Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824265

ABSTRACT

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Subject(s)
Cystatins , Fish Diseases , Fish Proteins , Flatfishes , Macrophages , Vibrio , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/metabolism , Vibrio/pathogenicity , Cystatins/genetics , Cystatins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Macrophages/metabolism , Macrophages/immunology , Fish Diseases/immunology , Fish Diseases/genetics , Fish Diseases/microbiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio Infections/genetics , NF-kappa B/metabolism , Cloning, Molecular/methods , Gene Expression Regulation
2.
Front Immunol ; 15: 1352469, 2024.
Article in English | MEDLINE | ID: mdl-38711504

ABSTRACT

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Subject(s)
Disease Resistance , Fish Diseases , Fish Proteins , Flatfishes , Microbiota , Skin , Vibrio Infections , Vibrio , Animals , Skin/immunology , Skin/microbiology , Skin/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Disease Resistance/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Flatfishes/immunology , Flatfishes/microbiology , Microbiota/immunology , Vibrio/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Proteome , Proteomics/methods
3.
Fish Shellfish Immunol ; 149: 109578, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670413

ABSTRACT

MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.


Subject(s)
Fish Diseases , Fish Proteins , Flatfishes , Gene Expression Regulation , Immunity, Innate , MicroRNAs , Vibrio Infections , Vibrio , Animals , MicroRNAs/genetics , MicroRNAs/immunology , Flatfishes/immunology , Flatfishes/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Vibrio/physiology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Inflammation/immunology , Inflammation/veterinary , Inflammation/genetics , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism
4.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502428

ABSTRACT

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Subject(s)
Flatfishes , Microalgae , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Administration, Oral , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Gastrointestinal Microbiome/drug effects , Aquaculture , Chlorophyta , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Liver/metabolism , Liver/drug effects , Staphylococcus aureus/drug effects
5.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523313

ABSTRACT

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Subject(s)
Fish Diseases , Flatfishes , Nodaviridae , RNA Virus Infections , Vaccines, Inactivated , Viral Vaccines , Animals , Fish Diseases/prevention & control , Fish Diseases/virology , Fish Diseases/immunology , Flatfishes/immunology , Flatfishes/virology , Nodaviridae/immunology , RNA Virus Infections/veterinary , RNA Virus Infections/prevention & control , RNA Virus Infections/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage
6.
Fish Shellfish Immunol ; 127: 982-990, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35870743

ABSTRACT

Neutrophils can capture and kill pathogens by releasing neutrophils extracellular traps (NETs), which play critical roles in anti-microbial infection in mammals; however, the mechanisms involved in NETs formation and its role in anti-bacterial infection in teleost fish remains largely unknown. In this study, to explore the function of NETs in turbot, we established an in vitro bacterial infection model in head kidney derived neutrophils, and found that the haemolysin over-expressed Edwardsiella piscicida (ethA+) could induce a robust phenotype of NETs, compared with that in wild type or ethA mutant (ethA+ -ΔethA) strains. Besides, the NETosis was mediated by ethA+ -induced pyroptosis, and arms the ability of bacterial killing in neutrophils of turbot. Moreover, we found that neutrophils elastase (NE) might involves in this pyroptotic signaling, rather than inflammatory Smcaspase. Taken together, this study reveals the important role of pyroptosis in NETs formation in turbot neutrophils, suggesting that NETs formation is a critical immune response during bacterial infection in teleost fish.


Subject(s)
Bacterial Infections , Extracellular Traps , Flatfishes , Pyroptosis , Animals , Bacterial Infections/immunology , Bacterial Infections/veterinary , Flatfishes/immunology , Flatfishes/microbiology , Neutrophils
7.
Fish Shellfish Immunol ; 120: 590-598, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34965442

