Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.148
Filter
1.
Food Chem ; 452: 139546, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744137

ABSTRACT

The purpose of the study was to illustrate the roles of three primary indexes, namely sunlight, ventilation and stirring, in the 'bask in sunlight and dewed at night' technique on the quality of shrimp paste, through a laboratory-scale design. The results showed that changes in the post-ripening fermentation conditions, especially sunlight, was instrumental in the physicochemical properties of the shrimp paste. E-nose and SPME-GC-MS were employed to assess the volatile flavor of post-ripening fermentation. A total of 29 key volatile aroma components played a crucial role in the development of post-ripening flavor in shrimp paste with or without sunlight. Lipidomic analysis revealed that sunlight promoted the oxidative degradation of FA, resulting in the production of a diverse range of flavor compounds that imparted the unique aroma of shrimp paste. The findings of this study will establish a theoretical basic for better control of the post-ripening fermentation of traditional shrimp paste.


Subject(s)
Fermentation , Flavoring Agents , Sunlight , Taste , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Penaeidae/chemistry , Penaeidae/growth & development , Penaeidae/metabolism , Penaeidae/microbiology , Shellfish/analysis , Shellfish/microbiology , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Food Handling
2.
Food Chem ; 452: 139604, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749139

ABSTRACT

This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.


Subject(s)
Alcoholic Beverages , Charcoal , Hydroxides , Potassium Compounds , Alcoholic Beverages/analysis , Charcoal/chemistry , Humans , Hydroxides/chemistry , Potassium Compounds/chemistry , Adsorption , Taste , Waste Products/analysis , Flavoring Agents/chemistry , Edible Grain/chemistry , Odorants/analysis , Risk Factors , Male , Female , Adult , Young Adult , Middle Aged
3.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731439

ABSTRACT

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Subject(s)
Amino Acids , Arachis , Gas Chromatography-Mass Spectrometry , Odorants , Peanut Oil , Amino Acids/analysis , Amino Acids/chemistry , Arachis/chemistry , Odorants/analysis , Peanut Oil/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Flavoring Agents/analysis , Pyrazines/chemistry , Pyrazines/analysis , Solid Phase Microextraction , Taste , Hot Temperature
4.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695891

ABSTRACT

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Subject(s)
Alanine , Asparagine , Maillard Reaction , Pyrazines , Volatile Organic Compounds , Pyrazines/chemistry , Alanine/chemistry , Asparagine/chemistry , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry
5.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700031

ABSTRACT

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Subject(s)
Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
6.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792055

ABSTRACT

The present study aimed to develop low-sodium curing agents for dry-cured meat products. Four low-sodium formulations (SPMA, SPM, SP, and SM) were used for dry-curing meat. The physicochemical properties and flavor of the dry-cured meat were investigated. The presence of Mg2+ ions hindered the penetration of Na+ into the meat. The weight loss, moisture content, and pH of all low-sodium salt groups were lower than those of S. Mg2+ addition increased the water activity (Aw) of SPMA, SPM, and SM. Dry-curing meat with low-sodium salts promoted the production of volatile flavor compounds, with Mg2+ playing a more prominent role. Furthermore, low-sodium salts also promoted protein degradation and increased the content of free amino acids in dry-cured meat, especially in SM. Principal component analysis (PCA) showed that the low-sodium salts containing Mg2+ were conducive to improving the quality of dry-cured meat products. Therefore, low-sodium salts enriched with Mg2+ become a desirable low-sodium curing agent for achieving salt reduction in dry-cured meat products.


