Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 683
Filter
1.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675870

ABSTRACT

In the last few years, there has been a dramatic increase in the number of discovered viruses that are transmitted by arthropods. Some of them are pathogenic for humans and mammals, and the pathogenic potential of others is unknown. The genus Orthoflavivirus belongs to the family Flaviviridae and includes arboviruses that cause severe human diseases with damage to the central nervous system and hemorrhagic fevers, as well as viruses with unknown vectors and viruses specific only to insects. The latter group includes Lammi virus, first isolated from a mosquito pool in Finland. It is known that Lammi virus successfully replicates in mosquito cell lines but not in mammalian cell cultures or mice. Lammi virus reduces the reproduction of West Nile virus during superinfection and thus has the potential to reduce the spread of West Nile virus in areas where Lammi virus is already circulating. In this work, we isolated Lammi virus from a pool of adult Aedes cinereus mosquitoes that hatched from larvae/pupae collected in Saint Petersburg, Russia. This fact may indicate transovarial transmission and trans-stadial survival of the virus.


Subject(s)
Aedes , Mosquito Vectors , Animals , Aedes/virology , Russia , Female , Mosquito Vectors/virology , Flaviviridae/physiology , Flaviviridae/isolation & purification , Flaviviridae/classification , Flaviviridae/genetics , Larva/virology
2.
J Chem Inf Model ; 64(6): 1841-1852, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38466369

ABSTRACT

The Flaviviridae family consists of single-stranded positive-sense RNA viruses, which contains the genera Flavivirus, Hepacivirus, Pegivirus, and Pestivirus. Currently, there is an outbreak of viral diseases caused by this family affecting millions of people worldwide, leading to significant morbidity and mortality rates. Advances in computational chemistry have greatly facilitated the discovery of novel drugs and treatments for diseases associated with this family. Chemoinformatic techniques, such as the perturbation theory machine learning method, have played a crucial role in developing new approaches based on ML models that can effectively aid drug discovery. The IFPTML models have shown its capability to handle, classify, and process large data sets with high specificity. The results obtained from different models indicates that this methodology is proficient in processing the data, resulting in a reduction of the false positive rate by 4.25%, along with an accuracy of 83% and reliability of 92%. These values suggest that the model can serve as a computational tool in assisting drug discovery efforts and the development of new treatments against Flaviviridae family diseases.


Subject(s)
Flaviviridae Infections , Flaviviridae , Humans , Flaviviridae/genetics , Reproducibility of Results , Drug Discovery , Computer Simulation
3.
Viruses ; 16(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38543730

ABSTRACT

Members of the Flaviviridae family, encompassing the Flavivirus and Hepacivirus genera, are implicated in a spectrum of severe human pathologies. These diseases span a diverse spectrum, including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, and adverse fetal outcomes, such as congenital heart defects and increased mortality rates. Notably, infections by Flaviviridae viruses have been associated with substantial cardiovascular compromise, yet the exploration into the attendant cardiovascular sequelae and underlying mechanisms remains relatively underexplored. This review aims to explore the epidemiology of Flaviviridae virus infections and synthesize their cardiovascular morbidities. Leveraging current research trajectories and our investigative contributions, we aspire to construct a cogent theoretical framework elucidating the pathogenesis of Flaviviridae-induced cardiovascular injury and illuminate prospective therapeutic avenues.


Subject(s)
Cardiovascular Diseases , Flaviviridae Infections , Flaviviridae , Flavivirus , Humans , Cardiovascular Diseases/epidemiology , Flaviviridae/genetics , Hepacivirus
4.
Nucleic Acids Res ; 52(6): 3278-3290, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38296832

ABSTRACT

Jingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping. Here we solved a 1.8-Å resolution crystal structure of the NSP1 RdRP module from Jingmen tick virus (JMTV), the type species of jingmenviruses. The structure highly resembles flavivirus NS5 RdRP despite a sequence identity less than 30%. NSP1 RdRP enzymatic properties were dissected in a comparative setting with several representative Flaviviridae RdRPs included. Our data indicate that JMTV NSP1 produces characteristic 3-mer abortive products similar to the hepatitis C virus RdRP, and exhibits the highest preference of terminal initiation and shorter-primer usage. Unlike flavivirus NS5, JMTV RdRP may require the MTase for optimal transition from initiation to elongation, as an MTase-less NSP1 construct produced more 4-5-mer intermediate products than the full-length protein. Taken together, this work consolidates the evolutionary relationship between the jingmenvirus group and the Flaviviridae family, providing a basis to the further understanding of their viral replication/transcription process.


