Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793692

ABSTRACT

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Subject(s)
Ducks , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks/virology , Flavivirus/pathogenicity , Flavivirus/immunology , Flavivirus/genetics , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/transmission , Genome, Viral , Poultry Diseases/virology , Poultry Diseases/transmission , Viral Vaccines/immunology , Farmers , Antibodies, Viral/blood , Humans
2.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675940

ABSTRACT

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Subject(s)
Birds , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Europe/epidemiology , West Nile virus/genetics , West Nile virus/physiology , West Nile virus/isolation & purification , Animals , Humans , Flavivirus/classification , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus/isolation & purification , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/transmission , Flavivirus Infections/veterinary , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/transmission , Birds/virology , Culicidae/virology , Mosquito Vectors/virology , Disease Outbreaks
3.
J Virol ; 97(11): e0149723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877719

ABSTRACT

IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.


Subject(s)
Apoptosis , Ducks , Flavivirus Infections , Flavivirus , Host Specificity , Animals , Humans , Antiviral Agents/pharmacology , Ducks/virology , eIF-2 Kinase/metabolism , Flavivirus/enzymology , Flavivirus/pathogenicity , Flavivirus Infections/diagnosis , Flavivirus Infections/immunology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Mitochondria/metabolism , Molecular Targeted Therapy/trends , Viral Zoonoses/diagnosis , Viral Zoonoses/immunology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Voltage-Dependent Anion Channel 2/metabolism
4.
J Biol Chem ; 298(12): 102699, 2022 12.
Article in English | MEDLINE | ID: mdl-36379254

ABSTRACT

Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.


Subject(s)
Flavivirus Infections , Gastrointestinal Microbiome , Poultry Diseases , Toll-Like Receptor 4 , Flavivirus Infections/microbiology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Lipopolysaccharides/metabolism , Toll-Like Receptor 4/metabolism , Ducks , Animals , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/virology , Virus Replication , Gene Knockdown Techniques , Bacterial Proteins/metabolism
5.
Cell ; 185(14): 2395-2397, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35803242

ABSTRACT

Flaviviruses, such as Dengue and Zika viruses, infect millions of people worldwide using mosquitos as vectors. In this issue of Cell, Zhang et al. reveal how these viruses manipulate the skin microbiome of infected hosts in a way that increases vector recruitment and viral spread. They propose vitamin A as a way to counteract the virus and decrease transmission.


Subject(s)
Flavivirus Infections , Flavivirus , Intercellular Signaling Peptides and Proteins/metabolism , Skin , Animals , Culicidae/virology , Dengue , Flavivirus/physiology , Flavivirus Infections/microbiology , Flavivirus Infections/transmission , Humans , Periodicals as Topic , Skin/metabolism , Skin/microbiology , Vector Borne Diseases , Zika Virus Infection
6.
J Virol ; 96(3): e0162421, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34851141

ABSTRACT

Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Cytokines/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Flavivirus Infections/metabolism , Flavivirus Infections/virology , Flavivirus/physiology , Host-Pathogen Interactions , Ubiquitins/metabolism , Animals , Cell Line , Cells, Cultured , Flavivirus Infections/transmission , Humans , Models, Biological , Proteolysis , Ticks/virology , Virus Replication
7.
Viruses ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34834923

ABSTRACT

Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.


Subject(s)
Culicidae/immunology , Flavivirus Infections/immunology , Flavivirus Infections/veterinary , Flavivirus/immunology , Persistent Infection/immunology , Persistent Infection/veterinary , Animals , Culicidae/physiology , Culicidae/virology , Flavivirus/genetics , Flavivirus/physiology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans , Immunity, Innate , Mosquito Vectors/immunology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Persistent Infection/virology
8.
Viruses ; 13(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34835099

