Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.814
Filter
1.
Mikrochim Acta ; 191(7): 372, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839678

ABSTRACT

A highly sensitive micelle-induced sensory has been developed for detection of long-chain aldehydes as potential biomarkers of respiratory cancers. The micelle-like sensor was fabricated through the partial self-assembly of CTAB and S2 surfactants, containing a fluorescent hydrazine-functionalized dye (Naph-NH2). In principle, long-chain aldehydes with amphiphilic character act as the induced-fit surfactants to form well-entrapped micellar particles, as well as react with Naph-NH2 to form hydrazone derivatives resulting in fluorescent enhancement. The limit of detection (LOD) of micellar Naph-NH2/CTAB/S2 platform was calculated to be ∼  64.09-80.98 µM for detection of long-chain aldehydes, which showed fluorescent imaging in lung cancer cells (A549). This micellar sensory probe demonstrated practical applicability for long-chain aldehyde sensing in human blood samples with an accepted percent recovery of ~ 94.02-102.4%. Beyond Naph-NH2/CTAB/S2 sensor, the milcellar hybrid sensor was successfully developed by incorporating a micelle-like platform with supramolecular gel regarding to carboxylate-based gelators (Gel1), which showed a tenfold improvement in sensitivity. Expectedly, the determination of long-chain aldehydes through these sensing platforms holds significant promise for point-of-care cancer diagnosis and therapy.


Subject(s)
Aldehydes , Fluorescent Dyes , Hydrogels , Limit of Detection , Micelles , Humans , Aldehydes/chemistry , Fluorescent Dyes/chemistry , Hydrogels/chemistry , A549 Cells , Hydrazines/chemistry , Cetrimonium/chemistry , Surface-Active Agents/chemistry
2.
Luminescence ; 39(6): e4798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825785

ABSTRACT

Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.


Subject(s)
Cell Hypoxia , Fluorescent Dyes , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Molecular Structure , Azo Compounds/chemistry , HeLa Cells , Fluorescence
3.
Anal Chim Acta ; 1312: 342748, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834262

ABSTRACT

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Humans , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Optical Imaging , Male , Molecular Structure
4.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834271

ABSTRACT

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Chemical and Drug Induced Liver Injury/diagnostic imaging , Mice , Humans , Infrared Rays , Optical Imaging , Glutathione/analysis , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Cysteine/analysis , Rhodamines/chemistry , Rhodamines/toxicity , Homocysteine/analysis , Luminescence
5.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834275

ABSTRACT

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Subject(s)
Fatty Liver , Ferroptosis , Fluorescent Dyes , Inflammation , Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Humans , Ferroptosis/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fluorescent Dyes/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
6.
Mikrochim Acta ; 191(7): 366, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833071

ABSTRACT

Aristolochic acids (AAs), which are a group of nitrophenanthrene carboxylic acids formed by Aristolochia plant, have become an increasing serious threat to humans due to their nephrotoxicity and carcinogenicity. Fast and accurate approaches capable of simultaneous sensing of aristolochic acids (I-IV) are vital to avoid intake of such compounds. In this research, the novel ratiometric fluorescence zinc metal-organic framework and its nanowire have been prepared. The two different coordination modes (tetrahedral configuration and twisted triangular bipyramidal configuration) within zinc metal-organic framework lead to the significant double emissions. The ratiometric fluorescence approach based on nanowire provides a broader concentration range (3.00 × 10-7~1.00 × 10-4 M) and lower limit of detection (3.70 × 10-8 M) than that based on zinc metal-organic framework (1.00 × 10-6~1.00 × 10-4 M, 5.91 × 10-7 M). The RSDs of the results are in the range 1.4-3.5% (nanowire). The density functional theory calculations and UV-Vis absorption verify that the sensing mechanism is due to charge transfer and energy transfer. Excellent spiked recoveries for AAs(I-IV) in soil and water support that nanowire is competent to simultaneously detect these targets in real samples, and the proposed approach has potential as a fluorescence sensing platform for the simultaneous detection of AAs (I-IV) in complex systems.


