Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.578
Filter
1.
Sci Rep ; 14(1): 10435, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714737

ABSTRACT

During takeoff and landing, birds bounce and grab with their legs and feet. In this paper,the lower limb structure of the bionic bird is designed with reference to the function of jumping and grasping, and the PID algorithm based on the development module of stm32 development board is used to speed control the lower limb driving element, so that the motor and the bishaft steering gear move with the rate change of sine wave. According to the speed of grasping response time and the size of grasping force, the structure of the bionic bird paw is designed. Based on the photosensitive sensor fixed in the geometric center of the foot, the grasping action of the lower limb mechanism is intelligently controlled. Finally, the kinematic verification of the lower limb structure is carried out by ADAMS. Experiments show that the foot structure with four toes and three toes is more conducive to maintaining the stability of the body while realizing the fast grasping function. In addition, it can effectively improve the push-lift ratio of the bionic ornithopter by adjusting the sinusoidal waveform rate of the motor speed.


Subject(s)
Bionics , Birds , Animals , Birds/physiology , Biomechanical Phenomena , Algorithms , Equipment Design , Flight, Animal/physiology
2.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717527

ABSTRACT

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Subject(s)
Columbidae , Flight, Animal , Transcriptome , Animals , Columbidae/genetics , Columbidae/physiology , Flight, Animal/physiology , Transcriptome/genetics , Gene Expression Profiling/methods , Pectoralis Muscles/metabolism , Pectoralis Muscles/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230114, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705173

ABSTRACT

The amount of energy available in a system constrains large-scale patterns of abundance. Here, we test the role of temperature and net primary productivity as drivers of flying insect abundance using a novel continental-scale data source: weather surveillance radar. We use the United States NEXRAD weather radar network to generate a near-daily dataset of insect flight activity across a gradient of temperature and productivity. Insect flight activity was positively correlated with mean annual temperature, explaining 38% of variation across sites. By contrast, net primary productivity did not explain additional variation. Grassland, forest and arid-xeric shrubland biomes differed in their insect flight activity, with the greatest abundance in subtropical and temperate grasslands. The relationship between insect flight abundance and temperature varied across biome types. In arid-xeric shrublands and in forest biomes the temperature-abundance relationship was indirectly (through net primary productivity) or directly (in the form of precipitation) mediated by water availability. These results suggest that temperature constraints on metabolism, development, or flight activity shape macroecological patterns in ectotherm abundance. Assessing the drivers of continental-scale patterns in insect abundance and their variation across biomes is particularly important to predict insect community response to warming conditions. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Flight, Animal , Insecta , Temperature , Animals , Insecta/physiology , Flight, Animal/physiology , United States , Ecosystem , Forests
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230111, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705186

ABSTRACT

Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Acoustics , Wings, Animal , Animals , Bees/physiology , Wings, Animal/physiology , Flight, Animal/physiology , Vocalization, Animal/physiology , Pollination , Sound
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230116, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705191

ABSTRACT

Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Altitude , Animal Migration , Flight, Animal , Insecta , Animals , Flight, Animal/physiology , Europe , Insecta/physiology , Seasons
7.
J R Soc Interface ; 21(214): 20230745, 2024 May.
Article in English | MEDLINE | ID: mdl-38745460

ABSTRACT

Migratory songbirds may navigate by extracting positional information from the geomagnetic field, potentially with a magnetic-particle-based receptor. Previous studies assessed this hypothesis experimentally by exposing birds to a strong but brief magnetic pulse aimed at remagnetizing the particles and evoking an altered behaviour. Critically, such studies were not ideally designed because they lacked an adequate sham treatment controlling for the induced electric field that is fundamentally associated with a magnetic pulse. Consequently, we designed a sham-controlled magnetic-pulse experiment, with sham and treatment pulse producing a similar induced electric field, while limiting the sham magnetic field to a value that is deemed insufficient to remagnetize particles. We tested this novel approach by pulsing more than 250 wild, migrating European robins (Erithacus rubecula) during two autumn seasons. After pulsing them, five traits of free-flight migratory behaviour were observed, but no effect of the pulse could be found. Notably, one of the traits, the migratory motivation of adults, was significantly affected in only one of the two study years. Considering the problem of reproducing experiments with wild animals, we recommend a multi-year approach encompassing large sample size, blinded design and built-in sham control to obtain future insights into the role of magnetic-particle-based magnetoreception in bird navigation.