Subject(s)
Magnesium , Meat Products , Meat Products/analysis , Magnesium/analysis , Magnesium/chemistry , Animals , Sodium/analysis , Sodium/chemistry , Salts/chemistry , Taste , Flavoring Agents/analysis , Flavoring Agents/chemistry , Hydrogen-Ion Concentration , Amino Acids/analysis , Amino Acids/chemistry , Food Handling/methods
7.
J Agric Food Chem ; 72(20): 11597-11605, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718203

ABSTRACT

The aim of the study was to investigate how smoke-associated flavoring substances behave during storage in Frankfurter-type sausages. The diffusion behavior of seven selected aroma substances in the sausage matrix and the influence of the packaging and the casing were examined over a storage period of 28 days. The sausages were cut into uniformly thick layers at defined time intervals and examined by headspace-solid phase microextraction-gas chromatography-mass spectrometry. In general, three different groups could be distinguished: (1) even distribution over the entire product on the first day after smoking; (2) clear concentration gradient from outside to inside on the first day of storage, which leveled out until day 28 of storage; and (3) a clear concentration gradient that remained present throughout the storage period. In addition, only small effects were found in the distribution of flavorings between two types of packaging, selected casing, or different calibers.


Subject(s)
Flavoring Agents , Food Packaging , Gas Chromatography-Mass Spectrometry , Meat Products , Odorants , Smoke , Food Packaging/instrumentation , Smoke/analysis , Meat Products/analysis , Odorants/analysis , Animals , Flavoring Agents/chemistry , Swine , Solid Phase Microextraction , Volatile Organic Compounds/chemistry , Diffusion , Food Storage
8.
Food Chem ; 451: 139478, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692242

ABSTRACT

The market share of Sichuan pepper oleoresin (SPO) in the flavor industry is increasing steadily; however, its high volatility, low water solubility, and poor stability continue to pose significant challenges to application. The microencapsulation prepared by emulsion embedding and spray drying is considered as an effective technique to solve the above problems. Sodium octenyl succinate starch (OSA starch) and tea polyphenols (TPs) were used to develop OSA-TPs complex as encapsulants for SPO to prepare orally soluble microcapsules. And the optimum doping of TPs was determined. SPO microcapsules have good properties with high encapsulation efficiency up to 88.13 ± 1.48% and high payload up to 41.58 ± 1.86% with low water content and high heat resistance. The binding mechanism of OSA starch with TPs and its regulation mechanism and effect on SPOs were further analyzed and clarified. The binding mechanism between OSA starch and TPs was clarified in further analyses. The OSA-TPs complexes enhanced the rehydration, release in food matrix and storage stability of SPO, and exhibited good sensory immediacy. Flavor-improved mooncakes were successfully developed, achieving the combination of mooncake flavor and SPO flavor. This study provided a valuable way to prepare flavoring microcapsules suitable for the catering industry, opened up the combined application of SPO and bakery ingredients, and was of great practical value and significance for improving the processing quality of flavor foods, driving the development of the SPO industry, and enhancing the national dietary experience.


Subject(s)
Drug Compounding , Flavoring Agents , Plant Extracts , Polyphenols , Starch , Taste , Polyphenols/chemistry , Starch/chemistry , Flavoring Agents/chemistry , Plant Extracts/chemistry , Humans , Tea/chemistry , Capsicum/chemistry , Solubility , Capsules/chemistry , Camellia sinensis/chemistry
9.
Food Chem ; 450: 139517, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38703670

ABSTRACT

The purpose of this study was to investigate the impact of high­oxygen-modified atmospheric packaging (HOMAP) on aroma changes in fresh-cut broccoli during storage and to explore its regulatory mechanisms. The results showed that HOMAP reduced the levels of undesirable aroma substances hexanoic acid, isobutyric acid, cyclopentanone and increased glucosinolate accumulation by inhibiting the expression of arogenate/prephenate dehydratase (ADT), bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase (PAT), thiosulfate/3-mercaptopyruvate Transferase (TST) to reduce the odor of fresh-cut broccoli. HOMAP inhibited the expression of respiratory metabolism related genes 6-phosphate fructokinase 1 (PFK), pyruvate kinase (PK), and NADH-ubiquinone oxidoreductase chain 6 (ND6). In HOMAP group, the low expression of phospholipase C (PLC), phospholipase A1 (PLA1), linoleate 9S-lipoxygenase 1 (LOX1) related to lipid metabolism and the high expression of naringenin 3-dioxygenase (F3H), trans-4-Hydroxycinnamate (C4H), glutaredoxin 3 (GRX3), and thioredoxin 1 (TrX1) in the antioxidant system maintained membrane stability while reducing the occurrence of membrane lipid peroxidation.


