Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 14795, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908169

ABSTRACT

Addressing the need for novel insect observation and control tools, the Photonic Fence detects and tracks mosquitoes and other flying insects and can apply lethal doses of laser light to them. Previously, we determined lethal exposure levels for a variety of lasers and pulse conditions on anesthetized Anopheles stephensi mosquitoes. In this work, similar studies were performed while the subjects were freely flying within transparent cages two meters from the optical system; a proof-of-principle demonstration of a 30 m system was also performed. From the dose-response curves of mortality data created as a function of various beam diameter, pulse width, and power conditions at visible and near-infrared wavelengths, the visible wavelengths required significantly lower laser exposure than near infrared wavelengths to disable subjects, though near infrared sources remain attractive given their cost and retina safety. The flight behavior of the subjects and the performance of the tracking system were found to have no impact on the mortality outcomes for pulse durations up to 25 ms, which appears to be the ideal duration to minimize required laser power. The results of this study affirm the practicality of using optical approaches to protect people and crops from pestilent flying insects.


Subject(s)
Flight, Animal/radiation effects , Insecta/radiation effects , Lasers , Animals , Dose-Response Relationship, Radiation , Retina/radiation effects
2.
Malar J ; 19(1): 44, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31973756

ABSTRACT

BACKGROUND: With the fight against malaria reportedly stalling there is an urgent demand for alternative and sustainable control measures. As the sterile insect technique (SIT) edges closer to becoming a viable complementary tool in mosquito control, it will be necessary to find standardized techniques of assessing male quality throughout the production system and post-irradiation handling. Flight ability is known to be a direct marker of insect quality. A new version of the reference International Atomic Energy Agency/Food and Agricultural Organization (IAEA/FAO) flight test device (FTD), modified to measure the flight ability and in turn quality of male Anopheles arabiensis within a 2-h period via a series of verification experiments is presented. METHODS: Anopheles arabiensis juveniles were mass reared in a rack and tray system. 7500 male pupae were sexed under a stereomicroscope (2500 per treatment). Stress treatments included irradiation (with 50, 90, 120 or 160 Gy, using a Gammacell 220), chilling (at 0, 4, 8 and 10 °C) and compaction weight (5, 15, 25, and 50 g). Controls did not undergo any stress treatment. Three days post-emergence, adult males were subjected to either chilling or compaction (or were previously irradiated at pupal stage), after which two repeats (100 males) from each treatment and control group were placed in a FTD to measure flight ability. Additionally, one male was caged with 10 virgin females for 4 days to assess mating capacity (five repeats). Survival was monitored daily for a period of 15 days on remaining adults (two repeats). RESULTS: Flight ability results accurately predicted male quality following irradiation, with the first significant difference occurring at an irradiation dose of 90 Gy, a result which was reflected in both survival and insemination rates. A weight of 5 g or more significantly reduced flight ability and insemination rate, with survival appearing less sensitive and not significantly impacted until a weight of 15 g was imposed. Flight ability was significantly reduced after treatments at 4 °C with the insemination rate more sensitive to chilling with survival again less sensitive (8 and 0 °C, respectively). CONCLUSIONS: The reported results conclude that the output of a short flight ability test, adapted from the previously tested Aedes FTD, is an accurate indicator of male mosquito quality and could be a useful tool for the development of the SIT against An. arabiensis.


Subject(s)
Anopheles/physiology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Anopheles/radiation effects , Cold Temperature , Dose-Response Relationship, Radiation , Female , Flight, Animal/radiation effects , Gamma Rays , Malaria/transmission , Male , Mosquito Vectors/radiation effects , Sexual Behavior, Animal/radiation effects , Time Factors
3.
PLoS One ; 13(8): e0202236, 2018.
Article in English | MEDLINE | ID: mdl-30107004