Subject(s)
Flaviviridae , Flavivirus , RNA-Dependent RNA Polymerase , Viral Nonstructural Proteins , Flaviviridae/genetics , Flavivirus/genetics , Hepacivirus/metabolism , Methyltransferases/metabolism , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism
5.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38059479

ABSTRACT

Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.


Subject(s)
Flaviviridae , Flavivirus , Animals , Flaviviridae/genetics , Rana temporaria/genetics , Phylogeny , RNA, Viral/genetics , RNA, Viral/chemistry , Flavivirus/genetics , Polyproteins/genetics , United Kingdom , Genome, Viral
6.
Virol J ; 20(1): 247, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891676

ABSTRACT

The Flaviviridae virus family members cause severe human diseases and are responsible for considerable mortality and morbidity worldwide. Therefore, researchers have conducted genetic screens to enhance insight into viral dependency and develop potential anti-viral strategies to treat and prevent these infections. The host factors identified by the clustered regularly interspaced short palindromic repeats (CRISPR) system can be potential targets for drug development. Meanwhile, CRISPR technology can be efficiently used to treat viral diseases as it targets both DNA and RNA. This paper discusses the host factors related to the life cycle of viruses of this family that were recently discovered using the CRISPR system. It also explores the role of immune factors and recent advances in gene editing in treating flavivirus-related diseases. The ever-increasing advancements of this technology may promise new therapeutic approaches with unique capabilities, surpassing the traditional methods of drug production and treatment.


Subject(s)
Flaviviridae , Viruses , Humans , CRISPR-Cas Systems , Host Microbial Interactions , Flaviviridae/genetics , Gene Editing , Viruses/genetics
7.
mSphere ; 8(5): e0028123, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37702505

ABSTRACT

Jingmen tick virus (JMTV), belonging to the Flaviviridae family, is a novel segmented RNA virus identified in 2014 in the Jingmen region of Hubei Province, China. Up to now, JMTV has been detected in a variety of countries or regions in Asia, Europe, Africa, and the Americas, involving a wide range of arthropods and mammals, and even humans. The JMTV genome is composed of four linear RNA segments, two of which are derived from flaviviruses, while the other two segments are unique to JMTV and has no matching virus. Currently, JMTV has been shown to have a pathogenic effect on humans. Humans who had been infected would develop viremia and variable degrees of clinical symptoms. However, the pathogenic mechanism of JMTV has not been elucidated yet. Therefore, it is crucial to strengthen the epidemiological surveillance and laboratory studies of JMTV.


Subject(s)
Arboviruses , Flaviviridae , Flavivirus , Ticks , Animals , Humans , Arboviruses/genetics , Flavivirus/genetics , Flaviviridae/genetics , Europe/epidemiology , Mammals
8.
Arch Virol ; 168(9): 224, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561168

ABSTRACT

This review provides a summary of the recently ratified changes to genus and species nomenclature within the virus family Flaviviridae along with reasons for these changes. First, it was considered that the vernacular terms "flaviviral", "flavivirus", and "flaviviruses" could under certain circumstances be ambiguous due to the same word stem "flavi" in the taxon names Flaviviridae and Flavivirus; these terms could either have referred to all viruses classified in the family Flaviviridae or only to viruses classified in the included genus Flavivirus. To remove this ambiguity, the genus name Flavivirus was changed to Orthoflavivirus by the International Committee on Taxonomy of Viruses (ICTV). Second, all species names in the family were changed to adhere to a newly ICTV-mandated binomial format (e.g., Orthoflavivirus zikaense, Hepacivirus hominis) similar to nomenclature conventions used for species elsewhere in biology. It is important to note, however, that virus names remain unchanged. Here we outline the revised taxonomy of the family Flaviviridae as approved by the ICTV in April 2023.


