Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.680
Filter
1.
Eur J Med Chem ; 272: 116474, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38735149

ABSTRACT

Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.


Subject(s)
Monoamine Oxidase , Photochemotherapy , Photosensitizing Agents , Photothermal Therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Animals , Humans , Monoamine Oxidase/metabolism , Mice , Xanthenes/chemistry , Xanthenes/pharmacology , Xanthenes/chemical synthesis , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mice, Nude
2.
Bioorg Chem ; 147: 107362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615474

ABSTRACT

Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.


Subject(s)
Fluorescent Dyes , Inflammation , Peroxynitrous Acid , Peroxynitrous Acid/analysis , Peroxynitrous Acid/antagonists & inhibitors , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Inflammation/drug therapy , Animals , Molecular Structure , Mice , Humans , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Optical Imaging , Dose-Response Relationship, Drug , Structure-Activity Relationship , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Male
3.
J Mater Chem B ; 12(17): 4248-4261, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602387

ABSTRACT

Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 µM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Hydrogen Sulfide , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Hydrogen Sulfide/metabolism , Animals , Humans , Diclofenac/pharmacology , HeLa Cells , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Rats , Theranostic Nanomedicine , Inflammation/drug therapy , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemical synthesis , Mice , RAW 264.7 Cells , Drug Delivery Systems , Edema/drug therapy , Edema/chemically induced
4.
J Mater Chem B ; 12(12): 3022-3030, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38426244

ABSTRACT

Lipid droplets (LDs) are cytoplasmic lipid-rich organelles with important roles in lipid storage and metabolism, cell signaling and membrane biosynthesis. Additionally, multiple diseases, such as obesity, fatty liver, cardiovascular diseases and cancer, are related to the metabolic disorders of LDs. In various cancer cells, LD accumulation is associated with resistance to cell death, reduced effectiveness of chemotherapeutic drugs, and increased proliferation and aggressiveness. In this work, we present a new viscosity-sensitive, green-emitting BODIPY probe capable of distinguishing between ordered and disordered lipid phases and selectively internalising into LDs of live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM), we demonstrate that LDs in live cancer (A549) and non-cancer (HEK 293T) cells have vastly different microviscosities. Additionally, we quantify the microviscosity changes in LDs under the influence of DNA-damaging chemotherapy drugs doxorubicin and etoposide. Finally, we show that doxorubicin and etoposide have different effects on the microviscosities of LDs in chemotherapy-resistant A549 cancer cells.


Subject(s)
Boron Compounds , Lipid Droplets , Neoplasms , Lipid Droplets/metabolism , Fluorescent Dyes/pharmacology , Fluorescent Dyes/metabolism , Etoposide/metabolism , Lipids , Doxorubicin/pharmacology , Doxorubicin/metabolism , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/metabolism
5.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474532

ABSTRACT

Biomacromolecular probes have been extensively employed in the detection of metal ions for their prominent biocompatibility, water solubility, high selectivity, and easy modification of fluorescent groups. In this study, a fluorescent probe FP was constructed. The probe FP exhibited high specificity recognition for Cu2+. With the combination of Cu2+, the probe was subjected to fluorescence quenching. The research suggested that the probe FP carried out the highly sensitive detection of Cu2+ with detection limits of 1.7 nM. The fluorescence quenching of fluorescamine was induced by Cu2+ perhaps due to the PET (photoinduced electron transfer) mechanism. The FP-Cu2+ complex shows weak fluorescence, which is likely due to the PET quenching effect from Cu2+ to fluorescamine fluorophore. Moreover, the probe FP can be employed for imaging Cu2+ in living cells. The new fluorescent probe developed in this study shows the advantages of good biocompatibility and low cytotoxicity. It can be adopted for the targeted detection of Cu2+ in cells, and it has promising applications in the mechanism research and diagnosis of Cu2+-associated diseases.