ABSTRACT

The control of Aedes albopictus through Sterile Male Releases requires that the most competitive males be mass-reared and sterilized usually with gamma- or X-ray radiation prior to release. Developing an understanding of the impact of irradiation treatment on flight performance in sterile males is very important because any fitness cost may reduce the efficacy of SIT intervention in the field. Here, we examined the role of irradiation exposure and sugar-feeding on daily flight activity and performance of Ae. albopictus males sterilized during pupal stage with gamma-radiation at 35Gray from a Caesium 137 source. We used a previously developed automated video tracking system to monitor the flight activity of different groups of sterile and control non-sterile males over 24 hours in a flight arena. This monitoring took place under controlled laboratory conditions and we wished to quantify the daily flight activity and to highlight any changes due to radiation treatment and nutritional conditions (starved versus sugar fed). Our experimental evidence demonstrated a characteristic diurnal flight activity with a bimodal pattern regardless of the treatment. Precisely, both irradiated and non-irradiated males exhibited two distinct peaks in flight activity in the morning (6-8 a.m.) and late afternoon (4-6 p.m.). Under changing physiological conditions, irradiated males were generally more active over time and flew longer overall distances than control male populations. These results suggest some internal circadian control of the phase relation to the light-dark cycle, with evidence for modification of flight performance by nutritional status. The fact that daily activity patterns are alike in irradiated and control Ae. albopictus males, and that sterile males could display higher flight performance, is in contrast with the hypothesis that irradiation treatment appears to reduce the fitness of male mosquitoes. We discuss the implications of the present study in sterile-male release programs against Ae. albopictus.


Subject(s)
Aedes/physiology , Aedes/radiation effects , Flight, Animal/radiation effects , Mosquito Control/methods , Mosquito Vectors/physiology , Mosquito Vectors/radiation effects , Aedes/virology , Animals , Cesium Radioisotopes , Circadian Rhythm , Dose-Response Relationship, Radiation , Fertility/radiation effects , Gamma Rays , Humans , Male , Mosquito Vectors/virology , Pupa/radiation effects
4.
Curr Biol ; 28(13): 2160-2166.e5, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29937347

ABSTRACT

Like many birds [1], numerous species of nocturnal moths undertake spectacular long-distance migrations at night [2]. Each spring, billions of Bogong moths (Agrotis infusa) escape hot conditions in different regions of southeast Australia by making a highly directed migration of over 1,000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer [3, 4]. How moths determine the direction of inherited migratory trajectories at night and locate their destination (i.e., navigate) is currently unknown [5-7]. Here we show that Bogong moths can sense the Earth's magnetic field and use it in conjunction with visual landmarks to steer migratory flight behavior. By tethering migrating moths in an outdoor flight simulator [8], we found that their flight direction turned predictably when dominant visual landmarks and a natural Earth-strength magnetic field were turned together, but that the moths became disoriented within a few minutes when these cues were set in conflict. We thus conclude that Bogong moths, like nocturnally migrating birds [9], can use a magnetic sense. Our results represent the first reliable demonstration of the use of the Earth's magnetic field to steer flight behavior in a nocturnal migratory insect.


Subject(s)
Flight, Animal/physiology , Magnetic Fields , Moths/physiology , Orientation, Spatial , Animal Migration/physiology , Animal Migration/radiation effects , Animals , Australia , Earth, Planet , Flight, Animal/radiation effects , Moths/radiation effects , Orientation, Spatial/physiology , Orientation, Spatial/radiation effects
5.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 434-440, 2018 10.
Article in English | MEDLINE | ID: mdl-29944198

ABSTRACT

Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.


Subject(s)
Color , Flight, Animal/radiation effects , Insecta/physiology , Phototaxis , Animals , Behavior, Animal/radiation effects , Light , Lighting
6.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 506-510, 2018 10.
Article in English | MEDLINE | ID: mdl-29808964

ABSTRACT

Progressive illumination at night poses an increasing threat to species worldwide. Light at night is particularly problematic for bats as most species are nocturnal and often cross relatively large distances when commuting between roosts and foraging grounds. Earlier studies have shown that illumination of linear structures in the landscape disturbs commuting bats, and that the response of bats to light may strongly depend on the light spectrum. Here, we studied the impact of white, green, and red light on commuting Daubenton's bats (Myotis daubentonii). We used a unique location where commuting bats cross a road by flying through two identical, parallel culverts underneath. We illuminated the culverts with white, red, and green light, with an intensity of 5 lux at the water surface. Bats had to choose between the two culverts, each with a different lighting condition every night. We presented all paired combinations of white, green, and red light and dark control in a factorial design. Contrary to our expectations, the number of bat passes through a culvert was unaffected by the presence of light. Furthermore, bats did not show any preference for light color. These results show that the response of commuting Daubenton's bats to different colors of light at night with a realistic intensity may be limited when passing through culverts.


