Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 983
Filter
1.
BMC Plant Biol ; 24(1): 499, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840069

ABSTRACT

BACKGROUND: Murraya tetramera Huang is a traditional Chinese woody medicine. Its leaves contain flavonoids, alkaloids, and other active compounds, which have anti-inflammatory and analgesic effects, as well as hypoglycemic and lipid-lowering effects, and anti-tumor effects. There are significant differences in the content of flavonoids and alkaloids in leaves during different growth cycles, but the synthesis mechanism is still unclear. RESULTS: In April 2021, new leaves (one month old) and old leaves (one and a half years old) of M. tetramera were used as experimental materials to systematically analyze the changes in differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) with transcriptomics and metabolomics technology. This was done to identify the signaling pathways of flavonoid and alkaloid synthesis. The results showed that the contents of total alkaloids and flavonoids in old leaves were significantly higher than those in new leaves. Thirteen flavonoid compounds, three isoflavone compounds, and nineteen alkaloid compounds were identified, and 125 and 48 DEGs related to flavonoid and alkaloid synthesis were found, respectively. By constructing the KEGG (Kyoto Encyclopedia of Genes and Genomes) network of DEGs and DAMs, it was shown that the molecular mechanism of flavonoid biosynthesis in M. tetramera mainly focuses on the "flavonoid biosynthetic pathway" and the "flavonoid and flavonol biosynthetic pathway". Among them, p-Coumaryl alcohol, Sinapyl alcohol, Phloretin, and Isoquercitrin were significantly accumulated in old leaves, the up-regulated expression of CCR (cinnamoyl-CoA reductase) might promote the accumulation of p-Coumaryl alcohol, upregulation of F5H (ferulate-5-hydroxylase) might promote Sinapyl alcohol accumulation. Alkaloids, including indole alkaloids, pyridine alkaloids, imidazole alkaloids, and quinoline alkaloids, were significantly accumulated in old leaves, and a total of 29 genes were associated with these substances. CONCLUSIONS: These data are helpful to better understand the biosynthesis of flavonoids and alkaloids in M. tetramera and provide a scientific basis for the development of medicinal components in M. tetramera.


Subject(s)
Alkaloids , Flavonoids , Gene Expression Profiling , Metabolomics , Murraya , Plant Leaves , Flavonoids/biosynthesis , Flavonoids/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Alkaloids/metabolism , Alkaloids/biosynthesis , Murraya/genetics , Murraya/metabolism , Transcriptome , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 24(1): 370, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714932

ABSTRACT

BACKGROUND: Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS: In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS: This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.


Subject(s)
Flavonoids , Flowers , Gene Expression Regulation, Plant , Nymphaea , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Nymphaea/genetics , Nymphaea/metabolism , Pigmentation/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Gene Expression Profiling , Color
3.
Nat Commun ; 15(1): 3991, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734724

ABSTRACT

Citrus reticulata cv. Chachiensis (CRC) is an important medicinal plant, its dried mature peels named "Guangchenpi", has been used as a traditional Chinese medicine to treat cough, indigestion, and lung diseases for several hundred years. However, the biosynthesis of the crucial natural products polymethoxylated flavonoids (PMFs) in CRC remains unclear. Here, we report a chromosome-scale genome assembly of CRC with the size of 314.96 Mb and a contig N50 of 16.22 Mb. Using multi-omics resources, we discover a putative caffeic acid O-methyltransferase (CcOMT1) that can transfer a methyl group to the 3-hydroxyl of natsudaidain to form 3,5,6,7,8,3',4'-heptamethoxyflavone (HPMF). Based on transient overexpression and virus-induced gene silencing experiments, we propose that CcOMT1 is a candidate enzyme in HPMF biosynthesis. In addition, a potential gene regulatory network associated with PMF biosynthesis is identified. This study provides insights into PMF biosynthesis and may assist future research on mining genes for the biosynthesis of plant-based medicines.