Subject(s)
Copper , Fluorescent Dyes , Humans , Fluorescent Dyes/pharmacology , Fluorescamine , Metals , HeLa Cells , Spectrometry, Fluorescence
6.
Bioorg Med Chem ; 103: 117673, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38518734

ABSTRACT

Our understanding of sterol transport proteins (STPs) has increased exponentially in the last decades with advances in the cellular and structural biology of these important proteins. However, small molecule probes have only recently been developed for a few selected STPs. Here we describe the synthesis and evaluation of potential proteolysis-targeting chimeras (PROTACs) based on inhibitors of the STP Aster-A. Based on the reported Aster-A inhibitor autogramin-2, ten PROTACs were synthesized. Pomalidomide-based PROTACs functioned as fluorescent probes due to the intrinsic fluorescent properties of the aminophthalimide core, which in some cases was significantly enhanced upon Aster-A binding. Most PROTACs maintained excellent binary affinity to Aster-A, and one compound, NGF3, showed promising Aster-A degradation in cells. The tools developed here lay the foundation for optimizing Aster-A fluorescent probes and degraders and studying its activity and function in vitro and in cells.


Subject(s)
Carrier Proteins , Fluorescent Dyes , Fluorescent Dyes/pharmacology , Sterols , Proteolysis
7.
Luminescence ; 39(3): e4715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506397

ABSTRACT

Short-chain fatty acids, such as butyrate, play pivotal roles in various physiological processes within the human body. Recent advances in understanding cell death pathways, specifically ferroptosis, have unveiled unique opportunities for therapeutic development. Ferroptosis is linked to iron accumulation and oxidative stress, whereas butyrate has emerged as a cellular protector against oxidative stress, potentially inhibiting ferroptosis. Hydrogen peroxide (H2 O2 ) is a key player in oxidative stress, and its monitoring has gained significance in disease mechanisms. We present an innovative fluorescent probe, HOP, capable of dynamically tracking intracellular H2 O2 levels, enabling spatial and temporal visualization. The probe exhibits high accuracy (limit of detection = 0.14 µM) and sensitivity, paving the way for disease diagnosis and treatment innovations. Importantly, HOP displayed minimal toxicity, making it suitable for cellular applications. Cellular imaging experiments demonstrated its ability to penetrate cells and monitor intracellular H2 O2 levels accurately. The HOP probe confirmed H2 O2 as a critical marker in ferroptosis. Our innovative HOP provides a powerful tool for tracking intracellular H2 O2 levels and offers insights into the modulation of ferroptosis, potentially opening new avenues for disease research and therapeutic interventions.


Subject(s)
Ferroptosis , Hydrogen Peroxide , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Fluorescent Dyes/pharmacology , Butyric Acid/pharmacology , Oxidative Stress
8.
J Med Chem ; 67(5): 4194-4224, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38442261

ABSTRACT

Retinoic acid receptor-related orphan receptor γ (RORγ) acts as a crucial transcription factor in Th17 cells and is involved in diverse autoimmune disorders. RORγ allosteric inhibitors have gained significant research focus as a novel strategy to inhibit RORγ transcriptional activity. Leveraging the high affinity and selectivity of RORγ allosteric inhibitor MRL-871 (1), this study presents the design, synthesis, and characterization of 11 allosteric fluorescent probes. Utilizing the preferred probe 12h, we established an efficient and cost-effective fluorescence polarization-based affinity assay for screening RORγ allosteric binders. By employing virtual screening in conjunction with this assay, 10 novel RORγ allosteric inhibitors were identified. The initial SAR studies focusing on the hit compound G381-0087 are also presented. The encouraging outcomes indicate that probe 12h possesses the potential to function as a powerful tool in facilitating the exploration of RORγ allosteric inhibitors and furthering understanding of RORγ function.