Subject(s)
Animal Migration , Songbirds , Animals , Songbirds/physiology , Animal Migration/physiology , Magnetic Fields , Flight, Animal/physiology
8.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771864

ABSTRACT

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Subject(s)
Birds , Flight, Animal , Wind , Animals , Flight, Animal/physiology , Birds/physiology , Orientation/physiology , Homing Behavior/physiology , Orientation, Spatial/physiology , Animal Migration/physiology
9.
Bioinspir Biomim ; 19(4)2024 May 21.
Article in English | MEDLINE | ID: mdl-38722361

ABSTRACT

Aiming at the blade flutter of large horizontal-axis wind turbines, a method by utilizing biomimetic corrugation to suppress blade flutter is first proposed. By extracting the dragonfly wing corrugation, the biomimetic corrugation airfoil is constructed, finding that mapping corrugation to the airfoil pressure side has better aerodynamic performance. The influence of corrugation type, amplitudeλ, and intensity on airfoil flutter is analyzed using orthogonal experiment, which determines that theλhas the greatest influence on airfoil flutter. Based on the fluctuation range of the moment coefficient ΔCm, the optimal airfoil flutter suppression effect is obtained when the type is III,λ= 0.6, and intensity is denser (n= 13). The effective corrugation layout area in the chord direction is determined to be the leading edge, and the ΔCmof corrugation airfoil is reduced by 7.405%, compared to the original airfoil. The application of this corrugation to NREL 15 MW wind turbine 3D blades is studied, and the influence of corrugation layout length in the blade span direction on the suppressive effect is analyzed by fluid-structure interaction. It is found that when the layout length is 0.85 R, the safety marginSfreaches a maximum value of 0.3431 Hz, which is increased 2.940%. The results show that the biomimetic corrugated structure proposed in this paper can not only improve the aerodynamic performance by changing the local flow field on the surface of the blade, but also increase the structural stiffness of the blade itself, and achieve the effect of flutter suppression.


Subject(s)
Biomimetics , Equipment Design , Wind , Wings, Animal , Animals , Wings, Animal/physiology , Biomimetics/methods , Odonata/physiology , Biomimetic Materials/chemistry , Flight, Animal/physiology , Power Plants
10.
Nat Commun ; 15(1): 4337, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773081

ABSTRACT

As natural predators, owls fly with astonishing stealth due to the serrated feather morphology that produces advantageous flow characteristics. Traditionally, these serrations are tailored for airfoil edges with simple two-dimensional patterns, limiting their effect on noise reduction while negotiating tradeoffs in aerodynamic performance. Conversely, the intricately structured wings of cicadas have evolved for effective flapping, presenting a potential blueprint for alleviating these aerodynamic limitations. In this study, we formulate a synergistic design strategy that harmonizes noise suppression with aerodynamic efficiency by integrating the geometrical attributes of owl feathers and cicada forewings, culminating in a three-dimensional sinusoidal serration propeller topology that facilitates both silent and efficient flight. Experimental results show that our design yields a reduction in overall sound pressure levels by up to 5.5 dB and an increase in propulsive efficiency by over 20% compared to the current industry benchmark. Computational fluid dynamics simulations validate the efficacy of the bioinspired design in augmenting surface vorticity and suppressing noise generation across various flow regimes. This topology can advance the multifunctionality of aerodynamic surfaces for the development of quieter and more energy-saving aerial vehicles.


