Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 706
Filter
1.
Article in English | MEDLINE | ID: mdl-38865183

ABSTRACT

A Gram-stain-negative, aerobic, non-spore-forming, nonmotile, rod-shaped, and yellow-pigmented bacterium, designated strain JXAS1T, was isolated from a freshwater sample collected from Poyang Lake in China. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the isolate belonged to the genus Flavobacterium, being closest to Flavobacterium pectinovorum DSM 6368T (98.61 %). The genome size of strain JXAS1T was 4.66 Mb with DNA G+C content 35.7 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain JXAS1T and its closest relatives were below the threshold values of 95 and 70 %, respectively. The strain contained menaquinone 6 (MK-6) as the predominant menaquinone and the major polar lipids were phosphatidylethanolamine, one unidentified glycolipid, and one unidentified polar lipid. The major fatty acids (>5 %) were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0, iso-C17 : 0 3OH, iso-C15 : 0 3OH, and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). Based on phylogenetic, genotypic, and phenotypic evidence, the isolated strain represents a new species in the genus Flavobacterium, and the name Flavobacterium poyangense is proposed. The type strain is JXAS1T (=GDMCC 1.1378T=KCTC 62719T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Flavobacterium , Lakes , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/isolation & purification , Lakes/microbiology , China , RNA, Ribosomal, 16S/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , DNA, Bacterial/genetics , Phosphatidylethanolamines , Glycolipids/analysis , Phospholipids/analysis
2.
Vet Res ; 55(1): 75, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867318

ABSTRACT

Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species. Yet, whether the population structure is driven by the trade of fish and eggs or by host-specific pathogenicity is uncertain. Notably, all F. psychrophilum isolates retrieved from ayu belong to Type-3 O antigen (O-Ag) whereas only very few strains retrieved from other fish species possess this O-Ag, suggesting a role in outbreaks affecting ayu. Thus, we investigated the links between genotype and pathogenicity by conducting comparative bath infection challenges in two fish hosts, ayu and rainbow trout, for a collection of isolates representing different MLST genotypes and O-Ag. Highly virulent strains in one host species exhibited low to no virulence in the other. F. psychrophilum strains associated with ayu and possessing Type-3 O-Ag demonstrated significant variability in pathogenicity in ayu, ranging from avirulent to highly virulent. Strikingly, F. psychrophilum strains retrieved from rainbow trout and possessing the Type-3 O-Ag were virulent for rainbow trout but not for ayu, indicating that Type-3 O-Ag alone is not sufficient for pathogenicity in ayu, nor does it prevent pathogenicity in rainbow trout. This study revealed that the association between a particular CC and host species partly depends on the pathogen's adaptation to specific host species.


Subject(s)
Fish Diseases , Flavobacteriaceae Infections , Flavobacterium , Host Specificity , Oncorhynchus mykiss , Osmeriformes , Animals , Flavobacterium/pathogenicity , Flavobacterium/physiology , Flavobacterium/genetics , Fish Diseases/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Oncorhynchus mykiss/microbiology , Osmeriformes/microbiology , Virulence , Genotype
3.
World J Microbiol Biotechnol ; 40(7): 201, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736020

ABSTRACT

Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized. The recombinant FjGH66 showed a hydrolytic activity against an early EPS-containing S. mutans biofilm, and, when associated with a α-(1,3)-glucosyl hydrolase (mutanase) from GH87 family, displayed outstanding performance, removing more than 80% of the plate-adhered biofilm. The mixture containing FjGH66 and Prevotella melaninogenica GH87 α-1,3-mutanase was added to a commercial mouthwash liquid to synergistically remove the biofilm. Dental floss and polyethylene disks coated with biofilm-degrading enzymes also degraded plate-adhered biofilm with a high efficiency. The results presented in this study might be valuable for future development of novel oral hygiene products.


