Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.714
Filter
1.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824544

ABSTRACT

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Subject(s)
Amino Acids , Cell Proliferation , Fluorides , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Fluorides/pharmacology , Cell Line , Amino Acids/metabolism , Cell Proliferation/drug effects , Rats , Cell Movement/drug effects , Male , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Gene Regulatory Networks/drug effects
2.
BMC Microbiol ; 24(1): 151, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702601

ABSTRACT

BACKGROUND: Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE: This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS: Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS: Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS: The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.


Subject(s)
Drug Resistance, Bacterial , Fluorides , Fructosediphosphates , Metabolomics , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Metabolomics/methods , Fluorides/metabolism , Fluorides/pharmacology , Fructosediphosphates/metabolism , Humans , Metabolome/drug effects , Dental Caries/microbiology , Chromatography, Liquid
3.
Am J Dent ; 37(2): 78-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704850

ABSTRACT

PURPOSE: To evaluate how fluoride- or chitosan-based toothpaste used during at-home bleaching affects enamel roughness, tooth color, and staining susceptibility. METHODS: Bovine enamel blocks were submitted to a 14-day cycling regime considering a factorial design (bleaching agent x toothpaste, 2 x 3), with n=10: (1) bleaching with 16% carbamide peroxide (CP) or 6% hydrogen peroxide (HP), and (2) daily exposure of a fluoride (1,450 ppm F-NaF) toothpaste (FT), chitosan-based toothpaste (CBT), or distilled water (control). Then, 24 hours after the last day of bleaching procedure the samples were exposed to a coffee solution. Color (ΔEab, ΔE00, L*, a*, b*) and roughness (Ra, µm) analyses were performed to compare the samples initially (baseline), after bleaching, and after coffee staining. The results were evaluated by linear models for repeated measures (L*, a*, b*, and Ra), 2-way ANOVA (ΔEab, ΔE00) and Tukey's test (α= 0.05). RESULTS: After the at-home bleaching procedure (toothpaste vs. time, P< 0.0001), the toothpaste groups presented a statistically lower Ra than the control (CBT 0.05). After coffee exposure, CBT presented lower ΔEab and ΔE00 values in the HP groups (toothpaste, P< 0.0001), and lower b* and a* values in the CP groups (toothpaste vs. time, P= 0.004). CLINICAL SIGNIFICANCE: Fluoride or chitosan delivered by toothpaste can reduce surface alterations of the enamel during at-home bleaching, without affecting bleaching efficacy.


Subject(s)
Carbamide Peroxide , Chitosan , Dental Enamel , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Toothpastes , Chitosan/pharmacology , Toothpastes/pharmacology , Animals , Cattle , Tooth Bleaching/methods , Dental Enamel/drug effects , Tooth Bleaching Agents/pharmacology , Hydrogen Peroxide/pharmacology , Carbamide Peroxide/pharmacology , Surface Properties , Fluorides/pharmacology , Color , Urea/analogs & derivatives , Urea/pharmacology , Coffee , Peroxides/pharmacology
4.
Braz Oral Res ; 38: e036, 2024.
Article in English | MEDLINE | ID: mdl-38747823