Subject(s)
Citrus , Flavonoids , Methyltransferases , Citrus/genetics , Citrus/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Gene Regulatory Networks , Multiomics
4.
Plant Physiol Biochem ; 211: 108698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714132

ABSTRACT

Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Breaks, Double-Stranded , DNA Repair , Flavonoids , Gene Expression Regulation, Plant , Transcription Factors , Ultraviolet Rays , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Breaks, Double-Stranded/radiation effects , Gene Expression Regulation, Plant/radiation effects , Repressor Proteins
5.
Plant Physiol Biochem ; 211: 108665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735155

ABSTRACT

Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Flavonoids , Gene Expression Regulation, Plant , Mutation , Plant Proteins , Ziziphus , Flavonoids/metabolism , Flavonoids/biosynthesis , Flavonoids/genetics , Ziziphus/genetics , Ziziphus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/genetics , Fruit/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791264

ABSTRACT

Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.


Subject(s)
Isoflavones , Isoflavones/biosynthesis , Isoflavones/chemistry , Isoflavones/isolation & purification , Humans , Pueraria/chemistry , Flavonoids/biosynthesis , Animals
7.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791394

ABSTRACT

Dendrobium nobile is an important orchid plant that has been used as a traditional herb for many years. For the further pharmaceutical development of this resource, a combined transcriptome and metabolome analysis was performed in different parts of D. nobile. First, saccharides, organic acids, amino acids and their derivatives, and alkaloids were the main substances identified in D. nobile. Amino acids and their derivatives and flavonoids accumulated strongly in flowers; saccharides and phenols accumulated strongly in flowers and fruits; alkaloids accumulated strongly in leaves and flowers; and a nucleotide and its derivatives and organic acids accumulated strongly in leaves, flowers, and fruits. Simultaneously, genes for lipid metabolism, terpenoid biosynthesis, and alkaloid biosynthesis were highly expressed in the flowers; genes for phenylpropanoids biosynthesis and flavonoid biosynthesis were highly expressed in the roots; and genes for other metabolisms were highly expressed in the leaves. Furthermore, different members of metabolic enzyme families like cytochrome P450 and 4-coumarate-coA ligase showed differential effects on tissue-specific metabolic accumulation. Members of transcription factor families like AP2-EREBP, bHLH, NAC, MADS, and MYB participated widely in differential accumulation. ATP-binding cassette transporters and some other transporters also showed positive effects on tissue-specific metabolic accumulation. These results systematically elucidated the molecular mechanism of differential accumulation in different parts of D. nobile and enriched the library of specialized metabolic products and promising candidate genes.


Subject(s)
Dendrobium , Gene Expression Regulation, Plant , Transcriptome , Dendrobium/genetics , Dendrobium/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling/methods , Metabolome , Flowers/genetics , Flowers/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Alkaloids/metabolism
8.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792058

ABSTRACT

The 1092 bp F3H gene from Trapa bispinosa Roxb., which was named TbF3H, was cloned and it encodes 363 amino acids. Bioinformatic and phylogenetic tree analyses revealed the high homology of TbF3H with flavanone 3-hydroxylase from other plants. A functional analysis showed that TbF3H of Trapa bispinosa Roxb. encoded a functional flavanone 3-hydroxylase; it catalyzed the formation of dihydrokaempferol (DHK) from naringenin in S. cerevisiae. The promoter strengths were compared by fluorescence microscopy and flow cytometry detection of the fluorescence intensity of the reporter genes initiated by each constitutive promoter (FITC), and DHK production reached 216.7 mg/L by the promoter adjustment strategy and the optimization of fermentation conditions. The results presented in this study will contribute to elucidating DHK biosynthesis in Trapa bispinosa Roxb.