Subject(s)
Aristolochic Acids , Limit of Detection , Metal-Organic Frameworks , Nanowires , Aristolochic Acids/analysis , Aristolochic Acids/chemistry , Metal-Organic Frameworks/chemistry , Nanowires/chemistry , Zinc/chemistry , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Luminescent Measurements/methods , Fluorescent Dyes/chemistry
7.
Sci Rep ; 14(1): 12665, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830927

ABSTRACT

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Subject(s)
Biomass , Carbon , Fluorescent Dyes , Inflammation , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Inflammation/metabolism , Oryzias , Tumor Necrosis Factor-alpha/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects
8.
Mikrochim Acta ; 191(7): 374, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847878

ABSTRACT

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.


Subject(s)
Captopril , Limit of Detection , Nanoparticles , Wastewater , Captopril/urine , Captopril/analysis , Captopril/chemistry , Wastewater/analysis , Nanoparticles/chemistry , Molecularly Imprinted Polymers/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Silicon Dioxide/chemistry , Molecular Imprinting , Humans
9.
Luminescence ; 39(6): e4756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838075

ABSTRACT

A comprehensive review presents an illuminating exploration of the vast potential of isatin, an easily accessible organic compound. This review is a valuable resource, offering a concise yet comprehensive account of the recent breakthroughs in isatin applications in medicinal chemistry, fluorescence sensing, and organic synthesis. Moreover, it dives into the exciting advancements in isatin-based chemosensors, demonstrating their remarkable ability to detect and recognize diverse cations and anions with exceptional precision. Researchers and scientists in the fields of sensing and organic chemistry will find this review indispensable for sparking innovation and developing cutting-edge technologies with significant real-world impact.


Subject(s)
Isatin , Isatin/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure
10.
Se Pu ; 42(6): 590-598, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845520

ABSTRACT

Fluorescent whitening agents (FWAs) are dyes that emit visible blue or blue-purple fluorescence upon ultraviolet-light absorption. Taking advantage of light complementarity, FWAs can compensate for the yellow color of many substances to achieve a whitening effect; thus, they are used extensively in various applications. FWAs are generally stable, but their presence in the environment can lead to pollution and accumulation in the body through the food chain. Recent studies have revealed that some types of FWAs, such as coumarin-based FWAs, may exhibit photo-induced mutagenic effects that can trigger allergic reactions in humans and even pose carcinogenic risks. Hence, the development of an accurate and highly sensitive method for detecting FWAs in food-related samples is a crucial endeavor. Owing to the high polarity and structural similarity of FWAs, the accurate determination of these substances in complex food samples requires an analytical method that offers both efficient separation and sensitive detection. Capillary electrophoresis (CE) exhibits essential features such as high separation efficiency, short analysis times, very small sample injection requirements, minimal use of organic solvents, and simple operation. Thus, it is often used as an effective alternative to liquid chromatographic techniques. Over the past few decades, electrospray ionization mass spectrometry (ESI-MS) has been utilized as a highly sensitive and accurate detection method in numerous chemical analytical fields because it enables the analysis of molecular structures. By combining the high separation efficiency of CE with the high sensitivity of ESI-MS, a powerful tool for identifying and quantifying trace amounts of FWAs in food samples may be obtained. In this study, we present a method based on sheathless CE coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) for the simultaneous detection of six trace FWAs in flour. In the proposed method, the CE separation device is directly coupled to the mass spectrometer through a sheathless interface without the need for a sheath liquid for electric contact, thereby avoiding the dilution of the analytes and improving detection sensitivity. Various conditions that could affect extraction recovery, separation efficiency, and detection sensitivity were evaluated and optimized. The FWAs were effectively extracted from the sample matrix with reduced matrix effects by ultrasonic-assisted extraction at a temperature of 30 ℃ for 20 min using CHCl3-MeOH (3∶2, v/v) as the extraction solvent. The extract was centrifuged, dried under N2, and reconstituted in CHCl3-MeOH (1∶4, v/v) for subsequent analysis. During the detection process, the CE device was coupled to the ESI-MS/MS instrument via a highly sensitive porous spray needle, which served as the sheathless electrospray interface. The target FWAs were scanned in positive-ion mode (ESI+) to ensure the stability and intensity of the obtained signals. Additionally, multiple-reaction monitoring (MRM) mode and MS/MS analysis were used to simultaneously quantify the six targets with high selectivity. The developed sheathless CE-ESI-MS/MS method detected the FWAs with high sensitivity over wide linear ranges with low method limits of detection (0.04-0.67 ng/g). The recoveries of the six target FWAs at three spiked levels were between 77.5% and 97.2%, with good interday (RSD≤11.5%) and intraday (RSD≤10.2%) precision. Analyses of the six target FWAs in eight commercial flour samples were performed using this method, and four positive samples were identified. These results demonstrate that the proposed CE-ESI-MS/MS method is a promising strategy for the determination of trace FWAs in complex food sample matrices with efficient separation and high sensitivity.