ABSTRACT

The class A scavenger receptors play important roles in innate immunity and are distributed on plasma membrane of macrophages and other cell types. Notably, the class A scavenger receptor 4 (SCARA4) contains a typical C-type (calcium-dependent) lectin domain, which belongs to the collectin family of pattern recognition receptors and is involved in the immune response against infection. Here, one turbot SCARA4 gene was identified with a 2,292 bp open reading frame (ORF) encoding 763 amino acid residues. Multiple sequence analysis and phylogenetic analysis confirmed that SmSCARA4 gene was more close to that of P. olivaceus. Gene structure and syntenic analysis showed conserved exon/intron organization pattern and syntenic pattern across selected vertebrate species. Tissue distribution analysis showed SmSCARA4 was expressed in all the tested healthy tissues with the relative high expression levels in skin, gill and spleen. Following both E. tarda and V. anguillarum challenge in vivo, SmSCARA4 was significantly repressed in gill and intestine. Remarkably, SmSCARA4 showed the strongest binding ability to LPS and strongest upregulation in turbot head kidney macrophages in response to LPS. Knockdown and overexpression of SmSCARA4 revealed its interactions with the two pro-inflammatory cytokines, TNF-α and IL-1ß. Finally, repression of SmSCARA4 via combined treatment of LPS and overexpression of SmSCARA4 construct in turbot head kidney macrophages further indicated an inhibitory role of SmSCARA4 in LPS-stimulated inflammation. Taken together, turbot SmSCARA4 plays an important role in turbot immunity, especially in the mucosa-related systems; SmSCARA4 possesses strong binding specificity to LPS, and exerts protective roles in response to LPS infection by reducing the release of pro-inflammatory cytokines. The mechanisms of inhibitory role of SmSCARA4 in LPS-elicited inflammation await further investigation.


Subject(s)
Fish Diseases , Flatfishes , Scavenger Receptors, Class A , Vibrio Infections , Animals , Cytokines/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/genetics , Flatfishes/immunology , Flatfishes/microbiology , Gene Expression Profiling , Gene Expression Regulation , Inflammation , Lipopolysaccharides/pharmacology , Phylogeny , Scavenger Receptors, Class A/genetics , Vibrio/pathogenicity , Vibrio Infections/veterinary
8.
Gene ; 809: 146032, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34673208

ABSTRACT

Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.


Subject(s)
Connexins/genetics , Fish Diseases/genetics , Fish Proteins/genetics , Flatfishes/genetics , Vibrio Infections/veterinary , Animals , Chromosome Mapping , Evolution, Molecular , Fish Diseases/immunology , Fish Proteins/immunology , Flatfishes/immunology , Flatfishes/microbiology , Gene Duplication , Gene Expression Regulation , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Phylogeny , Vibrio/pathogenicity , Vibrio Infections/immunology
9.
Int J Biol Macromol ; 187: 821-829, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34339785

ABSTRACT

Interleukin-16 (IL-16), as a lymphocyte chemoattractant cytokine, plays a crucial role in regulating cellular activities and anti-pathogen immunity. In teleost, the information about the antibacterial effect of IL-16 is scarce. In our study, we examined the immune functions of an IL-16 homologue (CsIL-16) from tongue sole Cynoglossus semilaevis. The CsIL-16 precursor (proCsIL-16) is comprised of 1181 amino acid residues, sharing 21.1%-67.3% identities with IL-16 precursor from invertebrate and vertebrate. The C-terminal proCsIL-16 containing two PDZ domains was designated as mature CsIL-16 which was released into the supernatant of peripheral blood leukocytes (PBLs). CsIL-16 was expressed in various tissues and regulated by bacterial invasion. Recombinant CsIL-16 (rCsIL-16), as a homodimer, was able to bind to the membrane of PBLs and played essential roles in regulating chemotaxis and activation of PBLs, which in vitro inhibited intracellular survival of E. tarda. Under in vivo condition, rCsIL-16 could dramatically regulate the induction of inflammatory genes, and suppress the bacterial dissemination in fish tissues. Collectively, our results reveal that CsIL-16 plays positive roles in antibacterial immunity, and provide insights into the immune function of CsIL-16.


Subject(s)
Chemotaxis, Leukocyte , Edwardsiella tarda/immunology , Enterobacteriaceae Infections/veterinary , Fish Diseases/immunology , Fish Proteins/metabolism , Flatfishes/immunology , Interleukin-16/metabolism , Leukocytes/immunology , Animals , Cells, Cultured , Edwardsiella tarda/pathogenicity , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/microbiology , Fish Diseases/blood , Fish Diseases/microbiology , Fish Proteins/genetics , Flatfishes/blood , Flatfishes/microbiology , Gene Expression Regulation , Host-Pathogen Interactions , Interleukin-16/genetics , Leukocytes/metabolism , Leukocytes/microbiology , Microbial Viability
10.
Dev Comp Immunol ; 124: 104199, 2021 11.
Article in English | MEDLINE | ID: mdl-34228995