ABSTRACT

This study aimed to evaluate in vitro the effect protocols and anticaries agents containing casein amorphous calcium fluoride phosphopeptide-phosphate (CPP-ACPF, MI Paste Plus), sodium trimetaphosphate (TMP) and fluoride (F), in remineralization of caries lesions. Bovine enamel blocks with initial caries lesions were divided into groups (n = 12): 1) Toothpaste without F-TMP-MI Plus (Placebo); 2) Toothpaste 1100 ppm F (1100F), 3) 1100F + MI Paste Plus (1100F-MI Paste Plus), 4) Toothpaste with 1100F + Neutral gel with 4,500 ppm F + 5%TMP (1100F + Gel TMP) and 5) Toothpaste with 1100F + Neutral gel with 9,000 ppm F (1100F + Gel F). For the 4 and 5 groups the gel was applied only once for 1 minute, initially to the study. For the 3 group, after treatment with 1100F, MI Paste Plus was applied 2x/day for 3 minute. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); profile and depth of the subsuperficial lesion (PLM); concentrations of F, calcium (Ca) and phosphorus (P) in enamel was determined. The data were analyzed by ANOVA (1-criterion) and Student-Newman-Keuls test (p < 0.001). Treatment with 1100F alone led to ~ 28% higher remineralization when compared to treatment with 1100F associated with MI Paste Plus (p < 0.001). The 1100F and 1100F + Gel F groups showed similar values for %SHR (p = 0.150). 1100F + Gel TMP treatment also remineralized the enamel surface by ~ 30% and 20% when compared to the 1100F + Gel F and 1100F groups (p < 0.001). The lower lesion depth (ΔKHN) was observed for the 1100F + Gel TMP group (p < 0.001), where it was 54% and 44% lower in comparison to the 1100F and 1100F + Gel F groups (p < 0.001). Polarized light microscopy photomicrographs showed subsurface lesions in all groups, but these lesions were present to a lower extent in the 1100F + Gel TMP group (p < 0.001). Treatment with 1100F + Gel TMP promoted an increase in the concentration of Ca in the enamel by ~ 57% and ~ 26% when compared to the 1100F and 1100F + MI Paste Plus groups (p < 0.001), respectively. There were no significant differences between the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001). Similar values of P in the enamel were observed in the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001), except for the 1100F + Gel TMP group, which presented a high concentration (p < 0.001). We conclude that the 1100F+TMP gel treatment/protocol led to a significant increased remineralization when compared to the other treatments/protocols and may be a promising strategy for patients with early caries lesions.


Subject(s)
Cariostatic Agents , Caseins , Dental Enamel , Fluorides , Tooth Remineralization , Caseins/pharmacology , Caseins/therapeutic use , Tooth Remineralization/methods , Cattle , Animals , Dental Enamel/drug effects , Cariostatic Agents/pharmacology , Fluorides/pharmacology , Time Factors , Toothpastes/chemistry , Dental Caries/drug therapy , Analysis of Variance , Reproducibility of Results , Polyphosphates/pharmacology , Polyphosphates/chemistry , Polyphosphates/therapeutic use , Hardness Tests , Hydrogen-Ion Concentration , Surface Properties/drug effects , Materials Testing , Treatment Outcome , Reference Values , Hardness/drug effects , Phosphates
5.
Arch Oral Biol ; 164: 105984, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701663

ABSTRACT

OBJECTIVE: The effectiveness of supragingival dental biofilm control during orthodontic treatment and changes in the bacterial profile were analyzed. DESIGN: Sixty-four participants aged 12-22 years (57% female) were included in the study. Participants underwent orthodontic treatment with fixed appliances and were randomly assigned to one of the three groups, which during a period of one month: (I) used chlorhexidine digluconate (CHX), (II) used high concentration of fluoride (F) gel and (III) performed standard oral hygiene. The plaque and gingivitis index, pH of biofilm and white spot lesions (WSL) were assessed. Changes of the bacteria in the biofilm were analyzed by the quantitative polymerase chain reaction RESULTS: Increase in the plaque index, pH of biofilm, and WSL was observed during orthodontic treatment with standard oral hygiene. Large interindividual variability was present, and the effects of one-month use of fluorides and CHX on clinical parameters were not significant. Despite standard hygiene the abundance of studied biofilm bacteria increased - the most Streptoccocus mutans (14.2x) and S. salivarius (3.3x), moderate Veillonella parvula (3x) and the least S. sobrinus (2.3x) and Agregatibacter actinomycetemcomitans (1.9x). The use of CHX reduced S. sobrinus (2.2x) and A. actinomycetemcomitans (1.9x). Fluoride use reduced A. actinomycetemcomitans (1.3x) and S. sobrinus (1.2x). Fluorides better controlled S. mutans than CHX. CONCLUSION: Bacterial biomass in supragingival biofilm increased during treatment with metal orthodontic appliances, with greater increase in cariogenic bacteria than periopathogens. Fluoride controlled S. mutans, while CHX S. sobrinus and A. actinomycetemcomitans.