Subject(s)
Chiroptera/physiology , Color , Flight, Animal/radiation effects , Lighting/adverse effects , Animals , Choice Behavior/radiation effects , Environmental Exposure , Light/adverse effects , Netherlands
7.
PLoS One ; 13(2): e0192865, 2018.
Article in English | MEDLINE | ID: mdl-29432476

ABSTRACT

Infrared (IR) receptors are rare in insects and have only been found in the small group of so-called pyrophilous insects, which approach forest fires. In previous work the morphology of the IR receptors and the physiology of the inherent sensory cells have been investigated. It was shown that receptors are located on the thorax and the abdomen respectively and show an astounding diversity with respect to structure and the presumed transduction mechanism. What is completely missing, however, is any behavioral evidence for the function of the IR receptors in pyrophilous insects. Here we describe the responses of the Australian "firebeetle", Merimna atrata to IR radiation. Beetles in a restrained flight were laterally stimulated with IR radiation of an intensity 20% above a previously determined electrophysiological threshold of the IR organs (40 mW/cm2). After exposure, beetles always showed an avoidance response away from the IR source. Reversible ablation experiments showed that the abdominal IR receptors are essential for the observed behavior. Tests with weaker IR radiation (11.4 mW/cm2) also induced avoidance reactions in some beetles pointing to a lower threshold. In contrast, beetles were never attracted by the IR source. Our results suggest that the IR receptors in Merimna atrata serve as an early warning system preventing an accidental landing on a hot surface. We also tested if another fire specific stimulus, the view of a large smoke plume, influenced the flight. However, due to an unexpected insensitivity of the flying beetles to most visual stimuli results were ambiguous.


Subject(s)
Coleoptera/physiology , Coleoptera/radiation effects , Flight, Animal/radiation effects , Infrared Rays , Abdomen/physiology , Animals , Avoidance Learning , Electrophysiological Phenomena , Environmental Monitoring/methods , Female , Hot Temperature , Male , Photic Stimulation , Sensory Receptor Cells/physiology , Sensory Receptor Cells/radiation effects , Smoke , Western Australia , Wildfires
8.
PLoS Negl Trop Dis ; 11(9): e0005881, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28892483

ABSTRACT

The capacity of the released sterile males to survive, disperse, compete with wild males and inseminate wild females is an essential prerequisite to be evaluated in any area-wide integrated pest management (AW-IPM) programs including a sterile insect release method. Adequate quality control tests supported by standardized procedures need to be developed to measure these parameters and to identify and correct potential inappropriate rearing or handling methods affecting the overall male quality. In this study, we report results on the creation and validation of the first quality control devices designed to infer the survival and mating capacity of radio-sterilized Aedes albopictus males through the observation of their flight capacity under restricted conditions (flight organ device) and after stress treatment (aspirator device). Results obtained consistently indicate comparable flight capacity and quality parameters between untreated and 35 Gy irradiated males while a negative impact was observed with higher radiation doses at all observation time performed. The male flight capacity registered with the proposed quality control devices can be successfully employed, with different predictive capacities and response time, to infer the adult male quality. These simple and cost-effective tools provide a valuable method to detect and amend potentially sub-standard procedures in the sterile male production line and hence contribute to maintaining optimal quality and field performance of the mosquitoes being released.


Subject(s)
Aedes/physiology , Pest Control, Biological/standards , Aedes/radiation effects , Animals , Flight, Animal/radiation effects , Male , Pest Control, Biological/economics , Pest Control, Biological/methods , Pupa/radiation effects , Quality Control , Sexual Behavior, Animal
9.
Parasit Vectors ; 10(1): 255, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28619089