Subject(s)
Feathers , Flight, Animal , Hemiptera , Strigiformes , Wings, Animal , Animals , Flight, Animal/physiology , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Hemiptera/physiology , Hemiptera/anatomy & histology , Strigiformes/physiology , Strigiformes/anatomy & histology , Hydrodynamics , Computer Simulation , Biomechanical Phenomena
11.
PLoS One ; 19(5): e0303368, 2024.
Article in English | MEDLINE | ID: mdl-38820349

ABSTRACT

The mechanisms underlying bat and bird activity peaks (attraction) or losses (avoidance) near wind turbines remain unknown. Yet, understanding them would be a major lever to limit the resulting habitat loss and fatalities. Given that bat activity is strongly related to airflows, we hypothesized that airflow disturbances generated leeward (downwind) of operating wind turbines-via the so-called wake effect-make this area less favorable for bats, due to increased flight costs, decreased maneuverability and possibly lower prey abundance. To test this hypothesis, we quantified Pipistrellus pipistrellus activity acoustically at 361 site-nights in western France in June on a longitudinal distance gradient from the wind turbine and on a circular azimuth gradient of wind incidence angle, calculated from the prevailing wind direction of the night. We show that P. pipistrellus avoid the wake area, as less activity was detected leeward of turbines than windward (upwind) at relatively moderate and high wind speeds. Furthermore, we found that P. pipistrellus response to wind turbine (attraction and avoidance) depended on the angle from the wake area. These findings are consistent with the hypothesis that changes in airflows around operating wind turbines can strongly impact the way bats use habitats up to at least 1500 m from the turbines, and thus should prompt the consideration of prevailing winds in wind energy planning. Based on the evidence we present here, we strongly recommend avoiding configurations involving the installation of a turbine between the origin of prevailing winds and important habitats for bats, such as hedgerows, water or woodlands.


Subject(s)
Chiroptera , Wind , Animals , Chiroptera/physiology , Flight, Animal/physiology , Ecosystem , France
12.
Nat Commun ; 15(1): 4208, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806471

ABSTRACT

Birds are represented by 11,000 species and a great variety of body masses. Modular organisation of trait evolution across birds has facilitated simultaneous adaptation of different body regions to divergent ecological requirements. However, the role modularity has played in avian body size evolution, especially small-bodied, rapidly evolving and diverse avian subclades, such as hummingbirds and songbirds, is unknown. Modularity is influenced by the intersection of biomechanical restrictions, adaptation, and developmental controls, making it difficult to uncover the contributions of single factors such as body mass to skeletal organisation. We develop a novel framework to decompose this complexity, assessing factors underlying the modularity of skeletal proportions in fore-limb propelled birds distributed across a range of body masses. We demonstrate that differences in body size across birds triggers a modular reorganisation of flight apparatus proportions consistent with biomechanical expectations. We suggest weakened integration within the wing facilitates radiation in small birds. Our framework is generalisable to other groups and has the capacity to untangle the multi-layered complexity intrinsic to modular evolution.


Subject(s)
Biological Evolution , Birds , Body Size , Flight, Animal , Wings, Animal , Animals , Wings, Animal/anatomy & histology , Birds/anatomy & histology , Birds/physiology , Flight, Animal/physiology , Biomechanical Phenomena
13.
Naturwissenschaften ; 111(3): 29, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713269

ABSTRACT

The vast majority of pterosaurs are characterized by relatively large, elongate heads that are often adorned with large, elaborate crests. Projecting out in front of the body, these large heads and any crests must have had an aerodynamic effect. The working hypothesis of the present study is that these oversized heads were used to control the left-right motions of the body during flight. Using digital models of eight non-pterodactyloids ("rhamphorhyncoids") and ten pterodactyloids, the turning moments associated with the head + neck show a close and consistent correspondence with the rotational inertia of the whole body about a vertical axis in both groups, supporting the idea of a functional relationship. Turning moments come from calculating the lateral area of the head (plus any crests) and determining the associated lift (aerodynamic force) as a function of flight speed, with flight speeds being based on body mass. Rotational inertias were calculated from the three-dimensional mass distribution of the axial body, the limbs, and the flight membranes. The close correlation between turning moment and rotational inertia was used to revise the life restorations of two pterosaurs and to infer relatively lower flight speeds in another two.