Subject(s)
Brassica , Food Packaging , Oxygen , Brassica/chemistry , Brassica/metabolism , Food Packaging/instrumentation , Oxygen/metabolism , Oxygen/analysis , Taste , Odorants/analysis , Plant Proteins/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Storage , Food Preservation/methods
10.
J Agric Food Chem ; 72(19): 11062-11071, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700435

ABSTRACT

Gouda cheese was produced from pasteurized milk and ripened for 30 weeks (PM-G). By application of gas chromatography/olfactometry and an aroma extract dilution analysis on the volatiles isolated by extraction/SAFE distillation, 25 odor-active compounds in the flavor dilution (FD) factor range from 16 to 4096 were identified. Butanoic acid, 2- and 3-methylbutanoic acid, and acetic acid showed the highest FD factors, and 2-phenylethanol, δ-decalactone, and δ-dodecalactone were most odor-active in the neutral-basic fraction. Quantitations by stable isotope dilution assays followed by a calculation of odor activity values (OAVs) revealed acetic acid, 3-methylbutanoic acid, butanoic acid, and butane-2,3-dione with the highest OAVs. Finally, an aroma recombinate prepared based on the quantitative data well agreed with the aroma profile of the PM-G. In Gouda cheese produced from raw (nonpasteurized) milk (RM-G), qualitatively the same set of odor-active compounds was identified. However, higher OAVs of butanoic acid, hexanoic acid, and their corresponding ethyl esters were found. On the other hand, in the PM-G, higher OAVs for 3-methylbutanoic acid, 3-methylbutanol, 3-methylbutanal, and butane-2,3-dione were determined. The different rankings of these key aroma compounds clearly reflect the aroma differences of the two Gouda-type cheeses. A higher activity of lipase in the RM-G and higher amounts of free l-leucine in PM-G on the other side were responsible for the differences in the concentrations of some key aroma compounds.


Subject(s)
Cheese , Milk , Odorants , Olfactometry , Pasteurization , Volatile Organic Compounds , Cheese/analysis , Milk/chemistry , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Animals , Flavoring Agents/chemistry , Cattle , Gas Chromatography-Mass Spectrometry , Humans , Taste
11.
Sci Rep ; 14(1): 9591, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719814

ABSTRACT

Vaping involves the heating of chemical solutions (e-liquids) to high temperatures prior to lung inhalation. A risk exists that these chemicals undergo thermal decomposition to new chemical entities, the composition and health implications of which are largely unknown. To address this concern, a graph-convolutional neural network (NN) model was used to predict pyrolysis reactivity of 180 e-liquid chemical flavours. The output of this supervised machine learning approach was a dataset of probability ranked pyrolysis transformations and their associated 7307 products. To refine this dataset, the molecular weight of each NN predicted product was automatically correlated with experimental mass spectrometry (MS) fragmentation data for each flavour chemical. This blending of deep learning methods with experimental MS data identified 1169 molecular weight matches that prioritized these compounds for further analysis. The average number of discrete matches per flavour between NN predictions and MS fragmentation was 6.4 with 92.8% of flavours having at least one match. Globally harmonized system classifications for NN/MS matches were extracted from PubChem, revealing that 127 acute toxic, 153 health hazard and 225 irritant classifications were predicted. This approach may reveal the longer-term health risks of vaping in advance of clinical diseases emerging in the general population.