Subject(s)
Flavanones , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Flavanones/biosynthesis , Flavanones/metabolism , Phylogeny , Promoter Regions, Genetic , Cloning, Molecular/methods , Flavonoids/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Fermentation
9.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792114

ABSTRACT

Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there is a notable shift towards biological production using microorganisms like Escherichia coli and yeast. Yet, the drawbacks of using E. coli and yeast as hosts for these compounds persist. For instance, yeast's complex glycosylation profile can lead to intricate protein production scenarios, including hyperglycosylation issues. Consequently, Corynebacterium glutamicum emerges as a promising alternative, given its adaptability and recent advances in metabolic engineering. Although extensively used in biotechnological applications, the potential production of flavonoid and stilbenoid in engineered C. glutamicum remains largely untapped compared to E. coli. This review explores the potential of metabolic engineering in C. glutamicum for biosynthesis, highlighting its versatility as a cell factory and assessing optimization strategies for these pathways. Additionally, various metabolic engineering methods, including genomic editing and biosensors, and cofactor regeneration are evaluated, with a focus on C. glutamicum. Through comprehensive discussion, the review offers insights into future perspectives in production, aiding researchers and industry professionals in the field.


Subject(s)
Corynebacterium glutamicum , Flavonoids , Metabolic Engineering , Stilbenes , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Metabolic Engineering/methods , Flavonoids/biosynthesis , Flavonoids/metabolism , Stilbenes/metabolism
10.
Genes (Basel) ; 15(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790157

ABSTRACT

Epimedium koreanum is a traditional Chinese tonic herb. Its main medicinal components are secondary metabolites such as flavonoids and flavonol glycosides, but the biosynthetic mechanism is still unclear. Moisture conditions are a key environmental factor affecting E. koreanum medicinal components during harvesting. Different stages of E. koreanum under natural conditions after rainfall were selected to study changes in physiological properties, herb quality, and transcriptome. Malondialdehyde (MDA) content increased significantly in the D3 stage after rainfall, and protective enzyme levels also rose. Additionally, the flavonol glycoside content was relatively high. We sequenced the transcriptomes of D1, D3, and D9 (R) and identified differentially expressed genes (DEGs) related to flavonoid synthesis. This analysis allowed us to predict the roadmap and key genes involved in flavonoid biosynthesis for E. koreanum. These results suggest that the E. koreanum quality can be enhanced by natural drought conditions in the soil after precipitation during harvest. The harvesting period of E. koreanum is optimal when soil moisture naturally dries to a relative water content of 26% after precipitation. These conditions help E. koreanum tolerate a certain level of water scarcity, resulting in increased expression of flavonoid-related genes and ultimately enhancing the quality of the herb.


Subject(s)
Epimedium , Flavonoids , Gene Expression Regulation, Plant , Soil , Transcriptome , Epimedium/genetics , Epimedium/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Soil/chemistry , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Malondialdehyde/metabolism , Water/metabolism
11.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792110

ABSTRACT

Flavonoids, a class of phenolic compounds, are one of the main functional components and have a wide range of molecular structures and biological activities in Polygonatum. A few of them, including homoisoflavonoids, chalcones, isoflavones, and flavones, were identified in Polygonatum and displayed a wide range of powerful biological activities, such as anti-cancer, anti-viral, and blood sugar regulation. However, few studies have systematically been published on the flavonoid biosynthesis pathway in Polygonatum cyrtonema Hua. Therefore, in the present study, a combined transcriptome and metabolome analysis was performed on the leaf, stem, rhizome, and root tissues of P. cyrtonema to uncover the synthesis pathway of flavonoids and to identify key regulatory genes. Flavonoid-targeted metabolomics detected a total of 65 active substances from four different tissues, among which 49 substances were first study to identify in Polygonatum, and 38 substances were flavonoids. A total of 19 differentially accumulated metabolites (DAMs) (five flavonols, three flavones, two dihydrochalcones, two flavanones, one flavanol, five phenylpropanoids, and one coumarin) were finally screened by KEGG enrichment analysis. Transcriptome analysis indicated that a total of 222 unigenes encoding 28 enzymes were annotated into three flavonoid biosynthesis pathways, which were "phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". The combined analysis of the metabolome and transcriptome revealed that 37 differentially expressed genes (DEGs) encoding 11 enzymes (C4H, PAL, 4CL, CHS, CHI, F3H, DFR, LAR, ANR, FNS, FLS) and 19 DAMs were more likely to be regulated in the flavonoid biosynthesis pathway. The expression of 11 DEGs was validated by qRT-PCR, resulting in good agreement with the RNA-Seq. Our studies provide a theoretical basis for further elucidating the flavonoid biosynthesis pathway in Polygonatum.