Subject(s)
Biofilms , Dextranase , Flavobacterium , Glycoside Hydrolases , Streptococcus mutans , Biofilms/growth & development , Dextranase/metabolism , Dextranase/genetics , Flavobacterium/enzymology , Flavobacterium/genetics , Streptococcus mutans/enzymology , Streptococcus mutans/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hydrolysis , Biotechnology/methods
4.
Article in English | MEDLINE | ID: mdl-38717929

ABSTRACT

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Fishes , Flavobacterium , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/isolation & purification , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Animals , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Fishes/microbiology , Genome, Bacterial , Aquaculture , Phosphatidylethanolamines
5.
J Biosci Bioeng ; 137(6): 429-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570219

ABSTRACT

Plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere, are notably different from non-root-associated soil environments. However, the microbial dynamics in these spatially divided compartments remain unexplored. In this study, we propose a combinational analysis of single-cell genomics with 16S rRNA gene sequencing. This method enabled us to understand the entire soil microbiome and individual root-associated microorganisms. We applied this method to soybean microbiomes and revealed that their composition was different between the rhizoplane and rhizosphere in the early growth stages, but became more similar as growth progressed. In addition, a total of 610 medium- to high-quality single-amplified genomes (SAGs) were acquired, including plant growth-promoting rhizobacteria (PGPR) candidates while genomes with high GC content tended to be missed by SAGs. The whole-genome analyses of the SAGs suggested that rhizoplane-enriched Flavobacterium solubilizes organophosphate actively and Bacillus colonizes roots more efficiently. Single-cell genomics, together with 16S rRNA gene sequencing, enabled us to connect microbial taxonomy and function, and assess microorganisms at a strain resolution even in the complex soil microbiome.


Subject(s)
Glycine max , Microbiota , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Single-Cell Analysis , Soil Microbiology , Glycine max/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/metabolism
6.
Article in English | MEDLINE | ID: mdl-38563675

ABSTRACT

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Subject(s)
Flavobacterium , Salmo salar , Animals , Flavobacterium/genetics , Chile , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
7.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38446011

ABSTRACT

Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.


Subject(s)
Virome , Viruses , Humans , Metagenome , Flavobacterium/genetics , Metagenomics
8.
Environ Microbiol Rep ; 16(1): e13226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38298071

ABSTRACT

Flavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete-infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG-18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein-coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG-18. In the SEED classification, RSG-18 was found to have 36 genes categorized in 'Virulence, Disease and Defense'. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan-genomic analysis, core genes consist of genes linked to phages, integrases and matrix-tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG-18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.


Subject(s)
Bacteriophages , Fish Diseases , Oncorhynchus mykiss , Perciformes , Animals , Flavobacterium/genetics , Virulence/genetics , Virulence Factors/genetics , Fishes/microbiology , Fish Diseases/microbiology , Oncorhynchus mykiss/microbiology
9.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317643

ABSTRACT

Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.


Subject(s)
Microbiota , Phytophthora , Lactuca , Phytophthora/genetics , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Microbiota/genetics , Rhizosphere , Flavobacterium/genetics , Soil Microbiology
10.
mBio ; 15(3): e0342823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38329367

ABSTRACT

Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE: Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.


Subject(s)
Health Promotion , Microbiota , Humans , Sand , Flavobacterium/genetics , Bacterial Proteins/metabolism
11.
Environ Microbiol ; 26(2): e16581, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195078

ABSTRACT

Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease, causes substantial economic losses in salmonid farms and hatcheries. Some multilocus sequence types (ST) of F. psychrophilum are more likely to be associated with fish farms and hatcheries, but it is unclear if these patterns of association represent genetic lineages that are more adapted to aquaculture environments. Towards elucidating the disease ecology of F. psychrophilum, the culturability of 10 distinct F. psychrophilum STs was evaluated for 13 weeks in three microcosms including sterilized well water, sterilized well water with commercial trout feed, or sterilized well water with raceway detritus. All STs remained culturable in each of the microcosms for at least 8 weeks, with bacterial concentrations often highest in the presence of raceway detritus. In addition, most (e.g., 90%) STs remained culturable for at least 13-weeks. Significant differences in log10 cfus were observed among STs, both within and between microcosms, suggesting potential variability in environmental persistence capacity among specific variants. Collectively, results highlight the ability of F. psychrophilum to not only persist for weeks under nutrient-limited conditions but also thrive in the presence of organic substrates common in fish farms and hatchery-rearing units.