Subject(s)
Fluorescent Dyes , Th17 Cells , Fluorescent Dyes/pharmacology , Transcription Factors , Gene Expression Regulation , Fluorescence Polarization , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
9.
Eur J Med Chem ; 268: 116236, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38367494

ABSTRACT

Estrogen receptor (ER) ß and histone deacetylases (HDACs), when overexpressed, are associated closely with the occurrence and development of prostate cancer and are, therefore, considered important targets and biomarkers used in the clinical treatment of prostate cancer. The present study involved the design and synthesis of the first ERß and HDAC dual-target near-infrared fluorescent probe with both imaging capacity and antitumor activity for prostate cancer. Both P1 and P2 probes exhibited excellent ERß selectivity, with P1 being almost exclusively selective for ERß compared to ERα. In addition, P1 exhibited good optical properties, such as strong near-infrared emission, large Stokes shift, and better anti-interference ability, along with excellent imaging ability for living cells. P1 also exhibited potent inhibitory activity against HDAC6 and DU-145 cells, with IC50 values of 52 nM and 0.96 µM, respectively. Further, P1 was applied successfully for the in vivo imaging of prostate cancer in a mouse model, and significant in vivo antitumor efficacy was achieved. The developed dual-target NIR fluorescent probe is expected to serve as an effective tool in the research on prostate cancer, leading to novel insights for the theranostic study of diseases related to ERß and HDACs.


Subject(s)
Histone Deacetylases , Prostatic Neoplasms , Humans , Male , Mice , Animals , Estrogen Receptor beta , Fluorescent Dyes/pharmacology , Precision Medicine , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy
10.
Bioorg Chem ; 145: 107206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367428

ABSTRACT

Photothermal therapy (PTT) has attracted extensive attention in cancer treatment. Heptamethine cyanine dyes with near-infrared (NIR) absorption performance have been investigated for PTT. However, they are often accompanied by poor photostability, suboptimal photothermal conversion and limited therapeutic efficacy. The photophysical properties of fluorescent organic salts can be tuned through counterion pairing. However, whether the counterion can influence the photostability and photothermal properties of heptamethine cyanine salts has not been clarified. In this work, we investigated the effects of eleven counter anions on the physical and photothermal properties of NIR-II heptamethine cyanine salts with the same heptamethine cyanine cation. The anions have great impacts on the physiochemical properties of dyes in solution including aggregation, photostability and photothermal conversion efficiency. The physical tuning enables the control over the cytotoxicity and phototoxicity of the dyes. The selected salts have been demonstrated to significantly suppress 4T1 breast tumor growth with low toxicity. The findings that the counterion has great effects on the photothermal properties of cationic NIR-II heptamethine cyanine dyes will provide a reference for the preparation of improved photothermal agents through counterion pairing with possible translation to humans.


Subject(s)
Carbocyanines , Photothermal Therapy , Salts , Humans , Salts/pharmacology , Coloring Agents/chemistry , Anions , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemistry
11.
Bioorg Chem ; 145: 107218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377820

ABSTRACT

Melanoma, a highly metastatic malignant tumour, necessitated early detection and intervention. This study focuses on a hemicyanine fluorescent probe activated by near-infrared (NIR) light for bioimaging and targeted mitochondrial action in melanoma cells. IR-418, our newly designed hemicyanine-based NIR fluorescent probe, demonstrated effective targeting of melanoma cell mitochondria for NIR imaging. In vitro and in vivo experiments revealed IR-418's inhibition of melanoma growth through the promotion of mitochondrial apoptosis (Bax/Bcl-2/Cleaved Caspase pathway). Moreover, IR-418 inhibited melanoma metastasis by inhibiting mitochondrial fission through the ERK/DRP1 pathway. Notably, IR-418 mitigated abnormal ATL and ASL elevations caused by tumours without inflicting significant organ damage, indicating its high biocompatibility. In conclusion, IR-418, a novel hemicyanine-based NIR fluorescent probe targeting the mitochondria, exhibits significant fluorescence imaging capability, anti-melanoma proliferation, anti-melanoma lung metastasis activities and high biosafety. Therefore, it has significant potential in the early diagnosis and treatment of melanoma.


