Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38783793

ABSTRACT

A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-toorder transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein-protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.


Subject(s)
Capsid Proteins , Flavivirus , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Flavivirus/pathogenicity , Flavivirus/genetics , Flavivirus/physiology , Flavivirus/metabolism , Phylogeny , Humans , Protein Binding , Capsid/metabolism , Capsid/chemistry , Flavivirus Infections/virology , Flavivirus Infections/metabolism , Molecular Docking Simulation , Amino Acid Sequence
2.
Virology ; 595: 110084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692132

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Subject(s)
Ducks , Flavivirus , Poultry Diseases , Viral Nonstructural Proteins , Virus Assembly , Virus Replication , Animals , Ducks/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/genetics , Flavivirus/physiology , Poultry Diseases/virology , Flavivirus Infections/virology , Mutation
3.
RNA Biol ; 21(1): 14-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38797925

ABSTRACT

As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.


Subject(s)
Flavivirus , Genome, Viral , Nucleic Acid Conformation , RNA, Viral , Virus Replication , Flavivirus/genetics , Flavivirus/physiology , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Humans , Flavivirus Infections/virology , Virus Assembly , Animals , Protein Biosynthesis
4.
Vet Microbiol ; 292: 110071, 2024 May.
Article in English | MEDLINE | ID: mdl-38574695

ABSTRACT

Duck Tembusu virus (DTMUV) is a newly emerging pathogen that causes massive economic losses to the poultry industry in China and neighbouring countries. Vimentin, an intermediate filament protein, has been demonstrated to be involved in viral replication during infection. However, the specific role of vimentin in DTMUV replication has not been determined. In this study, we found that overexpression of vimentin in BHK-21 cells can inhibit DTMUV replication. Moreover, DTMUV replication was enhanced after vimentin expression was reduced in BHK-21 cells via small interfering RNA (siRNA). Further research indicated that DTMUV infection had no effect on the transcription or expression of vimentin. However, we found that DTMUV infection induced vimentin rearrangement, and the rearrangement of vimentin was subsequently confirmed to negatively modulate viral replication through the use of a vimentin network disrupting agent. Vimentin rearrangement is closely associated with its phosphorylation. Our experiments revealed that the phosphorylation of vimentin at Ser56 was promoted in the early stage of DTMUV infection. In addition, by inhibiting the phosphorylation of vimentin at Ser56 with a CDK5 inhibitor, vimentin rearrangement was suppressed, and DTMUV replication was significantly enhanced. These results indicated that DTMUV infection induced vimentin phosphorylation and rearrangement through CDK5, resulting in the inhibition of DTMUV replication. In summary, our study reveals a role for vimentin as a negative factor in the process of DTMUV replication, which helps to elucidate the function of cellular proteins in regulating DTMUV replication.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks , Vimentin/genetics , Flavivirus/physiology , Flavivirus Infections/veterinary , Virus Replication
5.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669573

ABSTRACT

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Subject(s)
Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
6.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675940

ABSTRACT

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Subject(s)
Birds , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Europe/epidemiology , West Nile virus/genetics , West Nile virus/physiology , West Nile virus/isolation & purification , Animals , Humans , Flavivirus/classification , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus/isolation & purification , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/transmission , Flavivirus Infections/veterinary , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/transmission , Birds/virology , Culicidae/virology , Mosquito Vectors/virology , Disease Outbreaks
7.
Poult Sci ; 103(6): 103727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652953