Subject(s)
Head , Skull , Animals , Biomechanical Phenomena/physiology , Skull/anatomy & histology , Skull/physiology , Head/anatomy & histology , Head/physiology , Flight, Animal/physiology , Dinosaurs/physiology , Dinosaurs/anatomy & histology , Fossils
14.
PLoS One ; 19(4): e0301999, 2024.
Article in English | MEDLINE | ID: mdl-38635686

ABSTRACT

To study how the nervous system processes visual information, experimenters must record neural activity while delivering visual stimuli in a controlled fashion. In animals with a nearly panoramic field of view, such as flies, precise stimulation of the entire visual field is challenging. We describe a projector-based device for stimulation of the insect visual system under a microscope. The device is based on a bowl-shaped screen that provides a wide and nearly distortion-free field of view. It is compact, cheap, easy to assemble, and easy to operate using the included open-source software for stimulus generation. We validate the virtual reality system technically and demonstrate its capabilities in a series of experiments at two levels: the cellular, by measuring the membrane potential responses of visual interneurons; and the organismal, by recording optomotor and fixation behavior of Drosophila melanogaster in tethered flight. Our experiments reveal the importance of stimulating the visual system of an insect with a wide field of view, and we provide a simple solution to do so.


Subject(s)
Drosophila melanogaster , Visual Fields , Animals , Drosophila melanogaster/physiology , Photic Stimulation , Software , Interneurons , Flight, Animal/physiology , Visual Perception/physiology
15.
Proc Natl Acad Sci U S A ; 121(18): e2317646121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648486

ABSTRACT

Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.


Subject(s)
Altitude , Animal Migration , Seasons , Animals , China , Animal Migration/physiology , Agriculture/methods , Ecosystem , Insecta/physiology , Wind , Flight, Animal/physiology
16.
Nature ; 628(8009): 795-803, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632396

ABSTRACT

Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs1, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.


Subject(s)
Drosophila melanogaster , Flight, Animal , Machine Learning , Wings, Animal , Animals , Female , Biomechanical Phenomena/physiology , Drosophila melanogaster/physiology , Drosophila melanogaster/anatomy & histology , Flight, Animal/physiology , Muscles/physiology , Muscles/anatomy & histology , Neural Networks, Computer , Robotics , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Movement/physiology , Calcium/analysis , Calcium/metabolism
17.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683844

ABSTRACT

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Subject(s)
Cytoskeleton , Drosophila Proteins , Drosophila melanogaster , Muscle Development , RNA-Binding Proteins , Sarcomeres , Animals , Sarcomeres/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Muscle Development/genetics , Cytoskeleton/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Splicing/genetics , Myofibrils/metabolism , Flight, Animal/physiology , Alternative Splicing/genetics , Gene Expression Regulation, Developmental , Muscles/metabolism
18.
Bioinspir Biomim ; 19(4)2024 May 10.
Article in English | MEDLINE | ID: mdl-38663419

