ABSTRACT
Sulphated esters of the flavonoids sulphated quercetin 3,7,3',4'-tetrasulphated (QTS) and quercetin 3-acetyl-7,3,4'-trisulphate (ATS), isolated from Flaveria bidentis, have demonstrated anticoagulant and antiplatelet properties. In this study, we examined if both compounds affected the expression of the procoagulant tissue factor (TF) induced by lipopolysaccharide (LPS) on human monocyte. Monocytes were pretreated with different concentrations of each flavonoid (0.1-500 µM), followed by a 4h incubation with LPS in order to induce TF expression. Results of the TF expression showed different behaviors for the two flavonoids studied. A slight inhibitory effect on the TF expression was detected at a QTS concentration of 0.1 µM, but from 1 µM onwards a significant inhibitory effect that remained up to 500 µM could be observed. In contrast, ATS induced a poor inhibitory effect on TF expression at all concentrations tested. These results suggest that QTS has another antithrombotic property, to be added to its already renowned ability as an anticoagulant and antiplatelet compound.
Subject(s)
Fibrinolytic Agents/pharmacology , Flaveria/chemistry , Monocytes/drug effects , Plant Extracts/pharmacology , Quercetin/analogs & derivatives , Thromboplastin/metabolism , Fibrinolytic Agents/isolation & purification , Humans , Lipopolysaccharides , Monocytes/metabolism , Quercetin/isolation & purification , Quercetin/pharmacologyABSTRACT
Flaveria bidentis is a plant species that has as major constituents sulphated flavonoids in the highest degree of sulphatation. Among them, quercetin 3,7,3',4'-tetrasulphate (QTS) and quercetin 3-acetyl-7,3',4'-trisulphate (ATS) are the most important constituents. Both showed anticoagulant properties. The objective of the present study was to evaluate the effects of these flavonoids on human platelet aggregation in comparison with the well-known inhibitor quercetin (Qc) by using several agonists. Platelet-rich plasma (PRP) or washed human platelets (WP) were incubated with different concentrations of the flavonoids to be tested (1 to 1000 microM, final concentration), and the platelet aggregation was induced by using adenosine 5'-diphosphate (ADP), epinephrine (EP), collagen, arachidonic acid (AA) and ristocetin as agonists. QTS (500 microM) and Qc (250 microM) markedly inhibited platelet aggregation with all the aggregant agents, except ristocetin, whereas ATS (1000 microM) showed only slight antiplatelet effects. In addition, QTS and Qc antagonized the aggregation of PRP or WP induced by U-46619, a mimetic thromboxane A2 (TxA2) receptor agonist. Challenged with collagen or arachidonic acid, the thromboxane B2 (TxB2) formation was also inhibited by the flavonoids, mainly by QTS and Qc, in WP. These results demonstrate that QTS and in minor extension ATS induce a deleterious effect on the production of TxA2, as judged by TxB2 formation, in stimulated WP and a marked interference on the TxA2 receptor according to the profile of inhibition of the agonist-induced platelet aggregation when using ADP, EP, AA and collagen and confirmed with U-46619.