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. Duck Tembusu virus genome encodes one polyprotein that undergoes cleavage to produce 10 proteins. Among these, NS4B, the largest transmembrane protein, plays a crucial role in the viral life cycle. In this study, we investigated the localization of NS4B and found that it is located in the endoplasmic reticulum, where it co-localizes with DTMUV dsRNA. Subsequently, we confirmed 5 different transmembrane domains of NS4B and discovered that only its transmembrane domain 3 (TMD3) can traverse ER membrane. Then mutations were introduced in the conserved amino acids of NS4B TMD3 of DTMUV replicon and infectious clone. The results showed that V111G, V117G, and I118G mutations enhanced viral RNA replication, while Q104A, T106A, A113L, M116A, H120A, Y121A, and A122G mutations reduced viral replication. Recombinant viruses with these mutations were rescued and studied in BHK21 cells. The findings demonstrated that A113L and H120A mutations led to higher viral titers than the wild-type strain, while Q104A, T106A, V111G, V117G, and Y121A mutations attenuated viral proliferation. Additionally, H120A, M116A, and A122G mutations enhanced viral proliferation. Furthermore, Q104A, T106A, V111G, M116A, V117G, Y121A, and A122G mutants showed reduced viral virulence to 10-d duck embryos. Animal experiments further indicated that all mutation viruses resulted in lower genome copy numbers in the spleen compared to the WT group 5 days postinfection. Our data provide insights into the topological model of DTMUV NS4B, highlighting the essential role of NS4B TMD3 in viral replication and proliferation.


Subject(s)
Ducks , Flavivirus , Viral Nonstructural Proteins , Virus Replication , Animals , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/physiology , Flavivirus/genetics , Poultry Diseases/virology , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Mutation
8.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675867

ABSTRACT

Extracellular vesicles (EVs) such as exosomes have been shown to play physiological roles in cell-to-cell communication by delivering various proteins and nucleic acids. In addition, several studies revealed that the EVs derived from the cells that are infected with certain viruses could transfer the full-length viral genomes, resulting in EVs-mediated virus propagation. However, the possibility cannot be excluded that the prepared EVs were contaminated with infectious viral particles. In this study, the cells that harbor subgenomic replicon derived from the Japanese encephalitis virus and dengue virus without producing any replication-competent viruses were employed as the EV donor. It was demonstrated that the EVs in the culture supernatants of those cells were able to transfer the replicon genome to other cells of various types. It was also shown that the EVs were incorporated by the recipient cells primarily through macropinocytosis after interaction with CD33 and Tim-1/Tim-4 on HeLa and K562 cells, respectively. Since the methods used in this study are free from contamination with infectious viral particles, it is unequivocally indicated that the flavivirus genome can be transferred by EVs from cell to cell, suggesting that this pathway, in addition to the classical receptor-mediated infection, may play some roles in the viral propagation and pathogenesis.


Subject(s)
Encephalitis Virus, Japanese , Extracellular Vesicles , Genome, Viral , Replicon , Viral Proteins , Extracellular Vesicles/virology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Replicon/genetics , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication , Flavivirus/genetics , Flavivirus/physiology , Dengue Virus/genetics , Dengue Virus/physiology , HeLa Cells , K562 Cells , Animals , Cell Line , Subgenomic RNA
9.
Virol Sin ; 39(2): 228-234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461965

ABSTRACT

Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 â€‹cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4-10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%-35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.


Subject(s)
Culex , Mosquito Vectors , RNA, Viral , Virus Replication , Animals , Culex/virology , Mosquito Vectors/virology , RNA, Viral/genetics , Female , Cell Line , Flavivirus/genetics , Flavivirus/physiology , Flavivirus/isolation & purification , Kinetics , Viral Load , Genome, Viral , Salivary Glands/virology
10.
Viruses ; 15(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38140617