Subject(s)
Biofilms , Chlorhexidine , Fluorides , Orthodontic Appliances, Fixed , Humans , Biofilms/drug effects , Female , Adolescent , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Child , Male , Young Adult , Fluorides/pharmacology , Dental Plaque Index , Oral Hygiene/methods , Dental Plaque/microbiology , Hydrogen-Ion Concentration , Streptococcus mutans/drug effects , Gingivitis/microbiology , Anti-Infective Agents, Local/pharmacology , Polymerase Chain Reaction , Dental Caries/microbiology
6.
Methods Enzymol ; 696: 155-174, 2024.
Article in English | MEDLINE | ID: mdl-38658078

ABSTRACT

The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.


Subject(s)
Biofilms , Candida albicans , Fluorides , Streptococcus gordonii , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Streptococcus mutans/drug effects , Streptococcus mutans/genetics , Streptococcus mutans/physiology , Streptococcus mutans/metabolism , Streptococcus mutans/growth & development , Fluorides/pharmacology , Fluorides/metabolism , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/physiology , Streptococcus gordonii/drug effects , Streptococcus gordonii/genetics , Streptococcus gordonii/physiology , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Dental Caries/microbiology
7.
Arch Oral Biol ; 163: 105973, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669744

ABSTRACT

OBJECTIVE: The study assessed the effect of low-fluoride gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. DESIGN: Bovine dentin blocks (n = 154) were selected by surface microhardness and randomly allocated into seven groups (n = 22/group), according to the gels: Placebo; 4500 ppm F (4500F); 9000 ppm F (9000F); 5% TMP microparticulate plus 4500F (5TMPm+4500F); 2.5% TMP nanoparticulate plus 4500 F (2.5TMPn+4500F); 5% TMP nanoparticulate plus 4500F (5TMPn+4500F); and 12,300 ppm F acid gel (APF). All blocks were treated only once for 60 s and cyclically eroded (ERO, citric acid, 4 × 90 s/day) or eroded and brushed (4 × 15 s/day, five strokes/s, ERO+ABR) over five days (each subgroup n = 11). Dentin wear and integrated hardness loss in depth (ΔKHN) were determined, and the data were submitted to two-way ANOVA, followed by Tukey's test, and Spearman's correlation (p < 0.05). RESULTS: For ERO, all gels containing 4500F supplemented with TMP significantly reduced dentin wear compared with their counterpart without TMP, reaching values similar to 9000F. For ERO+ABR, 5TMPn+ 4500F gel led to significantly lower wear than all its counterparts, reaching values similar to 9000F and APF. As for ΔKHN, all gels containing TMP promoted superior protective effects compared with 4500F, reaching values similar to 9000F and APF under both challenges. A positive correlation between dentin wear and mineral content in depth was verified. CONCLUSIONS: Gels containing 4500F supplemented with TMP significantly reduced dentin erosive wear compared with pure 4500F, with additional benefit from the use of nanoparticles.


Subject(s)
Dentin , Fluorides , Gels , Nanoparticles , Polyphosphates , Tooth Erosion , Polyphosphates/pharmacology , Animals , Cattle , Tooth Erosion/prevention & control , Dentin/drug effects , Fluorides/pharmacology , In Vitro Techniques , Hardness , Random Allocation , Surface Properties
8.
mBio ; 15(5): e0018424, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38624207

ABSTRACT

Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE: Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.


Subject(s)
Biofilms , Candida albicans , Fluorides , Streptococcus gordonii , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/physiology , Candida albicans/metabolism , Streptococcus mutans/genetics , Streptococcus mutans/drug effects , Streptococcus mutans/metabolism , Streptococcus mutans/physiology , Fluorides/pharmacology , Fluorides/metabolism , Streptococcus gordonii/drug effects , Streptococcus gordonii/genetics , Streptococcus gordonii/physiology , Streptococcus gordonii/metabolism , Gene Knockout Techniques , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Dental Caries/microbiology
9.
Dent Mater J ; 43(3): 346-358, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583998

ABSTRACT

Conventional resin-based sealants release minimal fluoride ions (F) and lack antibacterial activity. The objectives of this study were to: (1) develop a novel bioactive sealant containing calcium fluoride nanoparticles (nCaF2) and antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), and (2) investigate mechanical performance, F recharge and re-release, microleakage, sealing ability and cytotoxicity. Helioseal F served as commercial control. The initial F release from sealant containing 20% nCaF2 was 25-fold that of Helioseal F. After ion exhaustion and recharge, the F re-release from bioactive sealant did not decrease with increasing number of recharge and re-release cycles. Elastic modulus of new bioactive sealant was 44% higher than Helioseal F. The new sealant had excellent sealing, minimal microleakage, and good cytocompatibility. Hence, the nanostructured sealant had substantial and sustained F release and antibacterial activity, good sealing ability and biocompatibility. The novel bioactive nCaF2 sealant is promising to provide long-term F ions for caries prevention.