Subject(s)
Fish Diseases , Flavobacteriaceae Infections , Oncorhynchus mykiss , Animals , Fisheries , Oncorhynchus mykiss/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Flavobacterium/genetics , Water
12.
J Aquat Anim Health ; 36(1): 3-15, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37859458

ABSTRACT

OBJECTIVE: Columnaris disease is a leading cause of disease-related losses in the catfish industry of the southeastern United States. The term "columnaris-causing bacteria" (CCB) has been coined in reference to the four described species that cause columnaris disease: Flavobacterium columnare, F. covae, F. davisii, and F. oreochromis. Historically, F. columnare, F. covae, and F. davisii have been isolated from columnaris disease cases in the catfish industry; however, there is a lack of knowledge of which CCB species are most prevalent in farm-raised catfish. The current research objectives were to (1) sample columnaris disease cases from the U.S. catfish industry and identify the species of CCB involved and (2) determine the virulence of the four CCB species in Channel Catfish Ictalurus punctatus in controlled laboratory challenges. METHODS: Bacterial isolates or swabs of external lesions from catfish were collected from 259 columnaris disease cases in Mississippi and Alabama during 2015-2019. The DNA extracted from the samples was analyzed using a CCB-specific multiplex polymerase chain reaction to identify the CCB present in each diagnostic case. Channel Catfish were challenged by immersion with isolates belonging to each CCB species to determine virulence at ~28°C and 20°C. RESULT: Flavobacterium covae was identified as the predominant CCB species impacting the U.S. catfish industry, as it was present in 94.2% (n = 244) of diagnostic case submissions. Challenge experiments demonstrated that F. covae and F. oreochromis were highly virulent to Channel Catfish, with most isolates resulting in near 100% mortality. In contrast, F. columnare and F. davisii were less virulent, with most isolates resulting in less than 40% mortality. CONCLUSION: Collectively, these results demonstrate that F. covae is the predominant CCB in the U.S. catfish industry, and research aimed at developing new control and prevention strategies should target this bacterial species. The methods described herein can be used to continue monitoring the prevalence of CCB in the catfish industry and can be easily applied to other industries to identify which Flavobacterium species have the greatest impact.


Subject(s)
Catfishes , Fish Diseases , Flavobacteriaceae Infections , Ictaluridae , Animals , Ictaluridae/microbiology , Flavobacterium/genetics , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Southeastern United States/epidemiology , Fish Diseases/epidemiology , Fish Diseases/microbiology
13.
J Microbiol Biotechnol ; 34(3): 710-724, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38044702

ABSTRACT

Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.


Subject(s)
Flavobacterium , Xanthophylls , Zeaxanthins , Flavobacterium/genetics , Carotenoids , Lutein , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
14.
Microbiol Spectr ; 12(2): e0360123, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38112454