ABSTRACT

Interleukin-18 (IL-18) is a pro-inflammatory cytokine that belongs to the interleukin-1 (IL-1) family of cytokines. As occurs with IL-1ß, it is synthetized as an inactive precursor peptide that is mainly processed by the cysteine protease caspase-1 in the inflammasome complex. In mammals, and in collaboration with IL-12, it has been described as an important cytokine controlling the Th1-mediated immune responses through the induction of IFN-γ. Although its function in mammals is well stablished, the activity of this cytokine in teleost remains to be elucidated. This could be due, among other things, to the absence of this gene in the fish model species zebrafish, but also to its complex regulation. As it was observed for rainbow trout and human, il18 splicing variants were also found in turbot, which could represent a regulatory mechanism of its bioactivity. In the case of turbot, three splicing variants were observed (SV1-3), and one of them showed an insertion of 10 amino acids in the middle of the potential caspase-1 cleavage position, reflecting that this is probably a form resistant to the processing by the inflammasome. Phylogenetic and three-dimensional analyses of turbot Il18 revealed that it is relatively well-conserved in vertebrates, although only a partial conservation of the gene synteny was observed between fish and mammals. As it was expected, turbot il18 splicing variants were mainly expressed in immune tissues under healthy conditions, and their expression was induced by a bacterial challenge, although certain inhibitions were observed after viral and parasitic infections. In the case of the viral challenge, il18 downregulations did not seem to be due to the effect of type I IFNs.


Subject(s)
Flatfishes/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Aeromonas salmonicida/pathogenicity , Alternative Splicing , Animals , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/parasitology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Flatfishes/genetics , Gene Expression , Interferon Type I/immunology , Novirhabdovirus/pathogenicity , Oligohymenophorea/pathogenicity , Phylogeny , Protein Isoforms , Synteny , Tissue Distribution
11.
Fish Shellfish Immunol ; 116: 52-60, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34216786

ABSTRACT

The aim of this study was to investigate the effects of dietary bile acids (BAs) on intestinal healthy status of tongue sole in terms of immunity, antioxidant status, digestive ability, mucosal barrier-related genes expression and microbiota. Three experimental diets were prepared with BA levels at 0 mg/kg (CT), 300 mg/kg (BA1) and 900 mg/kg (BA2) in a commercial basal diet. Each diet was fed to three replicates with 120 fish (10.87 ± 0.32 g) in each tank. After an 8-week feeding trial, growth parameters were significantly enhanced in both BAs supplementary groups (P < 0.05), and compared with CT group, survival rate in BA2 group was significantly improved (P < 0.05). Intestinal lysozyme activity and contents of immunoglobulin M and complement 3 were significantly increased in both BAs supplementary groups (P < 0.05), suggesting an enhancement effect on the non-specific immune response. BAs inclusion also significantly improved intestinal antioxidant capabilities by increasing antioxidase activities and decreasing malondialdehyde levels. In addition, compared with CT group, intestinal digestive ability was substantially enhanced as indicated by the significantly increased lipase activity in BA2 group (P < 0.05) and significantly increased amylase activity in BA1 and BA2 groups (P < 0.05). Coincidentally, BAs inclusion significantly upregulated the relative expression of intestinal mucosal barrier-related genes (P < 0.05). Further, dietary BAs distinctly remodeled intestinal microbiota by decreased the abundance of some potential pathogenic bacteria. In conclusion, dietary BAs supplementation is an effective way to improve the intestinal healthy status of tongue sole.


Subject(s)
Bile Acids and Salts/pharmacology , Dietary Supplements , Flatfishes , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Alkaline Phosphatase/immunology , Amylases/metabolism , Animals , Complement C3/immunology , Diet/veterinary , Fish Proteins/metabolism , Flatfishes/genetics , Flatfishes/immunology , Flatfishes/metabolism , Flatfishes/microbiology , Gene Expression Regulation/drug effects , Immunoglobulin M/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lipase/metabolism , Muramidase/immunology , Oxidoreductases/metabolism , Peptide Hydrolases/metabolism , Tight Junction Proteins/genetics
12.
Dev Comp Immunol ; 123: 104156, 2021 10.
Article in English | MEDLINE | ID: mdl-34077766