Subject(s)
Anti-Bacterial Agents , Calcium Fluoride , Dental Leakage , Materials Testing , Methacrylates , Nanoparticles , Pit and Fissure Sealants , Pit and Fissure Sealants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Calcium Fluoride/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Fluorides/chemistry , Fluorides/pharmacology , Elastic Modulus , Animals , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Surface Properties , Composite Resins
10.
J Agric Food Chem ; 72(12): 6424-6431, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470989

ABSTRACT

Six new 9H-carbazole derivatives (1-6) and nine previously reported compounds (7-15) were isolated from a fermented solid medium of the Thailand mangrove-derived Streptomyces strain, OUCMDZ-5511, under fluoride stress. Compounds 2-5, 12, and 15 were exclusively present in the fluoride-supplemented fermentation medium, while compounds 7-9, 13, and 14 were newly discovered natural products. The molecular structures of the compounds were identified by a spectroscopic analysis. The new compound 2 displayed antiquorum sensing activity against Chromobacterium violaceum ATCC 12472 by reducing the violacein production and inhibiting the biofilm formation in a concentration-dependent manner. The study revealed that compound 2 could be a novel potential inhibitor of quorum sensing.


Subject(s)
Fluorides , Streptomyces , Fluorides/pharmacology , Anti-Bacterial Agents/pharmacology , Quorum Sensing , Carbazoles/pharmacology , Biofilms
11.
J Agric Food Chem ; 72(12): 6143-6154, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38475697

ABSTRACT

Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.


Subject(s)
Fluorides , Pyroptosis , Animals , Mice , Male , Fluorides/pharmacology , Interleukin-17 , Mice, Inbred ICR , Semen/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
12.
Cell Biochem Funct ; 42(2): e3976, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489223

ABSTRACT

Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.


Subject(s)
Dental Caries , Drinking Water , Mice , Animals , Female , Fluorides/pharmacology , Fluorides/analysis , Mice, Inbred NOD , Blood Glucose/analysis , Proteomics , Drinking Water/analysis , Ileum/chemistry , Ileum/metabolism
13.
Dent Mater ; 40(5): 811-823, 2024 May.
Article in English | MEDLINE | ID: mdl-38490919

ABSTRACT

OBJECTIVES: Evaluate the ability of strontium fluoride on bond strength and enamel integrity after incorporation within orthodontic adhesive system as a delivery vehicle. METHODS: Experimental orthodontic adhesive system Transbond™ XT were modified with 1% Sr2+, 0.5% SrF2, 1% strontium, 0.5% Sr2+, 1% F-, 0.5% F-, and no additions were control. Mixing of formulation was monitored using Fourier transform infrared spectroscopy. Small-molecule drug-discovery suite was used to gain insights into Sr2+, F-, and SrF2 binding. Shear bond testing was performed after 6-months of ageing. Enamel blocks were cut, and STEM pictures were recorded. Specimens were indented to evaluate elastic modulus. Raman microscope was used to collect Raman spectra and inspected using a scanning electron microscope. Crystal structural analysis was performed using X-ray diffraction. Effect of material on cellular proliferation was determined. Confocal was performed to evaluate the effect of formulation on biofilms. RESULTS: FTIR of modified adhesives depicted peak changes within range due to various functional groups existing within samples. TEM represented structurally optimized hexagonal unit-cell of hydroxyapatite. Mean shear bond strength is recorded highest for Transbond XT with 1% SrF2. Dead bacterial percentage appeared higher in 0.5% SrF2 and 1% F- specimens. Crystal lengths showed an increase in 0.5% and 1% SrF2 specimens. Phase contrast within TEM images showed a union of 0.5% SrF2 crystal with enamel crystal with higher elastic modulus and highly mineralized crystalline hydroxyapatite. Intensity of ν1 PO43- and ν1 CO32- along with carbonate - / ν1PO43- ratio displayed good association with strontium fluoride. The formulation showed acceptable cell biocompatibility (p < 0.353). All specimens displayed characteristic diffraction maxima of different apatite angles within XRD. SIGNIFICANCE: Experimental results suggested good biocompatibility, adequate mechanical strength, and far-ranging crystallization ability. This would provide a new strategy to overcome the two major challenges of fixed orthodontics, biofilm growth, and demineralization of enamel.