ABSTRACT

BACKGROUND: Host-seeking behaviours in anopheline mosquitoes are time-of-day specific, with a greater propensity for nocturnal biting. We investigated how a short exposure to light presented during the night or late day can inhibit biting activity and modulate flight activity behaviour. RESULTS: Anopheles gambiae (s.s.), maintained on a 12:12 LD cycle, were exposed transiently to white light for 10-min at the onset of night and the proportion taking a blood meal in a human biting assay was recorded every 2 h over an 8-h duration. The pulse significantly reduced biting propensity in mosquitoes 2 h following administration, in some trials for 4 h, and with no differences detected after 6 h. Conversely, biting levels were significantly elevated when mosquitoes were exposed to a dark treatment during the late day, suggesting that light suppresses biting behaviour even during the late daytime. These data reveal a potent effect of a discrete light pulse on biting behaviour that is both immediate and sustained. We expanded this approach to develop a method to reduce biting propensity throughout the night by exposing mosquitoes to a series of 6- or 10-min pulses presented every 2 h. We reveal both an immediate suppressive effect of light during the exposure period and 2 h after the pulse. This response was found to be effective during most times of the night: however, differential responses that were time-of-day specific suggest an underlying circadian property of the mosquito physiology that results in an altered treatment efficacy. Finally, we examined the immediate and sustained effects of light on mosquito flight activity behaviour following exposure to a 30-min pulse, and observed activity suppression during early night, and elevated activity during the late night. CONCLUSIONS: As mosquitoes and malaria parasites are becoming increasingly resistant to insecticide and drug treatment respectively, there is a necessity for the development of innovative control strategies beyond insecticide-treated nets (ITNs) and residual spraying. These data reveal the potent inhibitory effects of light exposure and the utility of multiple photic pulses presented at intervals during the night/late daytime, may prove to be an effective tool that complements established control methods.


Subject(s)
Anopheles/radiation effects , Host-Seeking Behavior/radiation effects , Insect Bites and Stings/prevention & control , Insect Vectors/radiation effects , Malaria/transmission , Mosquito Control/methods , Animals , Anopheles/physiology , Female , Flight, Animal/radiation effects , Insect Vectors/physiology , Light , Malaria/prevention & control , Time Factors
10.
Arch Insect Biochem Physiol ; 92(3): 192-209, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27079560

ABSTRACT

The sterile insect technique (SIT) was developed to eradicate the new world screwworm from the southern United States and Mexico, and became a component of many area-wide integrated pest management programs, particularly useful in managing tephritid fruit flies. SIT is based on the idea of rearing and sterilizing male pests, originally by ionizing radiation, and then releasing into field, where they compete for and mate with wild females. Mating with sterile males leads to reduced fecundity to lower pest populations. There are concerns with the use and distribution of radioisotopes for SIT programs, which have led to developing X-ray irradiation protocols to sterilize insects. We considered the possibility that X-ray irradiation exerts sublethal impacts aside form sterilizing insects. Such effects may not be directly observable, which led us to the hypothesis that X-ray irradiation in one life stage creates alterations in biological fitness and protein expression in the subsequent stage. We tested our hypothesis by irradiating larvae of Bactrocera dorsalis. There are two major points. One, exposing larvae to X-ray treatments led to reduced adult emergence, fecundity, fertility, and flight capacity from the corresponding pupae and emerged adults. Two, the X-ray treatments led to substantial expression changes in 27 pupal proteins. We assorted the 67 spots representing these proteins into three groups, metabolism, development, and structure. Our interpretation is these X-ray induced changes in biological performance and protein expression indicate their adult counterparts may be disabled in their abilities to successfully compete for and mate wild females in native habitats.


Subject(s)
Gene Expression Regulation/radiation effects , Insect Proteins/genetics , Tephritidae/genetics , Tephritidae/radiation effects , Animals , Electrophoresis, Gel, Two-Dimensional , Fertility/radiation effects , Flight, Animal/radiation effects , Genetic Fitness/radiation effects , Insect Proteins/metabolism , Larva/growth & development , Larva/metabolism , Larva/radiation effects , Pupa/growth & development , Pupa/metabolism , Pupa/radiation effects , Sequence Analysis, DNA , Tephritidae/growth & development , Tephritidae/metabolism
11.
Biol Lett ; 12(4)2016 Apr.
Article in English | MEDLINE | ID: mdl-27072407

ABSTRACT

The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks.