ABSTRACT

Outbreaks of Tembusu virus (TMUV) infection have caused huge economic losses to the poultry industry in China since 2010. However, the potential threat of TMUV to mammals has not been well studied. In this study, a TMUV HB strain isolated from diseased ducks showed high virulence in BALB/c mice inoculated intranasally compared with the reference duck TMUV strain. Further studies revealed that the olfactory epithelium is one pathway for the TMUV HB strain to invade the central nervous system of mice. Genetic analysis revealed that the TMUV HB virus contains two unique residues in E and NS3 proteins (326K and 519T) compared with duck TMUV reference strains. K326E substitution weakens the neuroinvasiveness and neurovirulence of TMUV HB in mice. Remarkably, the TMUV HB strain induced significantly higher levels of IL-1ß, IL-6, IL-8, and interferon (IFN)-α/ß than mutant virus with K326E substitution in the brain tissue of the infected mice, which suggested that TMUV HB caused more severe inflammation in the mouse brains. Moreover, application of IFN-ß to infected mouse brain exacerbated the disease, indicating that overstimulated IFN response in the brain is harmful to mice upon TMUV infection. Further studies showed that TMUV HB upregulated RIG-I and IRF7 more significantly than mutant virus containing the K326E mutation in mouse brain, which suggested that HB stimulated the IFN response through the RIG-I-IRF7 pathway. Our findings provide insights into the pathogenesis and potential risk of TMUV to mammals.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Mice , Flavivirus/physiology , Mammals , Ducks
11.
Viruses ; 15(12)2023 12 17.
Article in English | MEDLINE | ID: mdl-38140690

ABSTRACT

Since 2010, the Tembusu virus (TMUV) has been highly prevalent in China, causing significant economic losses to the poultry industry. In 2022, a suspected outbreak of TMUV occurred at a goose farm located in Anhui Province. A strain of TMUV, TMUV HQ-22, was isolated from the infected geese. Phylogenetic analysis using the E gene of the HQ-22 strain demonstrated its affiliation with cluster 3, a less commonly reported cluster in comparison to the main circulating cluster, cluster 2. Through a comparison of the envelope (E) protein of HQ-22 with other typical TMUV strains, a mutation at the 157th amino acid position was identified, wherein valine (V) in cluster 3 changed to alanine (A), a characteristic that is unique to cluster 2. These findings highlight the diversity and complexity of the TMUV strains circulating in China. In our experimental analysis, an injection of TMUV HQ-22 into the muscles of 3-day-old goslings resulted in severe neurological symptoms and a mortality rate of 60%. Similarly, the intracranial or intranasal infection of 3-week-old ICR mice with TMUV HQ-22 led to severe neurological symptoms and respective mortality rates of 100% or 10%. In summary, our study isolated a TMUV strain, TMUV HQ-22, from geese that belongs to cluster 3 and exhibits significant pathogenicity in both goslings and ICR mice. These results emphasize the genetic diversity of the TMUV circulating in China and expand the host range beyond mosquitoes to include ducks, chickens, geese, and even mice. It is crucial to not underestimate the risk of TMUV infection in mammals, warranting our utmost attention.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Mice , Geese , Phylogeny , Virulence , Mice, Inbred ICR , Chickens , Flavivirus/physiology , Ducks , Mammals
12.
Vet Res ; 54(1): 103, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936178

ABSTRACT

Duck Tembusu virus (DTMUV) is a neurotropic virus in the genus Flavivirus that causes massive economic losses to the poultry industry in China and neighbouring countries. Autophagy is pivotal in cellular responses to pathogens and in viral pathogenesis. However, little is known about the roles of autophagy in DTMUV replication and viral pathogenesis, especially in neuropathogenesis. In this study, mouse neuroblastoma cells (Neuro-2a) were used to establish a cell model of DTMUV infection. Our experiments indicated that DTMUV infection induced incomplete autophagy in Neuro-2a cells. Then, we used different autophagy regulators to alter the autophagy induced by DTMUV and found that incomplete autophagy promoted DTMUV replication. Furthermore, we showed that DTMUV infection activated the ERK and AMPK pathways, resulting in decreased phosphorylation of the autophagy repressor mTOR, subsequently leading to autophagic induction. In addition, we utilized ICR mice in an animal model of DTMUV infection to evaluate the autophagic responses in brain tissues and investigate the effects of autophagy on viral replication and tissue lesions. Our results confirmed that DTMUV induced incomplete autophagy in mouse brain tissues and that autophagy inducer treatment promoted DTMUV replication and aggravated DTMUV-induced lesions, whereas autophagy inhibitor treatment had the opposite effects. In summary, DTMUV infection induced incomplete autophagy through the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in mouse neuronal cells, and DTMUV-induced incomplete autophagy contributed to the neuropathogenesis of DTMUV.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Mice , Flavivirus Infections/veterinary , AMP-Activated Protein Kinases , Mice, Inbred ICR , Flavivirus/physiology , Virus Replication , Ducks , TOR Serine-Threonine Kinases , Autophagy
13.
J Virol ; 97(4): e0009523, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37014223