Subject(s)
Flaviviridae , Flavivirus , Flaviviridae/genetics , Flavivirus/genetics , Hepacivirus , Terminology as Topic
9.
J Med Virol ; 95(8): e28978, 2023 08.
Article in English | MEDLINE | ID: mdl-37515534

ABSTRACT

Dengue virus, which belongs to the Flaviviridae family, can induce a range of symptoms from mild to severe, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. While infectious cloning technology is a useful tool for understanding viral pathogenesis and symptoms, it exhibits limitations when constructing the entire Flavivirus genome. The instability and toxicity of the genome to bacteria make its full-length construction in bacterial vectors a time-consuming and laborious process. To address these challenges, we employed the modified infectious subgenomic amplicon (ISA) method in this study, which can potentially be a superior tool for reverse genetic studies on the dengue virus. Using ISA, we generated recombinant dengue viruses de novo and validated their robust replication in both human and insect cell lines, which was comparable to that of the original strains. Moreover, the efficiency of ISA in genetically modifying the dengue virus was elucidated by successfully inserting the gene for green fluorescence protein into the genome of dengue virus serotype 4. Overall, this study highlighted the effectiveness of ISA for genetically engineering the dengue virus and provided a technical basis for a convenient reverse genetics system that could expedite investigations into the dengue virus.


Subject(s)
Dengue Virus , Dengue , Flaviviridae , Flavivirus , Humans , Dengue Virus/genetics , Reverse Genetics/methods , Flavivirus/genetics , Flaviviridae/genetics , Virus Replication/genetics
10.
Arch Virol ; 168(7): 184, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37338667

ABSTRACT

The family Flaviviridae is composed of viruses with a positive-sense single-stranded RNA genome and includes viruses that are important veterinary and human pathogens. Most members of the family are arthropod- and vertebrate-infecting viruses, but more recently, divergent flavi-like viruses have been identified in marine invertebrate and vertebrate hosts. The striking discovery of gentian Kobu-sho-associated virus (GKaV), along with a recent report of a related virus from carrot, has expanded the known host range of flavi-like viruses to plants, suggesting they could be grouped in a proposed genus tentatively named "Koshovirus". Here, we report the identification and characterization of two novel RNA viruses that show a genetic and evolutionary relationship to the previously identified "koshoviruses". Their genome sequences were obtained from transcriptomic datasets of the flowering plants Coptis teeta and Sonchus asper. These two new viruses, which we have named "coptis flavi-like virus 1" (CopFLV1) and "sonchus flavi-like virus 1" (SonFLV1), are members of novel species characterized by the longest monopartite RNA genome observed so far among plant-associated RNA viruses, which is ca. 24 kb in size. Structural and functional annotations of the polyproteins of all koshoviruses resulted in the detection not only of the expected helicase and RNA-dependent RNA polymerase but also of several additional divergent domains, including AlkB oxygenase, trypsin-like serine protease, methyltransferase, and envelope E1 flavi-like domains. Phylogenetic analysis showed that CopFLV1, SonFLV1, GKaV, and the carrot flavi-like virus were grouped together in a monophyletic clade, strongly supporting the recent proposal for creation of the genus "Koshovirus" for the group of related plant-infecting flavi-like viruses.


Subject(s)
Flaviviridae , Plant Viruses , RNA Viruses , Animals , Humans , Phylogeny , RNA Viruses/genetics , Flaviviridae/genetics , Plant Viruses/genetics , Plants , RNA , Genome, Viral
11.
Viruses ; 15(4)2023 04 15.
Article in English | MEDLINE | ID: mdl-37112951

ABSTRACT

The Jingmenvirus group (JVG), with members such as Jingmen tick virus (JMTV), Alongshan virus (ALSV), Yanggou tick virus (YGTV), and Takachi virus (TAKV), is drawing attention due to evidence of it causing disease in humans and its unique genome architecture. In the current work, complete untranslated regions (UTRs) of four strains of ALSV and eight strains of YGTV were obtained. An analysis of these sequences, as well as JVG sequences from GenBank, uncovered several regions within viral UTRs that were highly conserved for all the segments and viruses. Bioinformatics predictions suggested that the UTRs of all the segments of YGTV, ALSV, and JMTV could form similar RNA structures. The most notable feature of these structures was a stable stem-loop with one (5' UTR) or two (3' UTR) AAGU tetraloops on the end of a hairpin.


