Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.113
Filter
1.
Int J Hyg Environ Health ; 259: 114384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735219

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are widely observed in environmental media and often are found in indoor environments as well as personal-care and consumer products. Humans may be exposed through water, food, indoor dust, air, and the use of PFAS-containing products. Information about relationships between PFAS exposure sources and pathways and the amounts found in human biomatrices can inform source-contribution assessments and provide targets for exposure reduction. This work collected and collated evidence for correlates of PFAS human exposure as measured through sampling of biomatrices and surveys of dietary consumption and use of consumer products and articles. A systematic evidence mapping approach was applied to perform a literature search, conduct title-abstract and full-text screening, and to extract primary data into a comprehensive database for 16 PFAS. Parameters of interest included: sampling dates and locations, cohort descriptors, PFAS measured in a human biomatrix, information about food consumption in 11 categories, use of products/articles in 11 categories, and reported correlation values (and their statistical strength). The literature search and screening process yielded 103 studies with information for correlates of PFAS exposures. Detailed data were extracted and compiled on measures of PFAS correlations between biomatrix concentrations and dietary consumption and other product/article use. A majority of studies (61/103; 59%) were published after 2015 with few (8/103; 8%) prior to 2010. Studies were most abundant for dietary correlates (n = 94) with fewer publications reporting correlate assessments for product use (n = 56), while some examined both. PFOA and PFOS were assessed in almost all studies, followed by PFHxS, PFNA, and PFDA which were included in >50% of the studies. No relevant studies included PFNS or PFPeS. Among the 94 studies of dietary correlates, significant correlations were reported in 83% of the studies for one or more PFAS. The significant dietary correlations most commonly were for seafood, meats/eggs, and cereals/grains/pulses. Among the 56 studies of product/article correlates, significant correlations were reported in 70% of the studies. The significant product/article correlations most commonly were for smoking/tobacco, cosmetics/toiletries, non-stick cookware, and carpet/flooring/furniture and housing. Six of 11 product/article categories included five or fewer studies, including food containers and stain- and water-resistant products. Significant dietary and product/article correlations most commonly were positive. Some studies found a mix of positive and negative correlations depending on the PFAS, specific correlate, and specific response level, particularly for fats/oils, dairy consumption, food containers, and cosmetics/toiletries. Most of the significant findings for cereals/grains/pulses were negative correlations. Substantial evidence was found for correlations between dietary intake and biomatrix levels for several PFAS in multiple food groups. Studies examining product/article use relationships were relatively sparse, except for smoking/tobacco, and would benefit from additional research. The resulting database can inform further assessments of dietary and product use exposure relationships and can inform new research to better understand PFAS source-to-exposure relationships. The search strategy should be extended and implemented to support living evidence review in this rapidly advancing area.


Subject(s)
Environmental Exposure , Fluorocarbons , Humans , Fluorocarbons/analysis , Environmental Exposure/analysis , Food Contamination/analysis , Diet , Environmental Pollutants/analysis , Environmental Monitoring/methods , Dietary Exposure/analysis
2.
Environ Monit Assess ; 196(6): 573, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780819

ABSTRACT

This study aimed to predict the dynamics of per- and polyfluoroalkyl substance (PFAS) contamination and ecological vulnerability within coastal regions of Africa utilizing time-averaged remote-sensed data patterns from 2020 to 2023. The analysis identified PFAS contamination hotspots along the coast of Africa, particularly in western Africa around Nigeria and in areas spanning Equatorial Guinea and Guinea-Bissau, with risk influenced by eastward wind patterns, overland runoff, and elevated aerosol optical depth (AOD) values. Regional trends indicated that variations in solar energy absorption and surface air temperature could influence PFAS dynamics in North Africa, South Africa, East Africa, and West Africa. In North Africa, intermediate overland runoff and lower sea-surface temperatures were observed. In South Africa, there were intermediate runoff levels and warmer sea-surface temperatures. East Africa experienced intermediate runoff as well. In West Africa, there was increased susceptibility to high overland runoff and aerosol-related PFAS contamination. From the weighted vulnerability index, significant disparities in environmental conditions across African coastal regions revealed that North Africa had relatively lower vulnerability, while West Africa had the highest susceptibility to per- and polyfluoroalkyl substance (PFAS) contamination. This study emphasizes the necessity for region-specific vulnerability index models and targeted mitigation strategies to address diverse ecological and health risks from PFAS contamination along the African coast. Regional and international collaboration, spearheaded by organizations such as the AU and ECOWAS, is essential, with tailored policies aligned with the SDGs, Agenda 2063, and NEPAD crucial for effective environmental management, urging policymakers to prioritize cooperation and resource sharing for comprehensive sustainability goals.


Subject(s)
Environmental Monitoring , Africa , Water Pollutants, Chemical/analysis , Remote Sensing Technology , Fluorocarbons/analysis
3.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38744493

ABSTRACT

Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.