ABSTRACT

Flavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and is responsible for substantial losses in farm and hatchery-reared salmonids (Family Salmonidae). Although F. psychrophilum infects multiple economically important salmonids and is transmitted horizontally, the extent of knowledge regarding F. psychrophilum shedding rates and duration is limited to rainbow trout (Oncorhynchus mykiss). Concurrently, hundreds of F. psychrophilum sequence types (STs) have been described using multilocus sequence typing (MLST), and evidence suggests that some variants have distinct phenotypes, including differences in host associations. Whether shedding dynamics differ among F. psychrophilum variants and/or salmonids remains unknown. Thus, three F. psychrophilum isolates (e.g., US19, US62, and US87) in three MLST STs (e.g., ST13, ST277, and ST275) with apparent host associations for coho salmon (O. kisutch), Atlantic salmon (Salmo salar), or rainbow trout were intramuscularly injected into each respective fish species. Shedding rates of live and dead fish were determined by quantifying F. psychrophilum loads in water via quantitative PCR. Both live and dead Atlantic and coho salmon shed F. psychrophilum, as did live and dead rainbow trout. Regardless of salmonid species, dead fish shed F. psychrophilum at higher rates (e.g., up to ~108-1010 cells/fish/hour) compared to live fish (up to ~107-109 cells/fish/hour) and for a longer duration (5-35 days vs 98 days); however, shedding dynamics varied by F. psychrophilum variant and/or host species, a matter that may complicate BCWD management. Findings herein expand knowledge on F. psychrophilum shedding dynamics across multiple salmonid species and can be used to inform future BCWD management strategies.IMPORTANCEFlavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, both of which cause substantial losses in farmed and hatchery-reared salmon and trout populations worldwide. This study provides insight into F. psychrophilum shedding dynamics in rainbow trout (Oncorhynchus mykiss) and, for the first time, coho salmon (O. kisutch) and Atlantic salmon (Salmo salar). Findings revealed that live and dead fish of all fish species shed the bacterium. However, dead fish shed F. psychrophilum at higher rates than living fish, emphasizing the importance of removing dead fish in farms and hatcheries. Furthermore, shedding dynamics may differ according to F. psychrophilum genetic variant and/or fish species, a matter that may complicate BCWD management. Overall, study results provide deeper insight into F. psychrophilum shedding dynamics and will guide future BCWD management strategies.


Subject(s)
Bacterial Infections , Fish Diseases , Flavobacteriaceae Infections , Oncorhynchus kisutch , Oncorhynchus mykiss , Animals , Multilocus Sequence Typing , Flavobacteriaceae Infections/microbiology , Oncorhynchus mykiss/microbiology , Flavobacterium/genetics , Oncorhynchus kisutch/microbiology , Fish Diseases/microbiology
15.
Sci Rep ; 13(1): 21420, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38049513

ABSTRACT

The glycoside hydrolase (GH) 87 α-1,3-glucanase (Agl-EK14) gene was cloned from the genomic DNA of the gram-negative bacterium Flavobacterium sp. EK14. The gene consisted of 2940 nucleotides and encoded 980 amino acid residues. The deduced amino acid sequence of Agl-EK14 included a signal peptide, a catalytic domain, a first immunoglobulin-like domain, a second immunoglobulin-like domain, a ricin B-like lectin domain, and a carboxyl-terminal domain (CTD) involved in extracellular secretion. Phylogenetic analysis of the catalytic domain of GH87 enzymes suggested that Agl-EK14 is distinct from known clusters, such as clusters composed of α-1,3-glucanases from bacilli and mycodextranases from actinomycetes. Agl-EK14 without the signal peptide and CTD hydrolyzed α-1,3-glucan, and the reaction residues from 1 and 2% substrates were almost negligible after 1440 min reaction. Agl-EK14 hydrolyzed the cell wall preparation of Aspergillus oryzae and released glucose, nigerose, and nigero-triose from the cell wall preparation. After treatment of A. oryzae live mycelia with Agl-EK14 (at least 0.5 nmol/ml), mycelia were no longer stained by red fluorescent protein-fused α-1,3-glucan binding domains of α-1,3-glucanase Agl-KA from Bacillus circulans KA-304. Results suggested that Agl-EK14 can be applied to a fungal cell wall lytic enzyme.