ABSTRACT

Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Suppressor of Cytokine Signaling 1 Protein , Animals , Ducks , Flavivirus/physiology , Immunity, Innate/immunology , Interferon Type I/immunology , Toll-Like Receptor 3/metabolism , Ubiquitin-Protein Ligases/immunology , Ubiquitination , Suppressor of Cytokine Signaling 1 Protein/immunology , Flavivirus Infections/immunology , Flavivirus Infections/virology , Protein Binding , Protein Domains/immunology , Virus Replication , HEK293 Cells , Embryo, Mammalian , Humans
14.
PLoS Pathog ; 19(4): e1011286, 2023 04.
Article in English | MEDLINE | ID: mdl-37075076

ABSTRACT

Flaviviruses continue to emerge as global health threats. There are currently no Food and Drug Administration (FDA) approved antiviral treatments for flaviviral infections. Therefore, there is a pressing need to identify host and viral factors that can be targeted for effective therapeutic intervention. Type I interferon (IFN-I) production in response to microbial products is one of the host's first line of defense against invading pathogens. Cytidine/uridine monophosphate kinase 2 (CMPK2) is a type I interferon-stimulated gene (ISG) that exerts antiviral effects. However, the molecular mechanism by which CMPK2 inhibits viral replication is unclear. Here, we report that CMPK2 expression restricts Zika virus (ZIKV) replication by specifically inhibiting viral translation and that IFN-I- induced CMPK2 contributes significantly to the overall antiviral response against ZIKV. We demonstrate that expression of CMPK2 results in a significant decrease in the replication of other pathogenic flaviviruses including dengue virus (DENV-2), Kunjin virus (KUNV) and yellow fever virus (YFV). Importantly, we determine that the N-terminal domain (NTD) of CMPK2, which lacks kinase activity, is sufficient to restrict viral translation. Thus, its kinase function is not required for CMPK2's antiviral activity. Furthermore, we identify seven conserved cysteine residues within the NTD as critical for CMPK2 antiviral activity. Thus, these residues may form an unknown functional site in the NTD of CMPK2 contributing to its antiviral function. Finally, we show that mitochondrial localization of CMPK2 is required for its antiviral effects. Given its broad antiviral activity against flaviviruses, CMPK2 is a promising potential pan-flavivirus inhibitor.


Subject(s)
Nucleoside-Phosphate Kinase , Virus Replication , Zika Virus , Zika Virus/physiology , Vero Cells , Chlorocebus aethiops , Animals , Humans , Nucleoside-Phosphate Kinase/metabolism , Interferon Type I/metabolism , Flavivirus/physiology , Mitochondria , Protein Biosynthesis
15.
Viruses ; 14(10)2022 09 21.
Article in English | MEDLINE | ID: mdl-36298652