Subject(s)
Flavoring Agents , Neural Networks, Computer , Pyrolysis , Vaping , Vaping/adverse effects , Flavoring Agents/chemistry , Flavoring Agents/analysis , Humans , Electronic Nicotine Delivery Systems
12.
Food Chem ; 452: 139524, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703742

ABSTRACT

Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Oryza , Taste , Humans , Odorants/analysis , Oryza/chemistry , Oryza/metabolism , Flavoring Agents/chemistry , Flavoring Agents/analysis , Adult , Female , Male , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Young Adult , Poaceae/chemistry , Poaceae/metabolism , East Asian People
13.
Food Chem ; 452: 139420, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705118

ABSTRACT

Molecular mechanisms underlying the aging of Chinese Baijiu remained elusive. This study proposed the self-assembly behavior of amphiphilic molecules dominated by hydrogen bonds in Chinese Baijiu for the first time. The self-assembly degree of amphiphilic clusters gradually intensifies with the prolonged storage time of Baijiu, comprehensively characterized at both micro and macro levels. The results indicated that the blue-shift of the Raman hydrogen bond vibrational peak (about 11 cm-1 and 7 cm-1, respectively), the increase in viscosity (5.71% and 2.22%, respectively), and the rise in dielectric constant (95.63% and 94.99%, respectively) during the 17-year cellaring process of Strong-flavor Baijiu and Jiang-flavor Baijiu were consistent with the evolutionary trends observed in molecular dynamics simulations. The essential driving factors of cluster structure alteration of amphiphilic aroma substances in Chinese Baijiu during cellaring were demonstrated from molecular level. This study provided a research approach to comprehending the aging mechanism of Chinese Baijiu from the micro level.


Subject(s)
Hydrogen Bonding , Viscosity , Molecular Dynamics Simulation , Spectrum Analysis, Raman , Odorants/analysis , Flavoring Agents/chemistry , Surface-Active Agents/chemistry
14.
Food Chem ; 452: 139584, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735110

ABSTRACT

Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.


Subject(s)
Fruit , Metabolomics , Rosa , Taste , Rosa/chemistry , Rosa/metabolism , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Tandem Mass Spectrometry , Flavonoids/analysis , Flavonoids/metabolism , Humans , Hydroxybenzoates/analysis , Hydroxybenzoates/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism
15.
ACS Sens ; 9(4): 1820-1830, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38604805

ABSTRACT

Umami substances play a significant role in the evaluation of food quality, and their synergistic enhancement is of great importance in improving and intensifying food flavors and tastes. Current biosensors available for umami detection still confront challenges in simultaneous quantification of multiple umami substances and umami intensities. In this study, an innovative dual-channel magnetic relaxation switching taste biosensor (D-MRSTB) was developed for the quantitative detection of representative umami substances. The multienzyme signal of D-MRSTB specifically catalyzes the umami substances of interest to generate hydrogen peroxide (H2O2), which is then used to oxidate Fe2+ to Fe3+. Such a valence-state transition of paramagnetic ions was utilized as a magnetic relaxation signaling switch to influence the transverse magnetic relaxation time (T2) within the reaction milieu, thus achieving simultaneous detection of monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP). The biosensor showed good linearity (R2 > 0.99) in the concentration range of 50-1000 and 10-1000 µmol/L, with limits of detection (LOD) of 0.61 and 0.09 µmol/L for MSG and IMP, respectively. Furthermore, the biosensor accurately characterized the synergistic effect of the mixed solution of IMP and MSG, where ΔT2 showed a good linear relationship with the equivalent umami concentration (EUC) of the mixed solution (R2 = 0.998). Moreover, the D-MRSTB successfully achieved the quantitative detection of umami compounds in real samples. This sensing technology provides a powerful tool for achieving the detection of synergistic enhancement among umami compounds and demonstrates its potential for application in the food industry.


Subject(s)
Biosensing Techniques , Sodium Glutamate , Taste , Biosensing Techniques/methods , Sodium Glutamate/chemistry , Inosine Monophosphate/analysis , Inosine Monophosphate/chemistry , Limit of Detection , Food Analysis/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Magnetic Phenomena , Flavoring Agents/analysis , Flavoring Agents/chemistry
16.
J Agric Food Chem ; 72(18): 10570-10578, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652024

ABSTRACT

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.