Subject(s)
Flaviviridae , Ticks , Humans , Animals , 3' Untranslated Regions , Flaviviridae/genetics , Conserved Sequence , 5' Untranslated Regions , RNA, Viral/genetics
12.
Vopr Virusol ; 68(1): 7-17, 2023 03 11.
Article in Russian | MEDLINE | ID: mdl-36961231

ABSTRACT

INTRODUCTION: Kindia tick virus (KITV) is a novel segmented unclassified flavi-like virus of the Flaviviridae family. This virus is associated with ixodes ticks and is potentially pathogenic to humans. The main goal of this work was to search for structural motifs of viral polypeptides and to develop a 3D-structure for viral proteins of the flavi-like KITV. MATERIALS AND METHODS: The complete genome sequences for KITV, Zika, dengue, Japanese encephalitis, West Nile and yellow fever viruses were retrieved from GenBank. Bioinformatics analysis was performed using the different software packages. RESULTS: Analysis of the KITV structural proteins showed that they have no analogues among currently known viral proteins. Spatial models of NS3 and NS5 KITV proteins have been obtained. These models had a high level of topological similarity to the tick-borne encephalitis and dengue viral proteins. The methyltransferase and RNA-dependent RNA-polymerase domains were found in the NS5 KITV. The latter was represented by fingers, palm and thumb subdomains, and motifs A-F. The helicase domain and its main structural motifs IVI were identified in NS3 KITV. However, the protease domain typical of NS3 flaviviruses was not detected. The highly conserved amino acid motives were detected in the NS3 and NS5 KITV. Also, eight amino acid substitutions characteristic of KITV/2018/1 and KITV/2018/2 were detected, five of them being localized in alpha-helix and three in loops of nonstructural proteins. CONCLUSION: Nonstructural proteins of KITV have structural and functional similarities with unsegmented flaviviruses. This confirms their possible evolutionary and taxonomic relationships.


Subject(s)
Dengue , Flaviviridae , Ticks , Zika Virus Infection , Zika Virus , Humans , Animals , Ticks/genetics , Ticks/metabolism , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/genetics , Guinea , Flaviviridae/genetics , Flaviviridae/metabolism , Zika Virus/genetics , RNA
13.
Adv Exp Med Biol ; 1407: 313-327, 2023.
Article in English | MEDLINE | ID: mdl-36920705

ABSTRACT

Members of Flaviviridae are enveloped single positive-stranded RNA viruses including hepacivirus, pestivirus, pegivirus, and mosquito-transmitted flavivirus, which are important pathogens of infectious diseases and pose serious threats to human health. Pseudotyped virus is an artificially constructed virus-like particle, which could infect host cells similar to a live virus but cannot produce infectious progeny virus. Therefore, pseudotyped virus has the advantages of a wide host range, high transfection efficiency, low biosafety risk, and accurate and objective quantification. It has been widely used in biological characteristics, drug screening, detection methods, and vaccine evaluation of Flaviviridae viruses like hepatitis C virus, Japanese encephalitis virus, dengue virus, and Zika virus.


Subject(s)
Flaviviridae , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Humans , Flaviviridae/genetics , Viral Pseudotyping , Flavivirus/genetics , Hepacivirus/genetics , Zika Virus/genetics
14.
Biophys J ; 122(11): 1890-1899, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36369756

ABSTRACT

The mammalian cell membrane consists of thousands of different lipid species, and this variety is critical for biological function. Alterations to this balance can be dangerous as they can lead to permanent disruption of lipid metabolism, a hallmark in several viral diseases. The Flaviviridae family is made up of positive single-stranded RNA viruses that assemble at or near the location of lipid droplet formation in the endoplasmic reticulum. These viruses are known to interfere with lipid metabolism during the onset of liver disease, albeit to different extents. Pathogenesis of these infections involves specific protein-lipid interactions that alter lipid sorting and metabolism to sustain propagation of the viral infection. Recent experimental studies identify a correlation between viral proteins and lipid content or location in the cell, but these do not assess membrane-embedded interactions. Molecular modeling, specifically molecular dynamics simulations, can provide molecular-level spatial and temporal resolution for characterization of biomolecular interactions. This review focuses on recent advancements and current knowledge gaps in the molecular mechanisms of lipid-mediated liver disease preceded by viral infection. We discuss three viruses from the Flaviviridae family: dengue, zika, and hepatitis C, with a particular focus on lipid interactions with their respective ion channels, known as viroporins.


