Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Agric Food Chem ; 65(7): 1320-1327, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28135082

ABSTRACT

Elymus natans, a perennial gramineous grass, plays an important role in animal husbandry and environmental sustenance in the Qinghai-Tibet plateau as a result of its high forage quality and good adaptability to the local environment. A bioassay showed that the extracts of green grasses of E. natans (GG) exhibited stronger phytotoxic activities than withered grasses (WG) against crops and grasses. In view of the secondary metabolites, which may be responsible for the resistance of the plant, the chemical components of GG were investigated. The flavone tricin, E1, and 10 flavonolignans, E2-E11, including three new flavonolignans, E2, E10, and E11, were isolated and identified. As far as we know, this is the first report on the chemical constitutions of the plant until now. The contents of compounds E1 and E4-E7 in GG were significantly higher than those in WG in high-performance liquid chromatography analysis, and they also showed observably phytotoxic activities against lettuce and Festuca arundinacea.


Subject(s)
Elymus/chemistry , Flavonolignans/toxicity , Plant Extracts/toxicity , Animals , Elymus/toxicity , Festuca/drug effects , Flavonolignans/analysis , Flavonolignans/isolation & purification , Lactuca/drug effects , Plant Extracts/analysis , Plant Extracts/isolation & purification , Poaceae/drug effects
2.
Curr Med Chem ; 23(34): 3925-3950, 2016.
Article in English | MEDLINE | ID: mdl-27557939

ABSTRACT

BACKGROUND: The generic name "flavonolignan" was created in 1968 for a relatively small class of naturally occurring hybrid molecules biogenetically originated from ubiquitous flavonoids and lignans (phenylpropanoids). The first group of flavonolignans was extracted from Silybum marianum that has long been used for hepatoprotection. Recently, the medicinal merit of flavonolignans has been extended to the prostate cancer management. METHODS: Systematic interpretation and summarization of the relevant literature. RESULTS: Over forty naturally occurring flavonolignans have so far been obtained from various plants. Certain flavonolignans have been demonstrated by in vitro cell-based and in vivo animal-based experiments, and human clinical studies i) to possess effective chemopreventive function against various tumor promoters; ii) to show the anti-angiogenic efficacy; iii) to have potential in treating prostate cancer; iv) to sensitize prostate tumors to chemotherapeutic agents through down-regulation of P-glycoprotein and other mechanisms; and v) to be used by prostate cancer patients to protect or treat the hepatotoxicity caused by several chemotherapies. Certain flavonolignans can synergize with well-established chemotherapeutic agents for prostate cancer. CONCLUSION: This review provides a systematic and in-depth overview of the promise and potential of flavonolignans in prostate cancer management, which covers their chemopreventive effect, chemotherapeutic treatment, mechanisms of actions, synthetic derivatives, structure-activity relationships, and the difference in inhibiting prostate cancer cell proliferation between certain flavonoligans and their respective flavonoid counterpart. This summarization aims to provide valuable insights into further and rational development of flavonolignans for prostate cancer management by interpreting the data reported in the literature.


Subject(s)
Flavonolignans/therapeutic use , Prostatic Neoplasms/drug therapy , Apoptosis , Flavonolignans/chemistry , Flavonolignans/metabolism , Flavonolignans/toxicity , Humans , Male , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Prostatic Neoplasms/pathology , Silybin , Silymarin/chemistry , Silymarin/therapeutic use , Silymarin/toxicity , Structure-Activity Relationship
3.
Chembiochem ; 16(17): 2507-12, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26360521

ABSTRACT

HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.


Subject(s)
Flavonoids/chemistry , Flavonolignans/chemistry , HIV Integrase Inhibitors/chemistry , HIV Integrase/chemistry , HIV-1/physiology , Allosteric Regulation , Binding Sites , Cell Line , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonolignans/metabolism , Flavonolignans/toxicity , HIV Integrase/metabolism , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Morus/chemistry , Morus/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Virus Replication/drug effects
4.
Bioorg Med Chem Lett ; 23(20): 5511-4, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24018191

ABSTRACT

Based on the Wnt inhibitors as potential targets in the development of anticancer agents, natural compounds were evaluated for ß-catenin-mediated transcriptional activity. A natural lignan hydnocarpin isolated from Lonicera japonica was considered a potential inhibitor for Wnt/ß-catenin signalings. The anti-proliferative activity of hydnocarpin was also found to be associated with the suppression of Wnt/ß-catenin-mediated signaling pathway in human colon cancer cells. These data suggest that hydnocarpin might be a novel Wnt inhibitor and has a potential of signaling regulator in ß-catenin-mediated signaling pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Flavonolignans/chemistry , Lignans/chemistry , Wnt Proteins/metabolism , beta Catenin/metabolism , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Axin Protein/antagonists & inhibitors , Axin Protein/genetics , Axin Protein/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Flavonolignans/isolation & purification , Flavonolignans/toxicity , Humans , Lonicera/chemistry , Lonicera/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Wnt Signaling Pathway/drug effects
5.
Res Vet Sci ; 91(3): 426-33, 2011 Dec.
Article in English | MEDLINE | ID: mdl-20971486

ABSTRACT

Ivermectin, the antiparasitic drug from the macrocyclic lactones class raises attention due to its high efficiency against nematodes and arthropods and very specific toxic and side effects that it may produce in host. Dominant clinical symptoms of adverse effects and toxicity of ivermectin in animals are tremor, ataxia, CNS depression and coma which often results in mortality. In our study increasing intravenous doses of ivermectin, (6 or more times higher than therapeutic dose: 1.25, 2.5, 3.75, 5.0, 6.25 and 7.5 mg/kg), caused dose-dependent disturbance of motor coordination in treated rats. The median effective dose (ED50) that was able to impair the rota-rod performance in rats treated 3 min before testing was 2.52 mg/kg. This effect weakens over time, while in the rats treated 60 min before the rota-rod test, ED50 of ivermectin was 4.21 mg/kg. Whereas, all tested doses of ivermectin did not cause any other clinical symptoms of toxicity. Ivermectin has no effect on the contractions of isolated diaphragm caused by the EFS, which effectively blocked mecamylamine (100 µM) and pancuronium (1 and 2 µM). Effect on motor coordination is the first detectable clinical symptom of ivermectin toxicity and apparently is a result of its central effects.


Subject(s)
Diaphragm/drug effects , Flavonolignans/toxicity , Ivermectin/toxicity , Muscle Contraction/drug effects , Psychomotor Performance/drug effects , Animals , Dose-Response Relationship, Drug , Flavonolignans/administration & dosage , Ganglionic Blockers/pharmacology , Ivermectin/administration & dosage , Male , Mecamylamine/pharmacology , Neuromuscular Nondepolarizing Agents/pharmacology , Pancuronium/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...