ABSTRACT

The complement component 6 (C6) gene is a component of the membrane attack complex (MAC), which causes rapid lytic destruction of bacteria. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene stability, including that of immune genes. However, current research on the function of C6 and its regulation by miRNAs is lacking. In the present study, we identified and characterized C6 and a novel miRNA, miR-727 (designated CsC6 and Cse-miR-727, respectively), of the half-smooth tongue sole (Cynoglossus semilaevis) that responded to infection with Vibrio anguillarum, a Gram-negative pathogen of marine fish. The full-length cDNA of CsC6 contained a 256 bp 5' untranslated region (5'-UTR), a 2820 bp open reading frame (ORF) encoding 939 amino acids, and a 205 bp 3'-UTR. SMART analysis showed that CsC6 contains typical C6 domains, including three TSP1 domains, one LDLa domain, one MACPF domain, two CCP domains and two FIMAC domains. CsC6 and Cse-miR-727 are widely expressed in the 13 tissues of half-smooth tongue sole, and their expression in immune tissues is significantly changed after V. anguillarum infection, generally showing an inverse trend. We confirmed that CsC6 was the target gene of Cse-miR-727 using the dual luciferase reporter assay and that Cse-miR-727 regulated CsC6 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The hepatic expression levels of not only the MAC components C7, C8α, C8ß, C8γ and C9 but also the MAPKs, NF-κß, AP-1, IL1ß, IL6 and TNFα, which are involved in many signaling pathways, changed significantly in half-smooth tongue sole following stimulation with the Cse-miR-727 agomir and inhibitor. This evidence suggested that CsC6 could be mediated by Cse-miR-727 to affect MAC assembly and immune signaling pathways in half-smooth tongue soles. To our best knowledge, this study is the first to investigate the regulatory mechanism and immune response of complement genes mediated by miRNAs in fish.


Subject(s)
Complement C6/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Flatfishes/immunology , Liver/physiology , MicroRNAs/immunology , Vibrio Infections/immunology , Vibrio/physiology , Animals , Bacteriolysis/genetics , Cloning, Molecular , Complement C6/genetics , Fish Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation , Immunity, Innate , MicroRNAs/genetics
13.
Dev Comp Immunol ; 123: 104155, 2021 10.
Article in English | MEDLINE | ID: mdl-34081943

ABSTRACT

Chemokines are crucial regulators of cell mobilization for development, homeostasis, and immunity. Chemokines signal through binding to chemokine receptors, a superfamily of seven-transmembrane domain G-coupled receptors. In the present study, eleven CC chemokine receptors (CCRs) and seven CXC chemokine receptors (CXCRs) were identified from turbot genome. Phylogenetic and syntenic analyses were performed to annotate these genes, indicating the closest relationship between the turbot chemokine receptors and their counterparts of Japanese flounders (Paralichthys olivaceus). Evolutionary analyses revealed that the tandem duplications of CCR8 and CXCR3, the whole genome duplications of CCR6, CCR9, CCR12, and CXCR4, and the teleost-specific CCR12 led to the expansion of turbot chemokine receptors. In addition, turbot chemokine receptors were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in spleen, gill, and head kidney. Moreover, most turbot chemokine receptors were significantly differentially expressed in spleen and gill after Aeromonas salmonicida infection, and exhibited general down-regulations at early time points and then gradually up-regulated. Finally, protein-protein interaction network (PPI) analyses indicated that chemokine receptors interacted with a few immune-related genes such as interleukins, Grk genes, CD genes, etc. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokine receptors in turbots.


Subject(s)
Aeromonas salmonicida/physiology , Fish Proteins/genetics , Flatfishes/immunology , Gram-Negative Bacterial Infections/immunology , Receptors, CCR/genetics , Receptors, CXCR/genetics , Animals , Fish Proteins/metabolism , Immunity, Innate , Organ Specificity , Phylogeny , Receptors, CCR/metabolism , Receptors, CXCR/metabolism , Transcriptome
14.
Dev Comp Immunol ; 124: 104164, 2021 11.
Article in English | MEDLINE | ID: mdl-34129850