Subject(s)
Electrophoresis, Capillary , Flour , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Electrophoresis, Capillary/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Flour/analysis , Fluorescent Dyes/chemistry , Food Contamination/analysis
11.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856211

ABSTRACT

Changes in calcium concentration in cells are rapidly monitored in a high-throughput fashion with the use of intracellular, fluorescent, calcium-binding dyes and imaging instruments that can measure fluorescent emissions from up to 1,536 wells simultaneously. However, these instruments are much more expensive and can be challenging to maintain relative to widely available plate readers that scan wells individually. Described here is an optimized plate reader assay for use with an endothelial cell line (EA.hy926) to measure the protease-activated receptor (PAR)-driven activation of Gαq signaling and subsequent calcium mobilization using the calcium-binding dye Fluo-4. This assay has been used to characterize a range of PAR ligands, including the allosteric PAR1-targeting anti-inflammatory "parmodulin" ligands identified in the Dockendorff lab. This protocol obviates the need for an automated liquid handler and permits the medium-throughput screening of PAR ligands in 96-well plates and should be applicable to the study of other receptors that initiate calcium mobilization.


Subject(s)
Calcium , Humans , Calcium/metabolism , Calcium/analysis , Xanthenes/chemistry , Aniline Compounds/chemistry , Cell Line , Fluorescent Dyes/chemistry , Ligands , Receptor, PAR-1/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology
12.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856231

ABSTRACT

Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.


Subject(s)
Leukocytes, Mononuclear , Membrane Potential, Mitochondrial , Humans , Membrane Potential, Mitochondrial/physiology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Rhodamines/chemistry , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Oxygen Consumption/physiology , Mitochondria/metabolism , Fluorescent Dyes/chemistry
13.
Methods Mol Biol ; 2796: 97-103, 2024.
Article in English | MEDLINE | ID: mdl-38856897

ABSTRACT

The development of cell-based fluorescent assays has resulted in an incredible tool for searching new ion channels' modulators with a biophysical and clinical profile. Among all the ion channels, potassium (K+)-permeable channels represent the most diverse and relevant for cell function, making them attractive targets for drug discovery. Some of the cell-based assays for K+ channels take advantage of a thallium-sensitive dye whose fluorescence increased upon the binding of thallium (Tl+), an ion able to move through K+ channels. We optimize the FLIPR Potassium Assay Kit based on thallium influx to measure the Kv10.1 activity.


Subject(s)
Thallium , Thallium/metabolism , Humans , Fluorescent Dyes/chemistry , HEK293 Cells , Fluorescence , Ether-A-Go-Go Potassium Channels
14.
Luminescence ; 39(6): e4801, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855811

ABSTRACT

Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.