Subject(s)
Flavobacterium , Glycoside Hydrolases , Flavobacterium/genetics , Flavobacterium/metabolism , Phylogeny , Glycoside Hydrolases/metabolism , Protein Sorting Signals/genetics , Cell Wall/metabolism
16.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37882776

ABSTRACT

An aerobic, Gram-negative, non-motile, yellow-to-orange pigmented and round bacterium, designated strain SCSIO 72103T, was isolated from sediment collected in the Pearl River Estuary, Guangdong Province, PR China and subjected to a polyphasic taxonomic study. Growth occurred at 20-37 °C (optimum, 28 °C), pH 6-8 (optimum, pH 7) and with 1-5.5% NaCl (optimum, 1-3 %). Comparative 16S rRNA gene analysis indicated that strain SCSIO 72103T had the highest similarities to Flavobacterium baculatum SNL9T (94.7 %) and Myroides aquimaris SW105T (94.2 %). Phylogenetic analysis based 16S rRNA gene sequences showed that strain SCSIO 72103T formed a single clade with M. aquimaris SW105T. Strain SCSIO 72103T contained iso-C15 : 0 as the major fatty acid and the predominant respiratory quinone was menaquinone MK-6. These characteristics are consistent with those of F. baculatum SNL9T and M. aquimaris SW105T. Phosphatidylethanolamine, most notably, unidentified aminolipid and unidentified aminophospholipid were major polar lipids. Strain SCSIO 72103T had a single circular chromosome of 2.96 Mb with a DNA G+C content of 35.1 mol%. The average nucleotide identity, average amino acid identity (AAI) and digital DNA-DNA hybridization values showed that the pairwise similarities between SCSIO 72103T and the type strains of F. baculatum SNL9T and M. aquimaris SW105T were 78.5-80.5 %, 79.0-81.4 % and 22.7-22.8 %, respectively. The AAI values between species in this clade and the type species of Flavobacterium and Myroides were below the 65 % threshold, indicating that these species belong to a novel genus. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain SCSIO 72103T represents a new species of a novel genus, for which the name Paenimyroides aestuarii gen. nov. sp. nov. is proposed. The type strain is SCSIO 72103T (=KCTC 92043T=MCCC 1K06659T). It is also proposed that nine known species in the genera Flavobacterium and Myroides are reclassified as Paenimyroides species.


Subject(s)
Estuaries , Flavobacterium , Flavobacterium/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rivers , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria, Aerobic , Amino Acids
17.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37796242

ABSTRACT

Six psychrotolerant, Gram-stain-negative, aerobic bacterial strains, designated as LB1P51T, LB2P87T, LB2P84, LB3P48, LB3R18 and XS2P67, were isolated from glaciers on the Tibetan Plateau, PR China. The results of 16S rRNA gene analysis confirmed their classification within the genus Flavobacterium. Strain LB2P87T displayed the highest sequence similarity to Flavobacterium sinopsychrotolerans 0533T (98.18 %), while strain LB1P51T exhibited the highest sequence similarity to Flavobacterium glaciei CGMCC 1.5380T (98.15 %). Strains LB2P87T and LB1P51T had genome sizes of 3.8 and 3.9 Mb, respectively, with DNA G+C contents of 34.2 and 34.1 %, respectively. Pairwise average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) calculations revealed that these strains represented two distinct species within the genus Flavobacterium. The results of phylogenomic analysis using 606 core genes indicated that the six strains formed a distinct clade and were most closely related to F. glaciei CGMCC 1.5380T. The ANI and dDDH values between the two species and other members of the genus Flavobacterium were below 90.3 and 40.1 %, respectively. Genome relatedness, the results of phylogenomic analysis and phenotypic characteristics collectively support the proposal of two novel species of the genus Flavobacterium: Flavobacterium algoritolerans sp. nov. (LB1P51T = CGMCC 1.11237T = NBRC 114813T) and Flavobacterium yafengii sp. nov. (LB2P87T = CGMCC 1.11249T = NBRC 114814T).