ABSTRACT

MicroRNAs could not only regulate posttranscriptional silencing of target genes in eukaryotic organisms, but also have positive effect on their target genes as well. These microRNAs have been reported to be involved in mucosal immune responses to pathogen infection in teleost. Therefore, we constructed the immune-related miRNA-mRNA networks in turbot intestine following Vibrio anguillarum infection. In our results, 1550 differentially expressed (DE) genes and 167 DE miRNAs were identified. 113 DE miRNAs targeting 89 DE mRNAs related to immune response were used to construct miRNA-mRNA interaction networks. Functional analysis showed that target genes were associated with synthesis and degradation of ketone bodies, mucin type O-Glycan biosynthesis, homologous recombination, biotin metabolism, and intestinal immune network for IgA production that were equivalent to the function of IgT and IgM in fish intestine. Finally, 10 DE miRNAs and 7 DE mRNAs were selected for validating the accuracy of high-throughput sequencing results by qRT-PCR. The results of this study will provide valuable information for the elucidation of the regulation mechanisms of miRNA-mRNA interactions involved in disease resistance in teleost mucosal immune system.


Subject(s)
Fish Diseases/genetics , Flatfishes/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Vibrio Infections/veterinary , Vibrio/physiology , Animals , Disease Resistance/genetics , Disease Resistance/immunology , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Flatfishes/immunology , Gene Expression Regulation/immunology , Gene Regulatory Networks/immunology , Immunity, Mucosal/genetics , MicroRNAs/immunology , RNA, Messenger/immunology , Vibrio Infections/genetics , Vibrio Infections/immunology
15.
Fish Shellfish Immunol ; 115: 104-111, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34062237

ABSTRACT

C-type lectins (CTLs) are important pathogen pattern recognition receptors that recognize carbohydrate structures. In present study, a C-type lectin domain family 4 member E-like gene from turbot, which tentatively named SmCLEC4E-like (SmCLEC4EL), was identified, and the expressional and functional analyses were performed. In our results, SmCLEC4EL showed conserved synteny with CLEC4E-like genes from several fish species in genome, and possessed a typical type II transmembrane CTL architecture: an N-terminal intracellular region, a transmembrane domain and a C-terminal extracellular region which contained a predicted carbohydrate recognition domain (CRD). In addition, SmCLEC4EL exhibited the highest expression level in spleen in healthy fish, and showed significantly induced expression in mucosal tissues, intestine and skin, under bacteria challenge. Finally, the recombinant SmCLEC4EL protein combined with LPS, PGN, LTA and five different kinds of bacteria in a dose-dependent manner, and agglutinated these bacteria strains in the presence of calcium. These findings collectively demonstrated that SmCLEC4EL, a calcium-dependent CTL, could function as a pattern recognition receptor in pathogen recognition and participate in host anti-bacteria immunity.


Subject(s)
Fish Diseases/immunology , Flatfishes/genetics , Flatfishes/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Amino Acid Sequence , Animals , Bacterial Infections/immunology , Bacterial Infections/veterinary , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Lectins, C-Type/chemistry , Lipopolysaccharides/pharmacology , Peptidoglycan/pharmacology , Phylogeny , Sequence Alignment/veterinary , Teichoic Acids/pharmacology
16.
Dev Comp Immunol ; 122: 104135, 2021 09.
Article in English | MEDLINE | ID: mdl-34004267

ABSTRACT

The pore-forming protein perforin is one of the effectors of cell-mediated killing via the granule exocytosis pathway. In this study, a genome-wide association study was conducted in Vibrio harveyi disease-resistant and disease-susceptible families of half smooth tongue sole (Cynoglossus semilaevis) to determine the genes accounting for host resistance, and a perforin homologue was identified, designated perforin-1 like (CsPRF1l). The full-length cDNA of CsPRF1l is 1835 bp, and encodes 514 amino acids. The CsPRF1l gene consists of 10 exons and 9 introns, spanning approximately 7 kb. The amino acid sequence of CsPRF1l shows 60.35, 54.03, 41.92, and 34.17% identities to Morone saxatilis PRF1l, Oryzias melastigma PRF1l, Danio rerio PRF1.5 and Homo sapiens PRF, respectively. Sequence analysis revealed the presence of membrane attack complex/perforin (MACPF) and C2 domains in CsPRF1l. Quantitative real-time PCR showed that CsPRF1l presented a higher intestinal expression level in disease-resistant families than in susceptible families. Tissue expression pattern analysis showed that CsPRF1l is present in most of the tested tissues and highly expressed in the intestine, brain, stomach and gills. After challenge with V. harveyi, CsPRF1l mRNA was markedly upregulated in the liver, spleen, kidney, intestine, gills and skin. In addition, the recombinant CsPRF1l protein exhibited obvious antimicrobial activity against V. harveyi in vitro and in a zebrafish model. Collectively, these data indicate that CsPRF1l modulates host immune defense against V. harveyi invasion and provide clues about the efficacy of rCsPRF1l in fish that will give rise to useful therapeutic applications for V. harveyi infection in C. semilaevis.