Subject(s)
Biosynthetic Pathways , Flavonoids , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolomics , Polygonatum , Transcriptome , Flavonoids/biosynthesis , Flavonoids/metabolism , Flavonoids/genetics , Polygonatum/genetics , Polygonatum/metabolism , Polygonatum/chemistry , Metabolomics/methods , Biosynthetic Pathways/genetics , Gene Expression Profiling/methods , Metabolome
12.
BMC Plant Biol ; 24(1): 308, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644502

ABSTRACT

Acacia melanoxylon is well known as a valuable commercial tree species owing to its high-quality heartwood (HW) products. However, the metabolism and regulatory mechanism of heartwood during wood development remain largely unclear. In this study, both microscopic observation and content determination proved that total amount of starches decreased and phenolics and flavonoids increased gradually from sapwood (SW) to HW. We also obtained the metabolite profiles of 10 metabolites related to phenolics and flavonoids during HW formation by metabolomics. Additionally, we collected a comprehensive overview of genes associated with the biosynthesis of sugars, terpenoids, phenolics, and flavonoids using RNA-seq. A total of ninety-one genes related to HW formation were identified. The transcripts related to plant hormones, programmed cell death (PCD), and dehydration were increased in transition zone (TZ) than in SW. The results of RT-PCR showed that the relative expression level of genes and transcription factors was also high in the TZ, regardless of the horizontal or vertical direction of the trunk. Therefore, the HW formation took place in the TZ for A. melanoxylon from molecular level, and potentially connected to plant hormones, PCD, and cell dehydration. Besides, the increased expression of sugar and terpenoid biosynthesis-related genes in TZ further confirmed the close connection between terpenoid biosynthesis and carbohydrate metabolites of A. melanoxylon. Furthermore, the integrated analysis of metabolism data and RNA-seq data showed the key transcription factors (TFs) regulating flavonoids and phenolics accumulation in HW, including negative correlation TFs (WRKY, MYB) and positive correlation TFs (AP2, bZIP, CBF, PB1, and TCP). And, the genes and metabolites from phenylpropanoid and flavonoid metabolism and biosynthesis were up-regulated and largely accumulated in TZ and HW, respectively. The findings of this research provide a basis for comprehending the buildup of metabolites and the molecular regulatory processes of HW formation in A. melanoxylon.


Subject(s)
Acacia , Flavonoids , Gene Expression Profiling , Wood , Acacia/genetics , Acacia/metabolism , Flavonoids/metabolism , Flavonoids/biosynthesis , Wood/genetics , Wood/metabolism , Metabolomics , Gene Expression Regulation, Plant , Transcriptome , Phenols/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
13.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673724

ABSTRACT

As a highly economic berry fruit crop, blueberry is enjoyed by most people and has various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids. To obtain more accurate and comprehensive transcripts, the full-length transcriptome of half-highbush blueberry (Vaccinium corymbosum/angustifolium cultivar Northland) obtained using single molecule real-time and next-generation sequencing technologies was reported for the first time. Overall, 147,569 consensus transcripts (average length, 2738 bp; N50, 3176 bp) were obtained. After quality control steps, 63,425 high-quality isoforms were obtained and 5030 novel genes, 3002 long non-coding RNAs, 3946 transcription factor genes (TFs), 30,540 alternative splicing events, and 2285 fusion gene pairs were identified. To better explore the molecular mechanism of flavonoid biosynthesis in mature blueberry fruit, an integrative analysis of the metabolome and transcriptome was performed on the exocarp, sarcocarp, and seed. A relatively complete biosynthesis pathway map of phenylpropanoids, flavonoids, and proanthocyanins in blueberry was constructed. The results of the joint analysis showed that the 228 functional genes and 42 TFs regulated 78 differentially expressed metabolites within the biosynthesis pathway of phenylpropanoids/flavonoids. O2PLS analysis results showed that the key metabolites differentially accumulated in blueberry fruit tissues were albireodelphin, delphinidin 3,5-diglucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-sophoroside, and 10 structural genes (4 Vc4CLs, 3 VcBZ1s, 1 VcUGT75C1, 1 VcAT, and 1 VcUGAT), 4 transporter genes (1 VcGSTF and 3 VcMATEs), and 10 TFs (1 VcMYB, 2 VcbHLHs, 4 VcWD40s, and 3 VcNACs) exhibited strong correlations with 4 delphinidin glycosides. These findings provide insights into the molecular mechanisms of flavonoid biosynthesis and accumulation in blueberry fruit.