Subject(s)
Fatty Acids , Flavobacterium , Flavobacterium/genetics , RNA, Ribosomal, 16S/genetics , Base Composition , Phylogeny , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Nucleotides
18.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37528061

ABSTRACT

Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is a severe global disease. However, effective biological control agents for controlling Psa are currently unavailable. This study aimed to screen potential biological control agents against Psa from the kiwifruit rhizosphere. In this study, a total of 722 isolates of bacteria were isolated from the rhizosphere of kiwifruit orchards in five regions of China. A total of 82 strains of rhizosphere bacteria showed antagonistic effects against Psa on plates. Based on amplified ribosomal DNA restriction analysis (ARDRA), these antagonistic rhizosphere bacteria were grouped into 17 clusters. BLAST analyses based on 16S rRNA gene sequence revealed 95.44%-100% sequence identity to recognized species. The isolated strains belonged to genus Acinetobacter, Bacillus, Chryseobacterium, Flavobacterium, Glutamicibacter, Lysinibacillus, Lysobacter, Pseudomonas, Pseudarthrobacter, and Streptomyces, respectively. A total of four representative strains were selected to determine their extracellular metabolites and cell-free supernatant activity against Psa in vitro. They all produce protease and none of them produce glucanase. One strain of Pseudomonas sp. produces siderophore. Strains of Bacillus spp. and Flavobacteria sp. produce cellulase, and Flavobacteria sp. also produce chitinase. Our results suggested that the kiwifruit rhizosphere soils contain a variety of antagonistic bacteria that effectively inhibit the growth of Psa.


Subject(s)
Actinidia , Micrococcaceae , Pseudomonas syringae/genetics , Biological Control Agents , RNA, Ribosomal, 16S/genetics , Rhizosphere , Plant Diseases/microbiology , Actinidia/genetics , Actinidia/microbiology , Flavobacterium/genetics
19.
Antonie Van Leeuwenhoek ; 116(10): 975-986, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542623

ABSTRACT

In the late 1970s, Flavobacterium bizetiae was first isolated from diseased fish in Canada. After four decades of preservation, it was reported as a novel species in 2020. Here, we report the first complete genome sequence of HJ-32-4, a novel strain of F. bizetiae. Interestingly, HJ-32-4 was isolated from soil in Gangwon-do, Republic of Korea, unlike the other two previously reported F. bizetiae strains which were isolated from fish. We generated a single circular chromosome of HJ-32-4, comprising 5,745,280 bp with a GC content of 34.2%. The average nucleotide identity (ANI) value of 96.2% indicated that HJ-32-4 belongs to F. bizetiae CIP 105534T. The virulence factor was not detected in the genome. Comparative genomic analysis of F. bizetiae and major flavobacterial pathogens revealed that F. bizetiae had a larger genome size and the ratio of peptidases (PEP) and glycoside hydrolase (GH) genes of F. bizetiae were lower than those of the rest strains, implying that F. bizetiae exhibits similar characteristics with non-pathogenic strains from a genomic point of view. However, further experimental verification is required to ensure these in silico predictions. This study will provide insight into the overall characteristics of HJ-32-4 compared to other strains.


Subject(s)
Flavobacterium , Soil , Animals , Flavobacterium/genetics , Sequence Analysis, DNA , Genomics , Virulence Factors/genetics , Fishes , Phylogeny , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Fatty Acids
20.
Biotechnol J ; 18(11): e2300111, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37486789

ABSTRACT

p-Coumaric acid (pCA) can be produced via bioprocessing and is a promising chemical precursor to making organic thin film transistors. However, the required tyrosine ammonia lyase (TAL) enzyme generally has a low specific activity and suffers from competitive product inhibition. Here we characterized the purified TAL variants from Flavobacterium johnsoniae and Herpetosiphon aurantiacus in terms of their susceptibility to product inhibition and their activity and stability across pH and temperature via initial rate experiments. FjTAL was found to be more active than previously described and to have a relatively weak affinity for pCA, but modeling revealed that product inhibition would still be problematic at industrially relevant product concentrations, due to the low solubility of the substrate tyrosine. The activity of both variants increased with temperature when tested up to 45°C, but HaTAL1 was more stable at elevated temperature. FjTAL is a promising biocatalyst for pCA production, but enzyme or bioprocess engineering are required to stabilize FjTAL and reduce product inhibition.


Subject(s)
Ammonia-Lyases , Flavobacterium , Flavobacterium/genetics , Ammonia-Lyases/genetics , Ammonia-Lyases/chemistry , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...