ABSTRACT

Rocio virus (ROCV) is a mosquito-borne flavivirus and human pathogen. The virus is indigenous to Brazil and was first detected in 1975 in the Sao Paulo State, and over a period of two years was responsible for several epidemics of meningoencephalitis in coastal communities leading to over 100 deaths. The vast majority of ROCV infections are believed to be subclinical and clinical manifestations can range from uncomplicated fever to fatal meningoencephalitis. Birds are the natural reservoir and amplification hosts and ROCV is maintained in nature in a mosquito-bird-mosquito transmission cycle, primarily involving Psorophora ferox mosquitoes. While ROCV has remained mostly undetected since 1976, in 2011 it re-emerged in Goiás State causing a limited outbreak. Control of ROCV outbreaks depends on sustainable vector control measures and public education. To date there is no specific treatment or licensed vaccine available. Here we provide an overview of the ecology, transmission cycles, epidemiology, pathogenesis, and treatment options, aiming to improve our ability to understand, predict, and ideally avert further ROCV emergence.


Subject(s)
Disease Outbreaks , Flavivirus Infections/virology , Flavivirus/genetics , Animals , Brazil/epidemiology , Flavivirus/classification , Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Humans , Mosquito Vectors/virology , Viral Proteins/genetics
9.
mBio ; 12(5): e0253121, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634943

ABSTRACT

Insect odorant-binding proteins (OBPs) are small soluble proteins that have been assigned roles in olfaction, but their other potential functions have not been extensively explored. Using CRISPR/Cas9-mediated disruption of Aedes aegypti Obp10 and Obp22, we demonstrate the pleiotropic contribution of these proteins to multiple processes that are essential for vectorial capacity. Mutant mosquitoes have impaired host-seeking and oviposition behavior, reproduction, and arbovirus transmission. Here, we show that Obp22 is linked to the male-determining sex locus (M) on chromosome 1 and is involved in male reproduction, likely by mediating the development of spermatozoa. Although OBP10 and OBP22 are not involved in flavivirus replication, abolition of these proteins significantly reduces transmission of dengue and Zika viruses through a mechanism affecting secretion of viral particles into the saliva. These results extend our current understanding of the role of insect OBPs in insect reproduction and transmission of human pathogens, making them essential determinants of vectorial capacity. IMPORTANCE Aedes aegypti is the major vector for many arthropod-borne viral diseases, such as dengue, Zika, and chikungunya viruses. Previous studies suggested that odorant-binding proteins (OBPs) may have diverse physiological functions beyond the olfactory system in mosquitoes; however, these hypothesized functions have not yet been demonstrated. Here, we have used CRISPR/Cas9-based genome editing to functionally delete (knock out) Obp10 and Obp22 in Aedes aegypti. We showed that disruption of Obp10 or Obp22 significantly impairs female and male reproductive capacity by adversely affecting blood feeding, oviposition, fecundity and fertility, and the development of spermatozoa. We also showed that disruption of Obp10 or Obp22 significantly reduces the transmission of dengue and Zika viruses through a mechanism affecting secretion of viral particles into the saliva. Thus, our study is not only significant in understanding the functions of OBPs in mosquito biology, but also shows that OBPs may represent potent flavivirus transmission-blocking targets. Our study is in this regard particularly timely and important from a translational and public health perspective.


Subject(s)
Aedes/virology , Flavivirus Infections/transmission , Flavivirus/physiology , Insect Proteins/genetics , Mosquito Vectors/virology , Receptors, Odorant/genetics , Aedes/genetics , Aedes/physiology , Animals , CRISPR-Cas Systems/genetics , Cell Line , Female , Flavivirus Infections/virology , Insect Proteins/metabolism , Male , Mosquito Vectors/physiology , Receptors, Odorant/classification , Receptors, Odorant/metabolism , Reproduction/genetics
10.
Viruses ; 13(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34696529

ABSTRACT

A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral-host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.