Subject(s)
Flaviviridae Infections , Flaviviridae , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Flaviviridae Infections/metabolism , Flaviviridae/genetics , Flaviviridae/metabolism , Hepacivirus , Zika Virus/metabolism , Lipids , Mammals
15.
Rev Soc Bras Med Trop ; 55: e0067, 2022.
Article in English | MEDLINE | ID: mdl-36169488

ABSTRACT

BACKGROUND: Despite their worldwide occurrence, the distribution and role of insect-specific flaviviruses (ISFs) remain unclear. METHODS: We evaluated the presence of ISFs in mosquitoes collected in São Paulo, Brazil, using reverse transcription and semi-nested polymerase chain reaction (PCR). Some of the positive samples were subjected to nanopore sequencing. RESULTS: Twelve mosquito pools (2.8%) tested positive for flavivirus infection. Nanopore sequencing was successfully performed on six samples. Phylogenetic analysis grouped these sequences into genotype 2 of Culex flavivirus (CxFV). CONCLUSIONS: The identification of CxFV genotype 2 at new locations in São Paulo highlights the importance of understanding the role of ISFs in mosquito vector competence.


Subject(s)
Culex , Culicidae , Flaviviridae , Flavivirus , Animals , Base Sequence , Brazil/epidemiology , Culex/genetics , Flaviviridae/genetics , Flavivirus/genetics , Parks, Recreational , Phylogeny
16.
Viruses ; 14(9)2022 08 23.
Article in English | MEDLINE | ID: mdl-36146649

ABSTRACT

The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to HCV but unrelated to HCV disease and non-pathogenic, but its natural history and tissue tropism remain unclear. HPgV-2 is a unique RNA virus sharing the features of HCV and the first human pegivirus (HPgV-1 or GBV-C). Moreover, distinct from most RNA viruses such as HCV, HPgV-1 and human immunodeficiency virus (HIV), HPgV-2 exhibits much lower genomic diversity, with a high global sequence identity ranging from 93.5 to 97.5% and significantly lower intra-host variation than HCV. The mechanisms underlying the conservation of the HPgV-2 genome are not clear but may include efficient innate immune responses, low immune selection pressure and, possibly, the unique features of the viral RNA-dependent RNA polymerase (RdRP). In this review, we summarize the prevalence, pathogenicity and genetic diversity of HPgV-2 and discuss the possible reasons for the uniformity of its genome sequence, which should elucidate the implications of RNA virus fidelity for attenuated viral vaccines.


Subject(s)
Flaviviridae Infections , Flaviviridae , Hepatitis C , RNA Viruses , Viral Vaccines , Flaviviridae/genetics , Genetic Variation , Hepacivirus/genetics , Humans , Pegivirus , Phylogeny , Prevalence , RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase
17.
Viruses ; 14(7)2022 07 05.
Article in English | MEDLINE | ID: mdl-35891456

ABSTRACT

Bagaza virus (BAGV), a member of the Ntaya serogroup in the Flavivirus genus of the Flaviviridae, was isolated from the brain tissue of a Himalayan monal pheasant that died following neurological signs in Pretoria, South Africa in 2016. Next-generation sequencing was carried out on this isolate resulting in a genome sequence of 10980nt. The full genome sequence of this isolate, designated ZRU96-16, shared 98% nucleotide identity with a BAGV isolate found in Culex univitattus mosquitoes from Namibia and 97% nucleotide identity with a Spanish BAGV sequence isolated from an infected partridge. In total, seven amino acid variations were unique to ZRU96-16 after alignment with other BAGV and Israel turkey meningoencephalomyelitis (ITV) genomes. The 3'UTR sequence of ZRU96-16 was resolved with sufficient detail to be able to annotate the variable and conserved sequence elements within this region. Multiple sequence alignment of the 3'UTR suggested that it could be useful in lineage designation as more similar viruses carried similar mutations across this region, while also retaining certain unique sites. Maximum likelihood phylogenetic analysis revealed two clusters containing both BAGV and ITVs from Europe, the Middle East and Africa. Broadly, temporal clustering separated isolates into two groups, with one cluster representing viruses from the 1960-2000's and the other from 2010 onwards. This suggests that there is consistent exchange of BAGV and ITV between Europe and Africa. This investigation provides more information on the phylogenetics of an under-represented member of the Flaviviridae and provides an avenue for more extensive research on its pathogenesis and geographic expansion.