ABSTRACT

Many arboviruses, including viruses of the Flavivirus genera, are known to cause severe neurological disease in humans, often with long-lasting, debilitating sequalae in surviving patients. These emerging pathogens impact millions of people worldwide, yet still relatively little is known about the exact mechanisms by which they gain access to the human central nervous system. This review focusses on potential haematogenous and transneural routes of neuroinvasion employed by flaviviruses and identifies numerous gaps in knowledge, especially regarding lesser-studied interfaces of possible invasion such as the blood-cerebrospinal fluid barrier, and novel routes such as the gut-brain axis. The complex balance of pro-inflammatory and antiviral immune responses to viral neuroinvasion and pathology is also discussed, especially in the context of the hypothesised Trojan horse mechanism of neuroinvasion. A greater understanding of the routes and mechanisms of arboviral neuroinvasion, and how they differ between viruses, will aid in predictive assessments of the neuroinvasive potential of new and emerging arboviruses, and may provide opportunity for attenuation, development of novel intervention strategies and rational vaccine design for highly neurovirulent arboviruses.


Subject(s)
Arboviruses , Flavivirus , Vaccines , Humans , Flavivirus/physiology , Central Nervous System , Blood-Brain Barrier , Antiviral Agents
16.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293480

ABSTRACT

Flaviviruses (the genus Flavivirus of the Flaviviridae family) include many arthropod-borne viruses, often causing life-threatening diseases in humans, such as hemorrhaging and encephalitis. Although the flaviviruses have a significant clinical impact, it has become apparent that flavivirus replication is restricted by cellular factors induced by the interferon (IFN) response, which are called IFN-stimulated genes (ISGs). SHFL (shiftless antiviral inhibitor of ribosomal frameshifting) is a novel ISG that inhibits dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) infections. Interestingly, SHFL functions as a broad-spectrum antiviral factor exhibiting suppressive activity against various types of RNA and DNA viruses. In this review, we summarize the current understanding of the molecular mechanisms by which SHFL inhibits flavivirus infection and discuss the molecular basis of the inhibitory mechanism using a predicted tertiary structure of SHFL generated by the program AlphaFold2.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Flavivirus , Zika Virus Infection , Zika Virus , Humans , Flavivirus/physiology , Interferons/pharmacology , Antiviral Agents/pharmacology , RNA , Virus Replication
17.
Transbound Emerg Dis ; 69(5): e3393-e3399, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35810476

ABSTRACT

Flaviviruses such as West Nile (WNV), Usutu (USUV) and Bagaza (BAGV) virus and avian malaria parasites are vector borne pathogens that circulate naturally between avian and mosquito hosts. WNV and USUV and potentially also BAGV constitute zoonoses. Temporal and spatial cocirculation and coinfection with Plasmodium spp., and West Nile virus has been documented in birds and mosquito vectors, and fatally USUV-infected passerines coinfected with Plasmodium spp. had more severe lesions. Also, WNV, USUV and BAGV have been found to cocirculate. Yet little is known about the interaction of BAGV and malaria parasites during consecutive or coinfections of avian hosts. Here we report mortality of free-living red-legged partridges in a hunting estate in Southern Spain that were coinfected with BAGV and Plasmodium spp. The outbreak occurred in the area where BAGV first emerged in Europe in 2010 and where cocirculation of BAGV, USUV and WNV was confirmed in 2011 and 2013. Partridges were found dead in early October 2019. Birds had mottled locally pale pectoral muscles, enlarged, congestive greenish-black tinged livers and enlarged kidneys. Microscopically congestion and predominantly mononuclear inflammatory infiltrates were evident and Plasmodium phanerozoites were present in the liver, spleen, kidneys, muscle and skin. Molecular testing and sequencing detected Plasmodium spp. and BAGV in different tissues of the partridges, and immunohistochemistry confirmed the presence and colocalization of both pathogens in the liver and spleen. Due to the importance of the red-legged partridge in the ecosystem of the Iberian Peninsula and as driver of regional economy such mortalities are of concern. Such outbreaks may reflect climate change related shifts in host, vector and pathogen ecology and interactions that could emerge similarly for other pathogens.