Subject(s)
Behavior, Animal/radiation effects , Light , Moths/radiation effects , Animals , Cities , Female , Flight, Animal/radiation effects , France , Lighting/adverse effects , Male , Switzerland
12.
Pest Manag Sci ; 71(1): 24-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24729307

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) is an alternative, environmentally friendly method for controlling insect pests. In the Lepidoptera, a low dose of gamma irradiation causes inherited sterility (SIT-IS), leading to full sterility in females but only partial sterility in males, which successfully compete with wild males for mates. This study examined the effect of a low radiation dose (150 Gy) on the fitness parameters of male and female Lobesia botrana, a polyphagous and major pest of vineyards found in the Middle East, Europe and the Americas. RESULTS: Irradiation of the pupae did not affect their emergence rate, flight ability out of a cylinder, male response to sex pheromone in a field cage or male or female mating success. A major effect of irradiation was observed in the significantly reduced number of irradiated females' offspring reaching pupation, and as a consequence a limited number of F2 offspring. The effect of irradiation on male partial sterility (also called inherited sterility) was reflected in the male-biased sex ratio of F1 offspring of irradiated males, the reduced number of F1 offspring and the very low number of F2 descendants. CONCLUSION: This study demonstrates the feasibility of controlling L. botrana using SIT-IS. Adding this method to the arsenal of environmentally friendly tools to control this pest may assist in further reducing the use of insecticides on edible crops.


Subject(s)
Moths/radiation effects , Pest Control, Biological , Animals , Female , Flight, Animal/radiation effects , Longevity/radiation effects , Male , Metamorphosis, Biological/radiation effects , Oviposition/radiation effects , Sexual Behavior, Animal/radiation effects
13.
J Econ Entomol ; 107(3): 1172-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25026679

ABSTRACT

The sterile insect technique has been routinely used to eradicate fruit fly Bactrocera tryoni (Froggatt) incursions. This study considers whether fly quality in a mass-rearing facility can be improved by reducing irradiation doses, without sacrificing reproductive sterility. Pupae were exposed to one of five target irradiation dose ranges: 0, 40-45, 50-55, 60-65, and 70-75 Gy. Pupae were then assessed using routine quality control measures: flight ability, sex ratio, longevity under nutritional stress, emergence, and reproductive sterility. Irradiation did not have a significant effect on flight ability or sex ratio tests. Longevity under nutritional stress was significantly increased at 70-75 Gy, but no other doses differed from 0 Gy. Emergence was slightly reduced in the 50-55, 60-65, and 70-75 Gy treatments, but 40-45 Gy treatments did not differ from 0 Gy, though confounding temporal factors complicate interpretation. Reproductive sterility remained acceptable (> 99.5%) for all doses--40-45 Gy (99.78%), 50-55 Gy (100%), 60-65 Gy (100%), and 70-75 Gy (99.99%). We recommend that B. tryoni used in sterile insect technique releases be irradiated at a target dose of 50-55 Gy, providing improved quality and undiminished sterility in comparison with the current 70-75 Gy standard while also providing a substantial buffer against risk of under dosing.


Subject(s)
Pest Control, Biological/methods , Tephritidae/radiation effects , Animals , Dose-Response Relationship, Radiation , Female , Flight, Animal/radiation effects , Longevity/radiation effects , Male , New South Wales , Pupa/growth & development , Pupa/physiology , Pupa/radiation effects , Quality Control , Reproduction/radiation effects , Sex Ratio , Tephritidae/growth & development , Tephritidae/physiology
14.
Naturwissenschaften ; 101(5): 385-95, 2014 May.
Article in English | MEDLINE | ID: mdl-24671223

ABSTRACT

Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.


Subject(s)
Aquatic Organisms/radiation effects , Flight, Animal/radiation effects , Insecta/radiation effects , Light , Animals , Cues
15.
Article in English | MEDLINE | ID: mdl-23848712

ABSTRACT

The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.