Subject(s)
Carbocyanines , Fluorescent Dyes , Melanoma , Humans , Fluorescent Dyes/pharmacology , Melanoma/diagnostic imaging , Melanoma/drug therapy , Mitochondrial Dynamics , Apoptosis
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124017, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38354677

ABSTRACT

Nanoparticles are a boon for humanity because of their improved functionality and unlimited potential applications. Considering this significance, the proposed study introduced a simple, fast and eco-friendly method for synthesis of fluorescent silver nanoparticles (Ag-NPs) using Panax Ginseng root extract as a reducing and capping agent. Synthesis of Ag-NPs was performed in one step within three minutes utilizing microwave irradiation. The resulting Ag-NPs were characterized using various microscopic and spectroscopic techniques such as, Transmission Electron Microscope (TEM), UV/Visible spectroscopy, Fourier Transform Infrared Spectroscopy(FTIR) and Energy Dispersive X-ray analysis (EDX). The prepared Ag-NPs, which act as a fluorescent nano-probe with an emission band at 416 nm after excitation at 331 nm, were used to assay nilvadipine (NLV) spectrofluorimetrically in its pharmaceutical dosage form with good sensitivity and reproducibility. The proposed study is based on the ability of NLV to quantitatively quench the native Ag-NPs fluorescence, forming a ground state complex as a result of static quenching and an inner filter mechanism. The suggested approach displayed a satisfactory linear relationship throughout a concentration range of 5.0 µM - 100.0 µM, with LOD and LOQ values of 1.18 µM and 3.57 µM, respectively. Validation of the suggested approach was examined in accordance with ICH recommendations. In addition, the anti-bacterial and anti-fungal activities of the prepared nanoparticles were investigated, and they demonstrated effective anti-microbial activities and opened a future prospective to combat future antibiotic resistance. Finally, in-vitro cytotoxicity assay of Ag-NPs against normal and cancerous human cell lines was studied using MTT assay. The results proved the potential use of the produced Ag-NPs as an adjunct to anticancer treatment or for drug delivery without significantly harming healthy human cells.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Nifedipine/analogs & derivatives , Panax , Humans , Silver/pharmacology , Silver/chemistry , Fluorescent Dyes/pharmacology , Metal Nanoparticles/chemistry , Reproducibility of Results , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Bacteria , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests
13.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338402

ABSTRACT

Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-ß-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-ß-CD)/PLGA NPs and the drug-loaded TA-(2-HP-ß-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-ß-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-ß-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-ß-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-ß-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.


Subject(s)
Dieldrin/analogs & derivatives , Nanoparticles , beta-Cyclodextrins , Polymers/pharmacology , Drug Carriers/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Triamcinolone Acetonide , Fluorescent Dyes/pharmacology , Cornea , beta-Cyclodextrins/pharmacology
14.
Chem Commun (Camb) ; 60(8): 984-987, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168933

ABSTRACT

An amphiphilic fluorescent probe (BHSMP) with aggregation-induced emission (AIE) features was synthesized via a one-step route. The probe showed high water dispersibility, low toxicity and the ability of selective and sensitive (limit of detection of 0.11 µM) detection of ClO- with fast-response (≤30 s) in aqueous solution and living organisms. Owing to the donor-acceptor (D-A) structure and existence of cationic groups, BHSMP could also generate reactive oxygen species under light-irradiation and potentially be utilized for photodynamic therapy. The strategy described in this work is of great significance for the design and synthesis of multifunctional AIE-active functional materials to facilitate their biomedical applications.