Subject(s)
Blueberry Plants , Flavonoids , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolome , Transcriptome , Blueberry Plants/genetics , Blueberry Plants/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism , High-Throughput Nucleotide Sequencing , Transcription Factors/genetics , Transcription Factors/metabolism , Biosynthetic Pathways/genetics
14.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675642

ABSTRACT

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Subject(s)
Acyltransferases , Chalcones , Flavonoids , Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Rhododendron , Acyltransferases/genetics , Acyltransferases/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Rhododendron/genetics , Rhododendron/metabolism , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Cloning, Molecular , Mutation
15.
Genomics ; 116(3): 110850, 2024 May.
Article in English | MEDLINE | ID: mdl-38685286

ABSTRACT

Phlomoides rotata is a traditional medical plant at 3100-5200 m altitude in the Tibet Plateau. In this study, flavonoid metabolites were investigated in P. rotata from Henan County (HN), Guoluo County (GL), Yushu County (YS), and Chengduo County (CD) habitats in Qinghai. The level of kaempferol 3-neohesperidoside, sakuranetin, and biochanin A was high in HN. The content of limocitrin and isoquercetin was high in YS. The levels of ikarisoside A and chrysosplenol D in GL were high. Schaftoside, miquelianin, malvidin chloride, and glabrene in CD exhibited high levels. The results showed a significant correlation between 59 flavonoids and 29 DEGs. Eleven flavonoids increased with altitude. PAL2, UFGT6, COMT1, HCT2, 4CL4, and HCT3 genes were crucial in regulating flavonoid biosynthesis. Three enzymes CHS, 4CL, and UFGT, were crucial in regulating flavonoid biosynthesis. This study provided biological and chemical evidence for the different uses of various regional plants of P. rotata.


Subject(s)
Flavonoids , Flavonoids/biosynthesis , Transcriptome , Gene Expression Regulation, Plant , Ecosystem , Altitude , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Planta ; 259(3): 65, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329545

ABSTRACT

MAIN CONCLUSION: This study reveals that TRM21 acts as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis, impacting both secondary metabolites and genes associated with root hair growth. TRM (TONNEAU1-recruiting motif) superfamily proteins are reported to be involved in microtubule assembly. However, the functions of this protein family are just beginning to be uncovered. Here, we provide metabolomic and genetic evidence that 1 of the 34 TRM members, TRM21, positively regulates the biosynthesis of flavonoids at the translational level in Arabidopsis thaliana. A loss-of-function mutation in TRM21 led to root hair growth defects and stunted plant growth, accompanied by significant alterations in secondary metabolites, particularly a marked reduction in flavonoid content. Interestingly, our study revealed that the transcription levels of genes involved in the flavonoid biosynthesis pathway remained unchanged in the trm21 mutants, but there was a significant downregulation in the translation levels of certain genes [flavanone 3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), anthocyanidin reductase (ANR), flavanone 3'-hydroxylase (F3'H), flavonol synthase (FLS), chalcone synthase (CHS)]. Additionally, the translation levels of some genes related to root hair growth [RHO-related GTPases of plant 2 (ROP2), root hair defective 6 (RHD6), root hair defective 2 (RHD2)] were also reduced in the trm21 mutants. Taken together, these results indicate that TRM21 functions as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flavonoids , Microtubule-Associated Proteins , Anthocyanins , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors , Down-Regulation , Flavonoids/biosynthesis , Metabolic Networks and Pathways , Microtubule-Associated Proteins/genetics
18.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016390