Subject(s)
Dental Enamel , Elastic Modulus , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Spectrum Analysis, Raman , Dental Enamel/drug effects , Spectroscopy, Fourier Transform Infrared , In Vitro Techniques , Resin Cements/chemistry , Dental Bonding , X-Ray Diffraction , Tooth Remineralization/methods , Strontium/chemistry , Strontium/pharmacology , Shear Strength , Humans , Fluorides/chemistry , Fluorides/pharmacology , Surface Properties , Biofilms/drug effects
14.
J Dent ; 143: 104906, 2024 04.
Article in English | MEDLINE | ID: mdl-38428715

ABSTRACT

OBJECTIVE: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. METHODS: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). RESULTS: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). CONCLUSIONS: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release. CLINICAL SIGNIFICANCE: Novel composites containing fluoride-doped calcium phosphates may be promising to modulate bacteria growth, promote remineralisation and reduce the risk of cytotoxicity related to monomers' elution.


Subject(s)
Fluorides , Phosphates , Phosphates/pharmacology , Phosphates/chemistry , Fluorides/pharmacology , Fluorides/chemistry , Materials Testing , Composite Resins/pharmacology , Composite Resins/chemistry , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Calcium Fluoride , Anti-Bacterial Agents/pharmacology
15.
J Dent ; 143: 104909, 2024 04.
Article in English | MEDLINE | ID: mdl-38428717

ABSTRACT

OBJECTIVES: This in vitro study aimed to evaluate the effect of resin infiltration combined with casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) or bioactive glass (BAG) on the stability of enamel white spot lesions (WSLs) treatment. MATERIALS AND METHODS: Eighty-four enamel blocks were prepared from the buccal surfaces of sound human premolars. All enamel blocks were placed in a demineralisation solution for 3 days to establish the artificial enamel WSLs. Enamel blocks with WSLs were randomly divided into three groups (n = 28 each group): RI/B: one-off resin infiltration followed by twice daily BAG treatment; RI/C: one-off resin infiltration followed by twice daily CPP-ACPF treatment; RI: one-off resin infiltration treatment only (as control) and subjected to pH cycling for 7 days. Surface morphology, elemental analysis, crystal characteristics, surface roughness and microhardness of enamel surfaces were investigated by scanning electron microscopy and energy-dispersive spectrometry observation, X-ray diffraction (XRD), atomic force microscope and Vickers' hardness testing, respectively. RESULTS: Mean values of the surface roughness (mean±standard deviation (nm)) were 24.52±5.07, 27.39±5.87 and 34.36±4.55 for groups RI/B, RI/C and RI respectively (p = 0.003). The calcium to phosphate ratios were 1.32±0.16, 1.22±0.26 and 0.69±0.24 for groups RI/B, RI/C and RI respectively (p < 0.001). XRD revealed apatite formation in all three groups. The mean enamel surface microhardness (kg/mm2) of the groups were 353.93±28.49, 339.00±27.32 and 330.38±22.55 for groups RI/B, RI/C and RI respectively (p = 0.216). CONCLUSIONS: Resin infiltration combined with CPP-ACPF or BAG remineralisation appears to improve the surface properties of WSLs. CLINICAL SIGNIFICANCE: The combination of resin infiltration and CPP-ACPF/BAG remineralisation may be a potential treatment for the management of the WSLs.


Subject(s)
Dental Caries , Dental Enamel , Humans , Dental Enamel/pathology , Fluorides/pharmacology , Fluorides/therapeutic use , Fluorides/analysis , Calcium Phosphates/pharmacology , Calcium Phosphates/therapeutic use , Dental Caries/pathology
16.
Dent Mater ; 40(4): 716-727, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395738

ABSTRACT

OBJECTIVES: This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS: Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS: The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT: SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.