Subject(s)
Photochemotherapy , Reactive Oxygen Species , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemistry
15.
Eur J Med Chem ; 265: 116102, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38176359

ABSTRACT

Study on corrole photosensitizers (PSs) for photodynamic therapy (PDT) has made remarkable progress. Targeted delivery of PSs is of great significance for enhancing therapeutic efficiency, decreasing the dosage, and reducing systemic toxicity during PDT. The development of PSs that can be specifically delivered to the subcellular organelle is still an attractive and challenging work. Herein, we synthesize a series of azide-modified corrole phosphorus and gallium complex PSs, in which phosphorus corrole 2-P could not only precisely target the endoplasmic reticulum (ER) with a Pearson correlation coefficient (PCC) up to 0.92 but also possesses the highest singlet oxygen quantum yields (ΦΔ = 0.75). This renders it remarkable PDT activity at a very low dosage (IC50 = 23 nM) towards HepG2 tumor cell line while ablating solid tumors in vivo with excellent biosecurity. Furthermore, 2-P exhibits intense red fluorescence (ΦF = 0.25), outstanding photostability, and a large Stokes shift (190 nm), making it a promising fluorescent probe for ER. This study provides a clinically potential photosensitizer for cancer photodynamic therapy and a promising ER fluorescent probe for bioimaging.


Subject(s)
Neoplasms , Photochemotherapy , Porphyrins , Azides , Fluorescence , Phosphorus , Fluorescent Dyes/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Endoplasmic Reticulum , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123912, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38266605

ABSTRACT

A carbazole thiophene-aldehyde and 4-methylbenzenesulfonhydrazide conjugate CSH was synthesized by introducing 5-thiophene aldehyde at the 3-position of the carbazole group as the precursor and then condensing it with 4-methylbenzenesulfonhydrazide. CSH has high selectivity and sensitivity towards ClO-, which can specifically identify ClO- by UV-Vis and fluorescence spectroscopy. CSH can rapidly respond to ClO- in the physiological pH range through a fluorescence quenching pattern, accompanied by the color of CSH changing markedly from turquoise to yellowish green under the 365 nm UV light. Probe CSH exhibits a quantitative response to ClO- (0-11 µM) with a low detection limit (1.16 × 10-6 M). Cell imaging experiments have shown that CSH can capture fluorescent signals in the cyan and yellow channels of HeLa cells through fluorescence confocal microscopy, and can successfully identify exogenous ClO- in HeLa cells. In addition, probe CSH can also be used to detect ClO- in environmental water samples. These results indicate that CSH has potential application prospects in the environmental analysis and biological aspects.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Humans , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemistry , Hypochlorous Acid/analysis , HeLa Cells , Carbazoles/pharmacology , Aldehydes
17.
Adv Healthc Mater ; 13(2): e2302466, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37840532

ABSTRACT

Diabetes and its complications, such as diabetes liver disease, is a major problem puzzling people's health. The detection of redox states in its pathological process can effectively help us gain a deeper understanding of the disease. The pair of oxidation-reduction substances peroxynitrite (ONOO- ) and glutathione (GSH) is considered to be closely related to their occurrence and development. Thus, direct visualization of ONOO- and GSH in diabetes liver disease is critical to evaluate the disease at the molecular level. Herein, two activatable agents NTCF-ONOO- and NTCF-GSH are prepared for selectively detecting ONOO- and GSH through protection and deprotection strategies based on hydroxyl and amino groups of near-infrared fluorophore. Fluorescence imaging of exogenous and endogenous ONOO- and GSH changes in living cells and in vivo is observed. The ONOO- and GSH level in the diabetes liver disease cellular model are visualized and the possible redox imbalance mechanism related to the oxidized (NAD+ ) and reduced (NADH) nicotinamide adenine dinucleotides is explored in this process. Moreover, these probes can sensitively recognize ONOO- and GSH in the process of oxidative stress resulting from streptozotocin and streptozotocin/acetaminophen-induced complex diabetic liver disease in vivo. In addition, they can be applied for monitoring the clinical serum sample related with diabetic patients.