ABSTRACT

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Subject(s)
Drug Industry , Drugs, Chinese Herbal , Flavonoids , Industrial Microbiology , Catalysis , Drugs, Chinese Herbal/chemical synthesis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Escherichia coli/genetics , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Sphingomonadaceae/enzymology , Sphingomonadaceae/genetics , Paenibacillus/enzymology , Paenibacillus/genetics , Industrial Microbiology/methods , Drug Industry/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Flavonoids/biosynthesis , Hydrolysis
19.
PeerJ ; 10: e13467, 2022.
Article in English | MEDLINE | ID: mdl-35637717

ABSTRACT

Fisetin is a flavonoid that exhibits high antioxidant activity and is widely employed in the pharmacological industries. However, the application of fisetin is limited due to its low water solubility. In this study, glycoside derivatives of fisetin were synthesized by an enzymatic reaction using cyclodextrin glycosyltransferase (CGTase) from Paenibacillus sp. RB01 in order to improve the water solubility of fisetin. Under optimal conditions, CGTase was able to convert more than 400 mg/L of fisetin to its glycoside derivatives, which is significantly higher than the previous biosynthesis using engineered E. coli. Product characterization by HPLC and LC-MS/MS revealed that the transglycosylated products consisted of at least five fisetin glycoside derivatives, including fisetin mono-, di- and triglucosides, as well as their isomers. Enzymatic analysis by glucoamylase and α-glucosidase showed that these fisetin glycosides were formed by α-1,4-glycosidic linkages. Molecular docking demonstrated that there are two possible binding modes of fisetin in the enzyme active site containing CGTase-glysosyl intermediate, in which O7 and O4' atoms of fisetin positioned close to the C1 of glycoside donor, corresponding to the isomers of the obtained fisetin monoglucosides. In addition, the water solubility and the antioxidant activity of the fisetin monoglucosides were tested. It was found that their water solubility was increased at least 800 times when compared to that of their parent molecule while still maintaining the antioxidant activity. This study revealed the potential application of CGTase to improve the solubility of flavonoids.


Subject(s)
Flavonoids , Glycosides , Paenibacillus , Antioxidants/chemistry , Antioxidants/metabolism , Chromatography, Liquid , Escherichia coli , Flavonoids/biosynthesis , Flavonoids/chemistry , Flavonoids/metabolism , Glycosides/biosynthesis , Glycosides/chemistry , Glycosides/metabolism , Molecular Docking Simulation , Paenibacillus/metabolism , Tandem Mass Spectrometry , Water/metabolism , Solubility
20.
J Integr Plant Biol ; 64(7): 1325-1338, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35485227

ABSTRACT

Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean. CRISPR-Cas9-induced Gmpin1abc and Gmpin1bc multiple mutants displayed a compact architecture with a smaller petiole angle than wild-type plants. GmPIN1 transcripts and auxin were distributed asymmetrically in the petiole base, with high levels of GmPIN1a/c transcript and auxin in the lower cells, which resulted in asymmetric cell expansion. By contrast, the (iso)flavonoid content was greater in the upper petiole cells than in the lower cells. Our results suggest that (iso)flavonoids inhibit GmPIN1a/c expression to regulate the petiole angle. Overall, our study demonstrates that a signal cascade that integrates (iso)flavonoid biosynthesis, GmPIN1a/c expression, auxin accumulation, and cell expansion in an asymmetric manner creates a desirable petiole curvature in soybean. This study provides a genetic resource for improving soybean plant architecture.


Subject(s)
Glycine max , Indoleacetic Acids , Membrane Transport Proteins , Plant Leaves , Plant Proteins , Flavonoids/biosynthesis , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plant Proteins/genetics , Plants, Genetically Modified , Glycine max/anatomy & histology , Glycine max/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...