Subject(s)
Disease Resistance/genetics , Flatfishes/immunology , Perforin/genetics , Perforin/metabolism , Vibrio/immunology , Zebrafish/immunology , Amino Acid Sequence , Animals , Disease Resistance/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Flatfishes/genetics , Gene Expression/genetics , Genome/genetics , Genome-Wide Association Study , Recombinant Proteins/genetics , Vibrio/growth & development , Vibrio Infections/immunology , Vibrio Infections/veterinary , Zebrafish/genetics
17.
Fish Shellfish Immunol ; 115: 27-34, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34052389

ABSTRACT

TLRs are the first and best-characterized pattern recognition receptors conserved across all the species. Different from mammals, the TLRs in teleost fishes are very diversified due to various evolutionary mechanisms. Here, we characterized one TLR1 gene in turbot, with a 2,415 bp open reading frame (ORF), that encoding 804 amino acid residues, and have the highest similarity and identity both to Paralichthys olivaceus with 88.9% and 79.9%. In phylogenetic analysis, it was firstly clustered with P. olivaceus, and then clustered with Takifugu rubripes. TLR1 was widely expressed in all the examined healthy tissues with the highest expression level in spleen, followed by head-kidney. In addition, it was significantly regulated in gill, skin and intestine following Edwardsiella tarda and Vibrio anguillarum challenge with different expression patterns. In in vitro stimulation with pathogen-associated molecular patterns, TLR1 showed significantly strong and elevated responses to LPS, but only responded to LTA and Poly(I:C) at the highest evaluated concentration, while no response was detected using PGN stimulation. Moreover, in subcellular localization analysis, TLR1 was distributed in the cytoplasm, membrane and nucleus. Taken together, TLR1 played vital roles for host immune response to bacterial infection, only with strong binding ability to LPS and involved in the production of inflammatory cytokines. However, the specific ligand for TLR1 and its functional association with other TLRs should be further characterized in fish species.


Subject(s)
Fish Diseases/immunology , Flatfishes/genetics , Flatfishes/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/immunology , Animals , Edwardsiella tarda/physiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Phylogeny , Sequence Analysis, Protein/veterinary , Toll-Like Receptor 1/chemistry , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/veterinary
18.
Dev Comp Immunol ; 121: 104091, 2021 08.
Article in English | MEDLINE | ID: mdl-33819543

ABSTRACT

In mammals, Class II, major histocompatibility complex (MHC II) transactivator (CIITA) recognizes microbial pathogens and triggers immune responses. In Chinese tongue sole Cynoglossus semilaevis, Cs-CIITA was prevalently expressed in various tissues. Cs-CIITA, Cs-MHC IIA and Cs-MHC IIB were expressed significantly higher in skin in susceptible families infected with Vibrio harveyi, while higher expression of Cs-CIITA and Cs-MHC IIB was examined in liver in resistant families. In addition, the three genes were up-regulated in gill, skin, intestine, liver, spleen and kidney at 48 h or 72 h after V. harveyi infection. Furthermore, the three genes were co-expressed in the epithelial mucous cells of gill, skin, and intestine. Knockdown of Cs-CIITA regulates the expression of other inflammation-related genes, including CD40, IL-1ß, IL-8, RelB, NFκB, and Myd88. These results suggest that CIITA functions in the inflammatory responses of C. semilaevis against V. harveyi, via MHC II transcriptional regulation.