Subject(s)
Maillard Reaction , Pyrazines , Pyrazines/chemistry , Humans , Flavoring Agents/chemistry , Volatile Organic Compounds/chemistry , Peptides/chemistry , Glyoxal/chemistry
17.
Food Chem ; 449: 138970, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38653141

ABSTRACT

Self-fermented oyster homogenates were prepared to investigate core microbes and their correlations with flavor formation mechanisms. Five bacterial and four fungal genera were identified. Correlation analysis showed that Saccharomyces cerevisiae, Kazachstania, and L. pentosus were core species for the flavor of fermented products. Four core microbes were selected for inoculation into homogenates. Twelve key aroma compounds with odor activity values >1 were identified by gas chromatography-mass spectrometry. L. plantarum and S. cerevisiae were beneficial for producing key aroma compounds such as 1-octen-3-ol, (E,Z)-2,6-nonadienal, and heptanal. Fermentation with four microbes resulted in significant increases in contents of Asp, Glu, Lys, inosine monophosphate, and guanosine monophosphate, which provided freshness and sweetness. Fermentation with four microbes resulted in high digestibility, antioxidant abilities, and zinc contents. This study has elucidated the mechanism of flavor formation by microbial action and provides a reference for targeted flavor control in fermented oyster products.


Subject(s)
Bacteria , Crassostrea , Fermentation , Flavoring Agents , Taste , Animals , Crassostrea/microbiology , Crassostrea/metabolism , Crassostrea/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Fungi/metabolism , Fungi/classification , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Shellfish/analysis , Shellfish/microbiology
18.
Food Chem ; 449: 139213, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38631134

ABSTRACT

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Pyrus , Saccharomyces cerevisiae , Sorbitol , Taste , Wine , Wine/analysis , Wine/microbiology , Pyrus/chemistry , Pyrus/microbiology , Pyrus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Sorbitol/metabolism , Sorbitol/analysis , Odorants/analysis , Ethanol/metabolism , Ethanol/analysis , Pichia/metabolism , Metschnikowia/metabolism , Fruit/chemistry , Fruit/microbiology , Fruit/metabolism
19.
Rapid Commun Mass Spectrom ; 38(13): e9748, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38644558

ABSTRACT

RATIONALE: Natural monomer flavors can modify the taste of cigarettes. However, no report was published to establish the quality control method for their chemical compositions. METHODS: In this study, licorice, a traditional natural monomer flavor used in tobacco aroma processing, was selected, and the fingerprint was developed by high-performance liquid chromatography (HPLC). Next, the chemical markers of samples from different places of origin were discovered by multivariate statistical analysis. Then, its chemical constituents were identified by combination of HPLC-Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), direct infusion FT-ICR-MS (DI-FT-ICR-MS), and the technology of isotopic fine structures (IFSs). Moreover, its characteristic constituents were quantitatively analyzed using HPLC. RESULTS: The 14 common peaks were assigned in the fingerprint, and 8 of them were considered as qualitative markers by multivariate statistical analysis. A total of 42 chemical constituents were detected using HPLC-FT-ICR-MS, and 13 of them were unambiguously identified by references. Meanwhile, the elemental compositions of other eight unknown chemical components were decisively determined using IFSs. Subsequently, the contents of five characteristic constituents in 11 batches of samples were determined. CONCLUSIONS: The integration strategy established here can discover and quantify the chemical markers for improving the quality control standard of natural monomer flavor of licorice. It is expected that the strategy will be valuable for further quality control of other natural monomer flavors in Chinese tobacco industry.


Subject(s)
Flavoring Agents , Glycyrrhiza , Mass Spectrometry , Mass Spectrometry/methods , Flavoring Agents/chemistry , Flavoring Agents/analysis , Chromatography, High Pressure Liquid/methods , Glycyrrhiza/chemistry , Tobacco Industry , Nicotiana/chemistry , Fourier Analysis , Quality Control , China , East Asian People
20.
Food Res Int ; 185: 114277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658069

ABSTRACT

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Subject(s)
Emulsions , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Mentha piperita , Plant Oils , Mentha piperita/chemistry , Emulsions/chemistry , Humans , Plant Oils/chemistry , Flavoring Agents/chemistry , Gelatin/chemistry , Cross-Linking Reagents/chemistry , Taste , Hydrogels/chemistry , Electronic Nose , Male , Female , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...