Subject(s)
Flaviviridae , Flavivirus , Galliformes , 3' Untranslated Regions , Animals , Flaviviridae/genetics , Genome, Viral , Nucleotides , Phylogeny , South Africa
18.
Virol J ; 19(1): 41, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264187

ABSTRACT

BACKGROUND: Human pegivirus 1 (HPgV-1) is a Positive-sense single-stranded RNA (+ ssRNA) virus, discovered in 1995 as a Flaviviridae member, and the closest human virus linked to HCV. In comparison to HCV, HPgV-1 seems to be lymphotropic and connected to the viral group that infects T and B lymphocytes. HPgV-1 infection is not persuasively correlated to any known human disease; nevertheless, multiple studies have reported a connection between chronic HPgV-1 infection and improved survival in HPgV-1/HIV co-infected patients with a delayed and favorable impact on HIV infection development. While the process has not been thoroughly clarified, different mechanisms for these observations have been proposed. HPgV-1 is categorized into seven genotypes and various subtypes. Infection with HPgV-1 is relatively common globally. It can be transferred parenterally, sexually, and through vertical ways, and thereby its co-infection with HIV and HCV is common. In most cases, the clearance of HPgV-1 from the body can be achieved by developing E2 antibodies after infection. MAIN BODY: In this review, we thoroughly discuss the current knowledge and recent advances in understanding distinct epidemiological, molecular, and clinical aspects of HPgV-1. CONCLUSION: Due to the unique characteristics of the HPgV-1, so advanced research on HPgV-1, particularly in light of HIV co-infection and other diseases, should be conducted to explore the essential mechanisms of HIV clearance and other viruses and thereby suggest novel strategies for viral therapy in the future.


Subject(s)
Coinfection , Flaviviridae Infections , Flaviviridae , GB virus C , HIV Infections , Hepatitis C , Flaviviridae/genetics , GB virus C/genetics , HIV Infections/complications , Humans , Pegivirus , Phylogeny , RNA, Viral/genetics
19.
J Med Virol ; 94(7): 3442-3447, 2022 07.
Article in English | MEDLINE | ID: mdl-35229315

ABSTRACT

Human pegivirus-1 (HPgV-1) is a member of the Flaviviridae family and the Pegivirus genus. Despite having been discovered 25 years ago, there is still much to know regarding HPgV-1 clinical impact, as this virus is currently not associated with any pathology. Yet, HPgV-1 prevalence and molecular characterization are still unknown in many countries, including Portugal. To fill in this knowledge gap, this study aimed to determine the occurrence and molecular characterization of HPgV-1 in a group of healthy blood donors from the north of Portugal. Blood samples from 465 Portuguese blood donors were collected from a major Hospital Center in the north of Portugal. RNA was extracted and an initial nested RT-PCR was performed targeting the conserved 5'-untranslated region  region of the HPgV-1 genome. A second nested RT-PCR targeting the E2 region was performed for genotyping. Only one sample tested positive for HPgV-1 RNA, resulting in a prevalence of approximately 0.22%. Phylogenetic analyses confirmed the characterization as genotype 2, the most prevalent in Europe.


Subject(s)
Flaviviridae Infections , Flaviviridae , GB virus C , Blood Donors , Flaviviridae/genetics , Flaviviridae Infections/epidemiology , GB virus C/genetics , Healthy Volunteers , Humans , Phylogeny , Portugal/epidemiology , Prevalence , RNA , RNA, Viral/genetics , Viremia/epidemiology
20.
Virus Res ; 308: 198646, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34822954

ABSTRACT

Alongshan virus (ALSV) is an emerging tick-borne pathogen that infects humans, causing febrile disease. ALSV uses Ixodes Persulcatus ticks to infect humans with a wide range of signs, from asymptomatic to encephalitis-like syndrome. There is an increasing public health concern about the ALSV infection. To get insight into the impacts of viral relations with their hosts on viral ability, survival, and evasion from hosts immune systems remain unknown. The codon usage is a driving force in viral genome evolution; therefore, we enrolled 41 ALSV strains in codon usage analysis to elucidate the molecular evolutionary dynamics of ALSV. The results indicate that the overall codon usage among ALSV isolates is relatively similar and slightly biased. Base compositions for the cds were in order of G >A >C >U and in the third position of codons G3 >A3 >C3 >T3. The RSCU values revealed that the more frequently used codons were mostly GC ended. Different codon preferences in ALSV genes in relation to codon usage of H. sapiens and Ixodes Persulcatus genes were found. Neutrality plot was determined to reveal the superiority of natural selection over directional mutation pressure in causing CUB based on GC12 versus GC3 contents. The results of these studies suggest that the emergence of ALSV in China, Russia and Finland may also be reflected in ALSV codon usage. Altogether, the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of ALSV.


Subject(s)
Flaviviridae , Ticks , Animals , Base Composition , Codon , Codon Usage , Evolution, Molecular , Flaviviridae/genetics , Genome, Viral , Humans , Mutation , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...