Subject(s)
Animal Migration/physiology , Animal Migration/radiation effects , Birds/physiology , Flight, Animal/physiology , Models, Biological , Orientation/physiology , Orientation/radiation effects , Animals , Computer Simulation , Flight, Animal/radiation effects , Magnetic Fields , Quantum Theory
16.
Pak J Biol Sci ; 16(23): 1730-6, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24506040

ABSTRACT

The sterile insect technique is one of the most methods of fruit flies control. Flight ability of the Peach Fruit Fly (PFF), Bactrocera zonata was conducted under laboratory conditions to evaluate the effect of gamma radiation on flight ability of PFF, B. zonata. Pupae of PFF, B. zonata, were irradiated in an air atmosphere at 24, 48 and 72 h before adult emergence with three doses of Cobalt 60 (10, 30 and 50 Gray) and tested against 6, 12 and 20 cm tube heights. Flight Ability Percentage (FAP) of PFF was carried out for newly emerged flies and six-days-old of adult flies. FAP of newly emerged-and six- days-old of adult flies was inversely proportional to the tube heights, doses of gamma rays and with progress the age of flies. The FAP value was significantly higher at 6 cm tube height, followed by 12 cm then 20 cm tube heights for all tested levels of gamma rays, respectively.


Subject(s)
Flight, Animal/radiation effects , Gamma Rays , Insect Control/methods , Tephritidae/radiation effects , Animals , Dose-Response Relationship, Radiation , Fertility/radiation effects , Pupa/growth & development , Pupa/radiation effects , Tephritidae/growth & development , Time Factors
17.
J Econ Entomol ; 104(4): 1301-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21882696

ABSTRACT

Light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is the target of the sterile insect technique, but reduced moth fitness from irradiation lowers the effective overflooding ratio of sterile to wild moths. New measures of insect quality are being sought to improve field performance of irradiated insects, thus improving the cost effectiveness of this technique. Male pupae were irradiated at intervals between 0 and 300 Gy, and adult flight success was assessed in a wind tunnel equipped with flight track recording software. A dose response was evident with reduced successful search behaviors at higher irradiation doses. Irradiation at 250 Gy reduced arrival success to 49% of untreated controls, during 2-min assays. Mark-release-recapture of males irradiated at 250 Gy indicated reduced male moth recapture in hedgerows (75% of control values of 7.22% +/- 1.20 [SEM] males recaptured) and in vineyards (78% of control values 10.5% +/- 1.66% [SEM] recaptured). Males dispersed similar distances in both habitats, and overflooding ratios dropped off rapidly from the release point in both landscapes. Transects of traps with central releases proved to be an efficient method for measuring the quality of released males. Relative field performance of moths was greater than suggested by wind tunnel performance, which could be due to time differences between the two assays, two-minute wind tunnel tests compared with days in the field treatments. Release strategies involving ground releases should consider the effect of limited postrelease dispersal. Aerial release could solve this problem and warrants investigation.


Subject(s)
Flight, Animal/radiation effects , Moths/radiation effects , Pest Control, Biological , Animals , Male , Vitis
18.
J Econ Entomol ; 102(5): 1791-800, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19886443

ABSTRACT

The current study is an important step toward calibrating, validating, and improving irradiation methods used for Bactrocera tryoni (Froggatt) sterile insect technique (SIT). We used routine International Atomic Energy Agency/U.S. Department of Agriculture/Food and Agriculture Organization quality control tests assessing percentage of emergence, flight ability, sex ratio, mortality under stress, reproductive sterility, and sexual competitiveness, as well as a nonstandard test of longevity under nutritional stress to assess the impact of a range of target irradiation doses (60, 65, 70, 75, and 80 Gy) on the product quality of mass reared B. tryoni used in SIT. Sterility induction remained adequate (>99.5%) for sterile male-fertile female crosses, and 100% sterility was achieved in fertile male-sterile female crosses and sterile male-sterile female crosses for each irradiation doses tested. There was significant increase in mortality under stress as irradiation dose increased, and reduced participation in mating by males irradiated at higher doses. The current target-sterilizing dose for SIT of 70-75 Gy is associated with significant reduction in fly product "quality". Our data suggest that adequate sterility and improved fly quality could be achieved through a small reduction in target sterilizing dose.


Subject(s)
Fertility/radiation effects , Infertility , Tephritidae/radiation effects , Animals , Death , Dose-Response Relationship, Radiation , Female , Flight, Animal/radiation effects , Light , Longevity/radiation effects , Male , Pupa/radiation effects , Reproduction/radiation effects , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...