Subject(s)
Fish Diseases/immunology , Fish Proteins/metabolism , Flatfishes/immunology , Gene Expression Regulation/immunology , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Vibrio Infections/immunology , Amino Acid Sequence/genetics , Animals , Cloning, Molecular , Fish Diseases/microbiology , Fish Proteins/genetics , Flatfishes/growth & development , Flatfishes/microbiology , Gene Expression Profiling , Gene Knockdown Techniques , Nuclear Proteins/genetics , Phylogeny , Sequence Alignment , Trans-Activators/genetics , Vibrio/immunology , Vibrio Infections/microbiology
19.
Dev Comp Immunol ; 121: 104078, 2021 08.
Article in English | MEDLINE | ID: mdl-33794278

ABSTRACT

Host protective inflammatory caspase activity must be tightly regulated to prevent pathogens infection, however, the inflammatory caspase-engaged inflammasome activation in teleost fish remains largely unknown. In this study, we reveal a bifurcated evolutionary role of the inflammatory caspase in mediating both non-canonical and canonical inflammasome pathways in teleost fish. Through characterization of a unique inflammatory SmCaspase from the teleost Scophthalmus maximus (turbot), we found it can directly recognize cytosolic lipopolysaccharide (LPS) via its N-terminal CARD domain, resulting in caspase-5-like proteolytic enzyme activity-mediated pyroptosis in Turbot Muscle Fibroblasts. Interestingly, we also found that this inflammatory caspase can be recruited to SmNLRP3-SmASC to form the NLRP3 inflammasome complex, engaging the SmIL-1ß release in Head Kidney-derived Macrophages. Consequently, the SmCaspase activation can recognize and cleave the SmGSDMEb to release its N-terminal domain, mediating both pyroptosis and bactericidal activities. Furthermore, the SmCaspase-SmGSDMEb axis-gated pyroptosis governs the bacterial clearance and epithelial desquamation in fish gill filaments in vivo. To our knowledge, this study is the first to identify an inflammatory caspase acting as a central coordinator in NLRP3 inflammasome, as well as a cytosolic LPS receptor; thus uncovering a previously unrecognized function of inflammatory caspase in turbot innate immunity.


Subject(s)
Caspases/metabolism , Fish Proteins/metabolism , Flatfishes/immunology , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Caspase Activation and Recruitment Domain/genetics , Caspases/genetics , Computational Biology , Edwardsiella/immunology , Fish Proteins/genetics , Flatfishes/genetics , Flatfishes/metabolism , Flatfishes/microbiology , HEK293 Cells , HeLa Cells , Head Kidney/cytology , Head Kidney/immunology , Humans , Immunity, Innate , Inflammasomes/metabolism , Lipopolysaccharides/immunology , Macrophages/immunology , Membrane Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Phylogeny , Pyroptosis/immunology
20.
Dev Comp Immunol ; 121: 104070, 2021 08.
Article in English | MEDLINE | ID: mdl-33757802

ABSTRACT

Interleukin-17 (IL-17) is a cytokine secreted by a variety of immune cells that plays an important role in host defense against pathogens. IL-17 usually activates downstream immune signaling pathway by binding to heterodimeric or homodimeric complex formed by IL-17 receptors (IL-17R). Describing the characteristics, tissue distribution of IL-17 and IL-17 receptor family members and their expression after pathogen infection will provide a reference for host defense against disease of turbot. In this study, six IL-17 family members and nine IL-17 receptor family members were identified by analyzing the turbot (Scophthalmus maximus) genome. Different from other vertebrates, most members of the IL-17 receptor family own two copies. Protein structure analysis showed that the six IL-17 family members contained typical "IL-17" domains, and the nine IL-17 receptor family members contained typical "SEFIR domain" or "IL17_R_N domain". Syntenic analysis revealed that all IL-17s and IL-17Rs were chromosomally conserved compared with other fish. The phylogenetic analysis further confirmed the evolutionary conservatism of different copies of IL-17C and IL-17Rs. Tissue distribution results showed that IL-17 and IL-17R genes were highly expressed in immune-related tissues. The expression of IL-17C and its receptor in the mucosal immune tissues after infection with V. anguillarum were analyzed subsequently, which were significantly increased in the skin. The results are consistent with previous studies showing that IL-17 and IL-17 receptor play an important role in promoting innate immune response.


Subject(s)
Fish Proteins/metabolism , Flatfishes/microbiology , Interleukin-17/metabolism , Receptors, Interleukin-17/metabolism , Vibrio/immunology , Amino Acid Sequence/genetics , Animals , Conserved Sequence/genetics , Fish Proteins/genetics , Flatfishes/genetics , Flatfishes/immunology , Flatfishes/metabolism , Gene Expression Profiling , Interleukin-17/genetics , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Phylogeny , Receptors, Interleukin-17/genetics , Signal Transduction/immunology , Skin/immunology , Skin/microbiology , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...