Subject(s)
Bird Diseases , Coinfection , Flavivirus Infections , Flavivirus , Galliformes , Plasmodium , West Nile Fever , West Nile virus , Animals , Coinfection/epidemiology , Coinfection/veterinary , Ecosystem , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Quail , Spain/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary
18.
Cell ; 185(14): 2395-2397, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35803242

ABSTRACT

Flaviviruses, such as Dengue and Zika viruses, infect millions of people worldwide using mosquitos as vectors. In this issue of Cell, Zhang et al. reveal how these viruses manipulate the skin microbiome of infected hosts in a way that increases vector recruitment and viral spread. They propose vitamin A as a way to counteract the virus and decrease transmission.


Subject(s)
Flavivirus Infections , Flavivirus , Intercellular Signaling Peptides and Proteins/metabolism , Skin , Animals , Culicidae/virology , Dengue , Flavivirus/physiology , Flavivirus Infections/microbiology , Flavivirus Infections/transmission , Humans , Periodicals as Topic , Skin/metabolism , Skin/microbiology , Vector Borne Diseases , Zika Virus Infection
19.
Vet Res ; 53(1): 53, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35799206

ABSTRACT

Duck Tembusu virus (DTMUV) is a pathogenic flavivirus that has caused enormous economic losses in Southeast Asia. Our previous study showed that DTMUV could induce duck embryo fibroblast (DEF) apoptosis, but the specific mechanism was not clear. In this study, we confirmed that DTMUV could induce the apoptosis of DEFs by DAPI staining and TUNEL staining. Furthermore, we found that the expression levels of cleaved-caspase-3/7/8/9 were significantly upregulated after DTMUV infection. After treatment of cells with an inhibitor of caspase-8 or caspase-9, DTMUV-induced apoptosis rates were significantly decreased, indicating that the caspase-8-mediated death receptor apoptotic pathway and caspase-9-mediated mitochondrial apoptotic pathway were involved in DTMUV-induced apoptosis. Moreover, we found that DTMUV infection not only caused the release of mitochondrial cytochrome C (Cyt C) and the downregulation of the apoptosis-inhibiting protein Bcl-2 but also reduced the mitochondrial membrane potential (MMP) and the accumulation of intracellular reactive oxygen species (ROS). Key genes in the mitochondrial apoptotic pathway and death receptor apoptotic pathway were upregulated to varying degrees, indicating the activation of the mitochondrial apoptosis pathway and death receptor apoptosis pathway. In conclusion, this study clarifies the molecular mechanism of DTMUV-induced apoptosis and provides a theoretical basis for revealing the pathogenic mechanism of DTMUV infection.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Apoptosis , Caspase 8/metabolism , Caspase 9/metabolism , Ducks/metabolism , Fibroblasts , Flavivirus/physiology , Flavivirus Infections/veterinary , Receptors, Death Domain/metabolism
20.
Viruses ; 14(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35746683

ABSTRACT

Flaviviruses cause a spectrum of potentially severe diseases. Most flaviviruses are transmitted by mosquitoes or ticks and are widely distributed all over the world. Among them, several mosquito-borne flaviviruses are co-epidemic, and the similarity of their antigenicity creates abundant cross-reactive immune responses which complicate their prevention and control. At present, only effective vaccines against yellow fever and Japanese encephalitis have been used clinically, while the optimal vaccines against other flavivirus diseases are still under development. The antibody-dependent enhancement generated by cross-reactive immune responses against different serotypes of dengue virus makes the development of the dengue fever vaccine a bottleneck. It has been proposed that the cross-reactive immunity elicited by prior infection of mosquito-borne flavivirus could also affect the outcome of the subsequent infection of heterologous flavivirus. In this review, we focused on five medically important flaviviruses, and rearranged and recapitulated their cross-reactive immunity in detail from the perspectives of serological experiments in vitro, animal experiments in vivo, and human cohort studies. We look forward to providing references and new insights for the research of flavivirus vaccines and specific prevention.


Subject(s)
Culicidae , Dengue , Flavivirus Infections , Flavivirus , Animals , Cross Reactions , Flavivirus/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...