ABSTRACT

Recent experiments with gliding raptors reveal a perplexing dichotomy: remarkably resilient gust rejection, but, at the same time, an exceptionally high degree of longitudinal instability. To resolve this incompatibility, a multiple degree of freedom model is developed with minimal requisite complexity to examine the hypothesis that the bird shoulder joint may embed essential stabilizing and preflexive mechanisms for rejecting rapid perturbations while simplifying and reducing control effort. Thus, the formulation herein is centrally premised upon distinct wing pitch and body pitch angles coupled via a Kelvin-Voigt viscoelastic shoulder joint. The model accurately exhibits empirical gust response of an unstable gliding raptor, generates biologically plausible equilibrium configurations, and the viscoelastic shoulder coupling is shown to drastically alleviate the high degree of instability predicted by conventional linear flight dynamics models. In fact, stability analysis of the model predicts a critical system timescale (the time to double amplitude of a pitch divergence mode) that is commensurate within vivomeasured latency of barn owls (Tyto alba). Active gust mitigation is studied by presupposing the owl behaves as an optimal controller. The system is under-actuated and the feedback control law is resolved in the controllable subspace using a Kalman decomposition. Importantly, control-theoretic analysis precisely identifies what discrete gust frequencies may be rapidly and passively rejected versus disturbances requiring feedback control intervention.


Subject(s)
Flight, Animal , Models, Biological , Animals , Flight, Animal/physiology , Biomechanical Phenomena , Wings, Animal/physiology , Viscosity , Raptors/physiology , Elasticity , Biomimetics/methods , Computer Simulation , Strigiformes/physiology , Shoulder Joint/physiology , Shoulder Joint/physiopathology
19.
J Integr Neurosci ; 23(4): 72, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38682219

ABSTRACT

BACKGROUND: Exploring the neural encoding mechanism and decoding of motion state switching during flight can advance our knowledge of avian behavior control and contribute to the development of avian robots. However, limited acquisition equipment and neural signal quality have posed challenges, thus we understand little about the neural mechanisms of avian flight. METHODS: We used chronically implanted micro-electrode arrays to record the local field potentials (LFPs) in the formation reticularis medialis mesencephali (FRM) of pigeons during various motion states in their natural outdoor flight. Subsequently, coherence-based functional connectivity networks under different bands were constructed and the topological features were extracted. Finally, we used a support vector machine model to decode different flight states. RESULTS: Our findings indicate that the gamma band (80-150 Hz) in the FRM exhibits significant power for identifying different states in pigeons. Specifically, the avian brain transmitted flight related information more efficiently during the accelerated take-off or decelerated landing states, compared with the uniform flight and baseline states. Finally, we achieved a best average accuracy of 0.86 using the connectivity features in the 80-150 Hz band and 0.89 using the fused features for state decoding. CONCLUSIONS: Our results open up possibilities for further research into the neural mechanism of avian flight and contribute to the understanding of flight behavior control in birds.


Subject(s)
Columbidae , Flight, Animal , Animals , Columbidae/physiology , Flight, Animal/physiology , Support Vector Machine , Gamma Rhythm/physiology , Midbrain Reticular Formation/physiology , Male , Behavior, Animal/physiology , Mesencephalon/physiology
20.
J R Soc Interface ; 21(213): 20230734, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654630

ABSTRACT

Avian wing morphing allows dynamic, active control of complex flight manoeuvres. Previous linear time-invariant (LTI) models have quantified the effect of varying fixed wing configurations but the time-dependent effects of morphing between different configurations is not well understood. To fill this gap, I implemented a linear parameter-varying (LPV) model for morphing wing gull flight. This approach models the wing joint angles as scheduled parameters and accounts for nonlinear kinematic and gravitational effects while interpolating between LTI models at discrete trim points. With the resulting model, I investigated the longitudinal response associated with various joint extension trajectories. By optimizing the extension trajectory for four independent objectives (speed and pitch angle overshoot, speed rise time and pitch angle settling time), I found that the extension trajectory inherent to the gull wing does not guarantee an optimal response but may provide a sufficient response with a simpler mechanical implementation. Furthermore, the results indicated that gulls likely require extension speed feedback. This morphing LPV model provides insights into underlying control mechanisms, which may allow for avian-like flight in future highly manoeuvrable uncrewed aerial vehicles.


Subject(s)
Flight, Animal , Models, Biological , Wings, Animal , Flight, Animal/physiology , Animals , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Biomechanical Phenomena , Charadriiformes/physiology , Charadriiformes/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...