Subject(s)
Dental Caries , Fluorides , Humans , Fluorides/pharmacology , Fluorides/chemistry , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Strontium/pharmacology , Strontium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Apatites/pharmacology , Dental Caries/therapy , Materials Testing
17.
Dent Mater J ; 43(2): 320-327, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38382939

ABSTRACT

We aimed to determine whether adhesive components could increase the release time of effective fluoride concentration from an experimental fluoride varnish applied to bovine teeth. An experimental fluoride varnish containing 5% sodium fluoride (EX1) was prepared and combined with 35% hydroxyethyl methacrylate (HEMA) (EX2), 5% glutaraldehyde (EX3), or 35% HEMA/5% glutaraldehyde mixture (EX4). Two commercially available fluoride varnishes were used for comparison. Each group was applied to bovine incisors, and the fluoride release and pH were monitored for 30 days. Cell viability analysis, scanning electron microscopy, and energy-dispersive spectroscopy were performed. EX4 released the highest and most effective concentration of fluoride for the longest period and reached neutral pH at the earliest; the release was maintained for up to 30 days without cytotoxicity. In conclusion, EX4 is considered to be the most effective varnish to prevent dental caries.


Subject(s)
Dental Caries , Fluorides , Methacrylates , Animals , Cattle , Fluorides/pharmacology , Fluorides, Topical/pharmacology , Fluorides, Topical/chemistry , Cariostatic Agents/pharmacology , Cariostatic Agents/chemistry , Dental Caries/prevention & control , Glutaral , Sodium Fluoride/pharmacology , Sodium Fluoride/chemistry
18.
Sci Rep ; 14(1): 3378, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336814

ABSTRACT

This study evaluates the ideal pH for anti-erosion and anti-adherent efficacy of fluoride and stannous solutions (sodium fluoride (SF), amine fluoride (AF), sodium monofluorophosphate (SMFP), stannous fluoride (SnF2) with 500 ppm fluoride concentration each and stannous chloride (SnCl2, 1563 ppm stannous)). In vitro, solutions were tested at pH 4.5 and 5.5. The main in situ experiments were carried out at the pH of 4.5: For pellicle formation 6 volunteers wore bovine enamel slabs intraorally for 1 min, rinsed with 8 ml solution for 1 min and continued for up to 30 min/8 h. Physiological pellicle samples served as controls. After incubation in HCl (2.0, 2.3) for 2 min mineral release was determined photometrically. Bacterial counts on 8 h biofilms were determined by fluorescence microscopy (BacLight™ and DAPI with Concanavalin A). Modification of the pellicle ultrastructure was examined by TEM. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney-U tests with Bonferroni-correction (p < 0.05). SnF2 showed a significant erosion protection. AF, SnF2, and SnCl2 were most anti-adherent. SnF2 and SnCl2 caused a pronounced basal pellicle with stannous precipitates. Compared to other fluoride monosubstances, stannous ions offer greater protection against erosive acidic attacks. Stannous ions act as crucial co-factor in this process.


Subject(s)
Fluorides , Tooth Erosion , Animals , Cattle , Humans , Fluorides/pharmacology , Tooth Erosion/prevention & control , Tin Compounds , Sodium Fluoride/pharmacology , Sodium Fluoride/chemistry , Hydrogen-Ion Concentration
19.
J Dent ; 143: 104895, 2024 04.
Article in English | MEDLINE | ID: mdl-38387598