Subject(s)
Animals, Wild/virology , Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Animals , Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/veterinary , Culicidae/virology , Disease Vectors , Flavivirus/genetics , Flavivirus/pathogenicity , Host-Pathogen Interactions , Humans , Insect Vectors , Mosquito Vectors/virology , Ticks/virology
11.
Parasit Vectors ; 14(1): 243, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33962673

ABSTRACT

BACKGROUND: West Nile (WNV) and Usutu (USUV) are emerging vector-borne zoonotic flaviviruses. They are antigenically very similar, sharing the same life cycle with birds as amplification host, Culicidae as vector, and man/horse as dead-end host. They can co-circulate in an overlapping geographic range. In Europe, surveillance plans annually detect several outbreaks. METHODS: In Italy, a WNV/USUV surveillance plan is in place through passive and active surveillance. After a 2018 WNV outbreak, a reinforced integrated risk-based surveillance was performed in four municipalities through clinical and serological surveillance in horses, Culicidae catches, and testing on human blood-based products for transfusion. RESULTS: Eight WNV cases in eight equine holdings were detected. Twenty-three mosquitoe catches were performed and 2367 specimens of Culex pipiens caught; 17 pools were USUV positive. A total of 8889 human blood donations were tested, and two asymptomatic donors were USUV positive. CONCLUSIONS: Different surveillance components simultaneously detected WNV only in horses and USUV only in humans and mosquitoes. While in endemic areas (i.e. northern Italy) entomological surveillance is successfully used as an early detection warning, this method in central Italy seems ineffective. To achieve a high level of sensitivity, the entomological trapping effort should probably exceed a reasonable balance between cost and performance. Besides, WNV/USUV early detection can be addressed by horses and birds. Further research is needed to adapt the surveillance components in different epidemiological contexts.


Subject(s)
Culex/virology , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus/isolation & purification , Mosquito Vectors/virology , West Nile Fever/veterinary , West Nile Fever/virology , West Nile virus/isolation & purification , Animals , Culex/physiology , Epidemiological Monitoring , Flavivirus/classification , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Horse Diseases/epidemiology , Horse Diseases/transmission , Horse Diseases/virology , Horses , Humans , Italy/epidemiology , Mosquito Vectors/physiology , West Nile Fever/epidemiology , West Nile Fever/transmission , West Nile virus/classification , West Nile virus/genetics
12.
PLoS Negl Trop Dis ; 15(4): e0009311, 2021 04.
Article in English | MEDLINE | ID: mdl-33798192

ABSTRACT

Flaviviruses include a great diversity of mosquito-borne arboviruses with epidemic potential and high global disease burden. Several flaviviruses are circulating in southern Africa affecting humans and livestock, among them West Nile virus (WNV) and Wesselsbron virus. Despite their high relevance, no arbovirus surveillance study has been conducted for more than 35 years in Namibia. In this study we assessed the diversity of flaviviruses circulating in mosquitoes in the densely populated, semi-tropical Zambezi region of north-eastern Namibia. In total, 10,206 mosquitoes were sampled in Bwabwata and Mudumu national parks and Mashi and Wuparo conservancies and screened for flavivirus infections. A high infection rate with insect-specific flaviviruses was found with 241 strains of two previously known and seven putative novel insect-specific flaviviruses. In addition, we identified ten strains of WNV in the main vector Cx. univittatus sampled in the Mashi conservancy. Surprisingly, the strains fell into two different clades of lineage 2, 2b and 2d. Further, three strains of Bagaza Virus (BAGV) were found in Cx. univittatus mosquitoes originating from Mudumu national park. Assessment of BAGV growth in different cell lines showed high replication rates in mosquito and duck cells and about 100,000fold lower replication in human, primate and rodent cells. We demonstrate a wide genetic diversity of flaviviruses is circulating in mosquitoes in the Zambezi region. Importantly, WNV and BAGV can cause outbreaks including severe disease and mortality in humans and birds, respectively. Future studies should focus on WNV and BAGV geographic distribution, as well as on their potential health impacts in and the associated social and economic implications for southern Africa.


