Environmental Monitoring/methods , Oceans and Seas , Seawater/chemistry , Plasticizers/analysis , Geologic Sediments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...