Subject(s)
Carbon , Nitrogen , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Humans , Pyrimidines/chemistry , Pyrimidines/blood , Pyrimidines/chemical synthesis , Fluorometry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Solvents/chemistry , Molecular Structure
15.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732024

ABSTRACT

Molecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic field, often employs hazardous substances in analyzing friction ridges on porous surfaces, posing safety concerns. In response, we formulated novel, non-toxic procedures for examining paper evidence, particularly thermal papers. Our laboratory model utilizes a polyvinyl alcohol polymer as a rigid matrix to emulate the thermal paper's environment, enabling precise control over the spectroscopic characteristics of 1,8-diazafluoro-9-one (DFO). We identified and analyzed the cyclodimer 1,8-diazafluoren-9-one (DAK DFO), which is a non-toxic and biocompatible alternative for revealing forensic marks. The reagents used to preserve fingerprints were optimized for their effectiveness and stability. Using stationary absorption and emission spectroscopy, along with time-resolved emission studies, we verified the spectroscopic attributes of the new structures under deliberate aggregation conditions. Raman spectroscopy and quantum mechanical computations substantiated the cyclodimer's configuration. The investigation provides robust scientific endorsement for the novel compound and its structural diversity, influenced by the solvatochromic sensitivity of the DFO precursor. Our approach to monitoring aggregation processes signifies a substantial shift in synthetic research paradigms, leveraging simple chemistry to yield an innovative contribution to forensic science methodologies.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Forensic Sciences/methods
16.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732037

ABSTRACT

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Subject(s)
Imaging, Three-Dimensional , Microscopy, Confocal , Mitochondria , Humans , Mitochondria/metabolism , Microscopy, Confocal/methods , Imaging, Three-Dimensional/methods , Fluorescent Dyes/chemistry , Membrane Potential, Mitochondrial , Carbocyanines/chemistry , Rhodamines/chemistry
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732092

ABSTRACT

In this work, we apply single-molecule fluorescence microscopy and spectroscopy to probe plasmon-enhanced fluorescence and Förster resonance energy transfer in a nanoscale assemblies. The structure where the interplay between these two processes was present consists of photoactive proteins conjugated with silver nanowires and deposited on a monolayer graphene. By comparing the results of continuous-wave and time-resolved fluorescence microscopy acquired for this structure with those obtained for the reference samples, where proteins were coupled with either a graphene monolayer or silver nanowires, we find clear indications of the interplay between plasmonic enhancement and the energy transfer to graphene. Namely, fluorescence intensities calculated for the structure, where proteins were coupled to graphene only, are less than for the structure playing the central role in this study, containing both silver nanowires and graphene. Conversely, decay times extracted for the latter are shorter compared to a protein-silver nanowire conjugate, pointing towards emergence of the energy transfer. Overall, the results show that monitoring the optical properties of single emitters in a precisely designed hybrid nanostructure provides an elegant way to probe even complex combination of interactions at the nanoscale.


Subject(s)
Fluorescence Resonance Energy Transfer , Graphite , Nanowires , Silver , Silver/chemistry , Nanowires/chemistry , Graphite/chemistry , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Proteins/chemistry , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods
18.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38709175

ABSTRACT

Recent studies with fluorophore-tagged basement membrane (BM) components have led to remarkable discoveries about BMs but also inconsistent interpretations. Here, we review types of BM dynamics, discuss how we conduct and interpret fluorophore-tagged BM studies, and highlight experimental conditions that are important to consider.


Subject(s)
Basement Membrane , Basement Membrane/metabolism , Animals , Humans , Fluorescent Dyes/chemistry
19.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702709

ABSTRACT

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Subject(s)
Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
20.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729049

ABSTRACT

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Subject(s)
Biosensing Techniques , Edible Grain , Food Contamination , Limit of Detection , Microspheres , Mycotoxins , Zearalenone , Mycotoxins/analysis , Edible Grain/chemistry , Edible Grain/microbiology , Biosensing Techniques/methods , Food Contamination/analysis , Zearalenone/analysis , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Aflatoxin B1/analysis , Aflatoxin B1/isolation & purification , Trichothecenes/analysis , Reagent Strips/analysis , Immunoassay/methods , Immunoassay/instrumentation , Fluorescent Dyes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...