Subject(s)
Culex/virology , Flavivirus Infections/virology , Flavivirus/genetics , West Nile Fever/virology , Animals , Culex/pathogenicity , Disease Outbreaks , Flavivirus Infections/genetics , Flavivirus Infections/transmission , Humans , Insect Vectors , Namibia , West Nile Fever/genetics , West Nile Fever/transmission , West Nile virus/genetics , West Nile virus/pathogenicity
13.
Parasit Vectors ; 14(1): 194, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33832527

ABSTRACT

BACKGROUND: Infectious blood meal experiments have been frequently performed with different virus-vector combinations to assess the transmission potential of arthropod-borne (arbo)viruses. A wide variety of host blood sources have been used to deliver arboviruses to their arthropod vectors in laboratory studies. The type of blood used during vector competence experiments does not always reflect the blood from the viremic vertebrate hosts in the field, but little is known about the effect of blood source on the experimental outcome of vector competence studies. Here we investigated the effect of avian versus human blood on the infection and transmission rates of the zoonotic Usutu virus (USUV) in its primary mosquito vector Culex pipiens. METHODS: Cx. pipiens biotypes (pipiens and molestus) were orally infected with USUV through infectious blood meals containing either chicken or human whole blood. The USUV infection and transmission rates were determined by checking mosquito bodies and saliva for USUV presence after 14 days of incubation at 28 °C. In addition, viral titers were determined for USUV-positive mosquito bodies and saliva. RESULTS: Human and chicken blood lead to similar USUV transmission rates for Cx. pipiens biotype pipiens (18% and 15%, respectively), while human blood moderately but not significantly increased the transmission rate (30%) compared to chicken blood (17%) for biotype molestus. USUV infection rates with human blood were consistently higher in both Cx. pipiens biotypes compared to chicken blood. In virus-positive mosquitoes, USUV body and saliva titers did not differ between mosquitoes taking either human or chicken blood. Importantly, biotype molestus had much lower USUV saliva titers compared to biotype pipiens, regardless of which blood was offered. CONCLUSIONS: Infection of mosquitoes with human blood led to higher USUV infection rates as compared to chicken blood. However, the blood source had no effect on the vector competence for USUV. Interestingly, biotype molestus is less likely to transmit USUV compared to biotype pipiens due to very low virus titers in the saliva.


Subject(s)
Culex/physiology , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus/physiology , Mosquito Vectors/physiology , Poultry Diseases/virology , Animals , Blood/virology , Chickens/virology , Culex/virology , Feeding Behavior , Flavivirus/genetics , Flavivirus/isolation & purification , Flavivirus Infections/blood , Flavivirus Infections/transmission , Humans , Mosquito Vectors/virology , Poultry Diseases/blood , Poultry Diseases/transmission , Viral Zoonoses/transmission , Viral Zoonoses/virology
14.
Nat Commun ; 12(1): 1671, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723237

ABSTRACT

Zika virus (ZIKV) has caused large, brief outbreaks in isolated populations, however ZIKV can also persist at low levels over multiple years. The reasons for these diverse transmission dynamics remain poorly understood. In Fiji, which has experienced multiple large single-season dengue epidemics, there was evidence of multi-year transmission of ZIKV between 2013 and 2017. To identify factors that could explain these differences in dynamics between closely related mosquito-borne flaviviruses, we jointly fit a transmission dynamic model to surveillance, serological and molecular data. We estimate that the observed dynamics of ZIKV were the result of two key factors: strong seasonal effects, which created an ecologically optimal time of year for outbreaks; and introduction of ZIKV after this optimal time, which allowed ZIKV transmission to persist over multiple seasons. The ability to jointly fit to multiple data sources could help identify a similar range of possible outbreak dynamics in other settings.