ABSTRACT

OBJECTIVES: To compare the remineralisation efficacy and ion bioavailability of two novel SnF2-containing dentifrices in a blinded, cross-over, randomised in situ clinical study. METHODS: Six participants wore removal palatal appliances holding human enamel and dentine blocks with subsurface lesions. Appliances were worn for two treatment periods of 14 consecutive days each, with a one-week washout period in-between. Participants were randomly allocated to rinse with a 1:5 diluted coded slurry of one of two dentifrices containing either 5 % casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) +1100 ppm F as SnF2 [MIPOP], or 1100 ppm F as SnF2 [CT], for 1 min, four times a day. Saliva was collected post-treatment and analysed for tin, calcium, inorganic phosphate and fluoride ions using atomic absorption spectrophotometry and ion chromatography. Enamel and dentine lesions were analysed for percent remineralisation (%R) using transverse microradiography and percent surface microhardness recovery (%SMHR). RESULTS: MIPOP released significantly higher F (3.00 ± 0.27 mM), Ca (15.23 ± 3.23 mM) and Sn (1.18 ± 0.13 mM) into saliva whereas CT released 2.89 ± 0.32 mM F and only 0.84 ± 0.11 mM Ca and 0.28 ± 0.10 mM Sn. MIPOP produced significantly higher %R than CT: 25.6 ± 1.5 % compared to 15.2 ± 0.7 % in enamel, and 33.6 ± 3.1 % compared to 20.6 ± 1.1 % in dentine. Additionally, MIPOP produced significantly higher %SMHR (18.2 ± 7.9 %) compared to CT (4.1 ± 0.6 %). CONCLUSIONS: Both dentifrices promoted remineralisation, but the MIPOP dentifrice with added CPP-ACP and the ion-stabilising effects of CPP released higher amounts of bioavailable tin and produced significantly higher remineralisation and surface microhardness recovery. CLINICAL SIGNIFICANCE: Modern dentifrices contain SnF2 for a range of oral health benefits. Challenges associated with stability of these formulations can affect ion bioavailability, reducing efficacy. Two dentifrices with SnF2 promoted remineralisation in situ, however the dentifrice with the added saliva biomimetic CPP-ACP was superior and therefore may produce greater health benefits.


Subject(s)
Dentifrices , Tin Fluorides , Humans , Tin Fluorides/pharmacology , Tin Fluorides/therapeutic use , Dentifrices/therapeutic use , Sodium Fluoride/therapeutic use , Tin/pharmacology , Tooth Remineralization/methods , Fluorides/pharmacology , Dental Enamel/pathology , Cross-Over Studies , Dentin , Cariostatic Agents/pharmacology
20.
J Dent ; 143: 104901, 2024 04.
Article in English | MEDLINE | ID: mdl-38417610

ABSTRACT

OBJECTIVES: To assess the effect of different tin-containing toothpastes on the control of erosive tooth wear in enamel and dentin. METHODS: Enamel and dentin slabs were randomly distributed into 7 experimental groups (n = 10/substrate): C-: negative control (Artificial saliva); AmF (regular fluoridated toothpaste without tin); Sn-1 (SnF2/NaF); Sn-2 (SnF2/NaF/SnCl2); Sn-3 (SnCl2/NaF); Sn-4 (SnF2/SnCl2); Sn-5 (SnCl2/AmF/NaF/chitosan). Specimens were submitted to 5-day erosion-abrasion cycling. Surface loss (SL) was determined with an optical profilometer. Tin deposition on the tooth surfaces and some characteristics of the toothpastes (pH, potentially available F-, %weight of solid particles, and RDA) were also assessed. Data were statistically analyzed (α = 0.05). RESULTS: For enamel, the Sn-2 presented the lowest SL, not differing significantly from AmF, C+, and Sn-3. The SL of these groups was significantly lower than the C-, except for Sn-3. Sn-1 and Sn-4 were also not significantly different from C-. For dentin, C- significantly showed the highest SL values, whilst, Sn-1 presented the lowest SL, not differing significantly from AmF, Sn-2, C+, and Sn-3. There was a significant positive association between enamel SL and the pH and tin deposition. Dentin SL was significantly negatively associated with the %weight of solid particles and RDA. CONCLUSIONS: Most of the tin-toothpastes were able to exhibit some protection against ETW. In this process, the toothpastes characteristics play a role, as lower enamel SL was significantly associated with lower pH values and tin deposition; and lower dentin SL was associated with higher %weight of solid particles and RDA of the toothpastes. CLINICAL SIGNIFICANCE: Tin-containing toothpastes can be used for erosive tooth wear protection, but our study showed that their effect depends on the pH, amount of tin deposition, % weight of solid particles and RDA of the toohpastes.


Subject(s)
Tin Compounds , Tooth Abrasion , Tooth Erosion , Tooth Wear , Humans , Tin Fluorides/pharmacology , Toothpastes/pharmacology , Fluorides/pharmacology , Tooth Erosion/prevention & control , Tin , Tooth Abrasion/prevention & control , Sodium Fluoride/pharmacology , Toothbrushing
SELECTION OF CITATIONS
SEARCH DETAIL
...