Subject(s)
Diabetes Mellitus , Liver Diseases , Humans , Peroxynitrous Acid , Fluorescent Dyes/pharmacology , Streptozocin , Optical Imaging , Glutathione
18.
Luminescence ; 39(1): e4606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37807953

ABSTRACT

In the past 5 years, aggregation-induced emission luminogens (AIEgens) with emission in the second near-infrared (NIR-II) optical window have aroused great interest in bioimaging and disease phototheranostics, benefiting from the merits of deep penetration depth, reduced light scatting, high spatial resolution, and minimal photodamage. To construct NIR-II AIEgens, thiophene derivatives are frequently adopted as π-bridge by virtue of their electron-rich feature and good modifiability. Herein, we summarize the recent progress of NIR-II AIEgens by employing thiophene derivatives as π-bridge mainly compassing unsubstituted thiophene, alkyl thiophene, 3,4-ethylenedioxythiophene, and benzo[c]thiophene, with a discussion on their structure-property relationships and biomedical applications. Finally, a brief conclusion and perspective on this fascinating area are offered.


Subject(s)
Fluorescent Dyes , Optical Imaging , Fluorescent Dyes/pharmacology
19.
Talanta ; 269: 125418, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37988783

ABSTRACT

Acetaminophen (APAP) overdose, also known as APAP poisoning, may directly result in hepatic injury, acute liver failure and even death. Nowadays, APAP-induced liver injury (AILI) has become an urgent public health issue in the developing world so the early accurate diagnosis and the revelation of underlying molecular mechanism of AILI are of great significance. As a major detoxifying organ, liver is responsible for metabolizing chemical substances, in which human carboxylesterase-2 (CES2) is present. Hence, we chose CES2 as an effective biomarker for evaluating AILI. By developing a CES2-activatable and water-soluble fluorescent probe PFQ-E with superior affinity (Km = 5.9 µM), great sensitivity (limit of detection = 1.05 ng/mL), near-infrared emission (655 nm) and large Stokes shift (135 nm), activity and distribution of CES2 in cells were determined or imaged effectively. More importantly, the APAP-induced hepatotoxicity and the underlying molecular mechanism of pathogenesis of AILI were investigated by measuring the "light-up" response of PFQ-E towards endogenous CES2 in vivo for the first time. Based on the superior performance of the probe PFQ-E for sensing CES2, we believe that it has broad potential in clinical diagnosis and therapy response evaluation of AILI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury, Chronic , Humans , Animals , Mice , Acetaminophen/toxicity , Fluorescent Dyes/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Liver , Mice, Inbred C57BL
20.
Talanta ; 270: 125610, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38159348

ABSTRACT

Ferroptosis plays an important role in the early stage of myocardial ischemia/reperfusion (MI/R) injury, which is closely associated with the antioxidant damage of mitochondrial cysteine (Cys)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis. Visualization of Cys and GSH in mitochondria is meaningful to value ferroptosis and further contributes to understanding and preventing MI/R injury. Herein a mitochondria-targetable thiols fluorescent probe (MTTP) was designed and synthesized based on sulfonyl benzoxadiazole (SBD) chromophore with a triphenylphosphine unit as the mitochondria-targeted functional group. Cys and GSH can be differentiated by MTTP with two distinguishable emission bands (583 nm and 520 nm) through the controllable aromatic substitution-rearrangement reaction. Importantly, MTTP is capable of monitoring ferroptosis and its inhibition by measuring mitochondrial Cys and GSH. MTTP was also employed to non-invasively detect ferroptosis during oxygen and glucose deprivation/reoxygenation (OGD/R)-induced MI/R injury in H9C2 cells. In a word, MTTP provides a visual tool that can simultaneously detect Cys and GSH to monitor ferroptosis processes during MI/R injury, which helps for more deeper understanding of the role of ferroptosis in MI/R injury-related diseases.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , Humans , Fluorescent Dyes/pharmacology , Cysteine , Glutathione , Mitochondria , Sulfhydryl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...