Subject(s)
Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Animals , Culicidae , Dengue/transmission , Dengue Virus , Disease Outbreaks , Epidemics , Fiji/epidemiology , Flavivirus , Humans , Mosquito Vectors/virology , Seasons , Zika Virus , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission
15.
Virology ; 555: 64-70, 2021 03.
Article in English | MEDLINE | ID: mdl-33454558

ABSTRACT

Usutu virus (USUV; Flavivirus) has caused massive die-offs in birds across Europe since the 1950s. Although rare, severe neurologic disease in humans has been reported. USUV is genetically related to West Nile virus (WNV) and shares an ecological niche, suggesting it could spread from Europe to the Americas. USUV's risk of transmission within the United States is currently unknown. To this end, we exposed field-caught Aedes japonicus, Culex pipiens pipiens, and Culex restuans-competent vectors for WNV-to a recent European isolate of USUV. While infection rates for each species varied from 7%-21%, no dissemination or transmission was observed. These results differed from a 2018 report by Cook and colleagues, who found high dissemination rates and evidence of transmission potential using a different USUV strain, U.S. mosquito populations, temperature, and extrinsic incubation period. Future studies should evaluate the impact of these experimental conditions on USUV transmission by North American mosquitoes.


Subject(s)
Aedes/virology , Culex/virology , Flavivirus Infections , Flavivirus/pathogenicity , Mosquito Vectors/virology , Animals , Birds/virology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans
16.
Semin Cell Dev Biol ; 111: 148-155, 2021 03.
Article in English | MEDLINE | ID: mdl-32665176

ABSTRACT

Alphaviruses such as chikungunya and western equine encephalitis viruses are important human pathogens transmitted by mosquitoes that have recently caused large epidemic and epizootic outbreaks. The epidemic potential of alphaviruses is often related to enhanced mosquito transmission. Tissue barriers and antiviral responses impose bottlenecks to viral populations in mosquitoes. Substitutions in the envelope proteins and the presence of repeated sequence elements (RSEs) in the 3'UTR of epidemic viruses were proposed to be specifically associated to efficient replication in mosquito vectors. Here, we discuss the molecular mechanisms that originated RSEs, the evolutionary forces that shape the 3'UTR of alphaviruses, and the significance of RSEs for mosquito transmission. Finally, the presence of RSEs in the 3'UTR of viral genomes appears as evolutionary trait associated to mosquito adaptation and emerges as a common feature among viruses from the alphavirus and flavivirus genera.


Subject(s)
Alphavirus Infections/transmission , Chikungunya virus/genetics , Encephalitis Virus, Western Equine/genetics , Flavivirus Infections/transmission , Flavivirus/genetics , Genome, Viral , Viral Envelope Proteins/genetics , 3' Untranslated Regions , Alphavirus Infections/virology , Animals , Chikungunya virus/classification , Chikungunya virus/pathogenicity , Culicidae/virology , Encephalitis Virus, Western Equine/classification , Encephalitis Virus, Western Equine/pathogenicity , Flavivirus/classification , Flavivirus/pathogenicity , Flavivirus Infections/virology , Gene Expression Regulation , Humans , Microsatellite Repeats , Mosquito Vectors/virology , Phylogeny , Signal Transduction , Viral Envelope Proteins/metabolism , Virus Replication
17.
Parasit Vectors ; 13(1): 625, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33380339

ABSTRACT

BACKGROUND: Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. METHODS: In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. RESULTS: Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. CONCLUSIONS: Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.


Subject(s)
Aedes/virology , Culex/virology , Flavivirus Infections/transmission , Flavivirus/isolation & purification , Mosquito Vectors/virology , Viral Zoonoses/transmission , Animals , Bird Diseases/transmission , Birds , Germany/epidemiology , Humans , Serbia/epidemiology
18.
Viruses ; 13(1)2020 12 23.
Article in English | MEDLINE | ID: mdl-33374822

ABSTRACT

Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.


Subject(s)
Culicidae/virology , Endocytosis , Flavivirus Infections/transmission , Flavivirus Infections/virology , Flavivirus/physiology , Host-Pathogen Interactions , Animals , Antiviral Agents/pharmacology , Clathrin/metabolism , Endocytosis/immunology , Flavivirus/drug effects , Flavivirus Infections/epidemiology , Flavivirus Infections/immunology , Host-Pathogen Interactions/immunology , Receptors, Virus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
19.
Emerg Microbes Infect ; 9(1): 2642-2652, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33215969

ABSTRACT

Usutu virus (USUV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that are mainly transmitted between bird hosts by vector mosquitoes. Infections in humans are incidental but can cause severe disease. USUV is endemic in large parts of Europe, while WNV mainly circulates in Southern Europe. In recent years, WNV is also frequently detected in Northern Europe, thereby expanding the area where both viruses co-circulate. However, it remains unclear how USUV may affect the future spread of WNV and the likelihood of human co-infection. Here we investigated whether co-infections with both viruses in cell lines and their primary mosquito vector, Culex pipiens, affect virus replication and transmission dynamics. We show that USUV is outcompeted by WNV in mammalian, avian and mosquito cells during co-infection. Mosquitoes that were exposed to both viruses simultaneously via infectious blood meal displayed significantly reduced USUV transmission compared to mosquitoes that were only exposed to USUV (from 15% to 3%), while the infection and transmission of WNV was unaffected. In contrast, when mosquitoes were pre-infected with USUV via infectious blood meal, WNV transmission was significantly reduced (from 44% to 17%). Injection experiments established the involvement of the midgut in the observed USUV-mediated WNV inhibition. The competition between USUV and WNV during co-infection clearly indicates that the chance of concurrent USUV and WNV transmission via a single mosquito bite is low. The competitive relation between USUV and WNV may impact virus transmission dynamics in the field and affect the epidemiology of WNV in Europe.


Subject(s)
Coinfection/virology , Culex/virology , Flavivirus Infections/transmission , Flavivirus/physiology , West Nile virus/physiology , Animals , Cell Line , Chlorocebus aethiops , Flavivirus Infections/virology , Insect Vectors/virology , Mosquito Vectors/virology , Vero Cells , Viral Load , Virus Replication , West Nile Fever/transmission , West Nile Fever/virology
20.
PLoS Negl Trop Dis ; 14(10): e0008765, 2020 10.
Article in English | MEDLINE | ID: mdl-33044987

ABSTRACT

Usutu virus (USUV; Flavivirus), a close phylogenetic and ecological relative of West Nile virus, is a zoonotic virus that can cause neuroinvasive disease in humans. USUV is maintained in an enzootic cycle between Culex mosquitoes and birds. Since the first isolation in 1959 in South Africa, USUV has spread throughout Africa and Europe. Reported human cases have increased over the last few decades, primarily in Europe, with symptoms ranging from mild febrile illness to severe neurological effects. In this study, we investigated whether USUV has become more pathogenic during emergence in Europe. Interferon α/ß receptor knockout (Ifnar1-/-) mice were inoculated with recent USUV isolates from Africa and Europe, as well as the historic 1959 South African strain. The three tested African strains and one European strain from Spain caused 100% mortality in inoculated mice, with similar survival times and histopathology in tissues. Unexpectedly, a European strain from the Netherlands caused only 12% mortality and significantly less histopathology in tissues from mice compared to mice inoculated with the other strains. Viremia was highest in mice inoculated with the recent African strains and lowest in mice inoculated with the Netherlands strain. Based on phylogenetics, the USUV isolates from Spain and the Netherlands were derived from separate introductions into Europe, suggesting that disease outcomes may differ for USUV strains circulating in Europe. These results also suggest that while more human USUV disease cases have been reported in Europe recently, circulating African USUV strains are still a potential major health concern.


Subject(s)
Flavivirus Infections/virology , Flavivirus/isolation & purification , Flavivirus/pathogenicity , Animals , Culex/virology , Europe , Female , Flavivirus/classification , Flavivirus/genetics , Flavivirus Infections/mortality , Flavivirus Infections/pathology , Flavivirus Infections/transmission , Humans , Male , Mice , Mice, Inbred C57BL , Netherlands , Phylogeny , South Africa , Spain , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...