Subject(s)
Animals, Wild , Environmental Pollutants , Fluorocarbons , Reproductive Health , Animals , Humans , Fluorocarbons/toxicity , Fluorocarbons/adverse effects , Fluorocarbons/analysis , Livestock , Reproduction/drug effects , Environmental Pollution/adverse effects , Environmental Pollution/analysis , Environmental Exposure/adverse effects
4.
Sci Total Environ ; 932: 172982, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705287

ABSTRACT

In recent decades, the presence of perfluoroalkyl acids (PFAAs) in municipal solid waste leachate has emerged as a growing concern. Research has focused on PFAA release and occurrence characteristics in landfill and waste-to-energy leachate, highlighting their significant impact when released into wastewater treatment plants. Given the extremely high loading rate faced by current on-site leachate treatment plants (LTPs), the objective of this study is to assess whether the current "anaerobic/aerobic (A/O) + membrane bioreactor (MBR) + nanofiltration (NF) + reverse osmosis (RO)" configuration is effective in PFAAs removal. Concentrations of raw and treated leachate in 10 on-site LTPs with same treatment configuration and varying landfill ages were measured, and a comprehensive mass flow analysis of each treatment process was conducted. The results indicate that A/O treatment has limited capacity for PFAA removal, while NF and RO processes reached 77.44 % and 94.30 % removal rates of ∑PFAAs concentration, respectively. Short-chain PFAAs (> 80 % detected frequency) primarily influenced the distribution and variations of PFAAs in leachate and tend to disperse in the water phase. Correlation analysis revealed the current on-site LTPs exhibit a more efficient removal capacity for long-chain PFAAs.


Subject(s)
Fluorocarbons , Waste Disposal Facilities , Waste Disposal, Fluid , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Bioreactors
5.
Environ Int ; 187: 108727, 2024 May.
Article in English | MEDLINE | ID: mdl-38735074

ABSTRACT

BACKGROUND: There is inconclusive evidence for an association between per- and polyfluoroalkyl substances (PFAS) and fetal growth. OBJECTIVES: We conducted a nation-wide register-based cohort study to assess the associations of the estimated maternal exposure to the sum (PFAS4) of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) with birthweight as well as risk of small- (SGA) and large-for-gestational-age (LGA). MATERIALS AND METHODS: We included all births in Sweden during 2012-2018 of mothers residing ≥ four years prior to partus in localities served by municipal drinking water where PFAS were measured in raw and drinking water. Using a one-compartment toxicokinetic model we estimated cumulative maternal blood levels of PFAS4 during pregnancy by linking residential history, municipal PFAS water concentration and year-specific background serum PFAS concentrations in Sweden. Individual birth outcomes and covariates were obtained via register linkage. Mean values and 95 % confidence intervals (CI) of ß coefficients and odds ratios (OR) were estimated by linear and logistic regressions, respectively. Quantile g-computation regression was conducted to assess the impact of PFAS4 mixture. RESULTS: Among the 248,804 singleton newborns included, no overall association was observed for PFAS4 and birthweight or SGA. However, an association was seen for LGA, multivariable-adjusted OR 1.08 (95% CI: 1.01-1.16) when comparing the highest PFAS4 quartile to the lowest. These associations remained for mixture effect approach where all PFAS, except for PFOA, contributed with a positive weight. DISCUSSIONS: We observed an association of the sum of PFAS4 - especially PFOS - with increased risk of LGA, but not with SGA or birthweight. The limitations linked to the exposure assessment still require caution in the interpretation.


Subject(s)
Alkanesulfonic Acids , Birth Weight , Caprylates , Drinking Water , Fetal Development , Fluorocarbons , Maternal Exposure , Water Pollutants, Chemical , Fluorocarbons/blood , Fluorocarbons/analysis , Humans , Drinking Water/chemistry , Female , Sweden , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Pregnancy , Adult , Alkanesulfonic Acids/blood , Maternal Exposure/statistics & numerical data , Fetal Development/drug effects , Birth Weight/drug effects , Caprylates/blood , Infant, Newborn , Cohort Studies , Sulfonic Acids/blood , Registries , Male , Infant, Small for Gestational Age , Young Adult
6.
Chemosphere ; 358: 142227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704046

ABSTRACT

The widespread detection of perfluorooctanoic acid (PFOA) in the environment has raised significant concerns. The standard PFOA analytical method relies on expensive solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) instruments, making routine use prohibitive. We herein proposed a cost-effective yet novel enrichment method for determining PFOA at ng L-1 level. This method entailed a two-step sample preparation process: firstly, PFOA was extracted and enriched using a forward-extraction under acidic conditions, followed by a backward-extraction and enrichment step utilizing alkaline water. The enriched samples were subsequently subjected to a common ion chromatography (IC). Results reveal that maintaining a forward-extraction pH below its pKa value (2.8) is essential, as protonated PFOA proves effective in enhancing the enrichment factor (EF). The challenge lied in driving PFOA from forward-extractant to aqueous backward-extractant due to the decreased hydrophobicity of deprotonated PFOA (log Kow2 = 1.0). In addition, we found that evaporating forward-extractant with alkaline backward-extractant (containing 5% methanol) reduced potential analytical uncertainties associated with PFOA evaporation and sorption. Under optimal conditions, the method achieved a detection limit of 9.2 ng L-1 and an impressive EF value of 719. Comparison with SPE-LC-MS/MS confirmed the proposed method as a promising alternative for PFOA determination. Although initially targeted for PFOA, the novel methodology is likely applicable to preconcentration of other poly-fluoroalkyl substances.


Subject(s)
Caprylates , Fluorocarbons , Liquid-Liquid Extraction , Tandem Mass Spectrometry , Water Pollutants, Chemical , Caprylates/analysis , Caprylates/chemistry , Fluorocarbons/analysis , Fluorocarbons/isolation & purification , Fluorocarbons/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry/methods , Liquid-Liquid Extraction/methods , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Water/chemistry , Environmental Monitoring/methods
7.
J Hazard Mater ; 472: 134463, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723486

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.


Subject(s)
Corbicula , Fluorocarbons , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Corbicula/metabolism , Corbicula/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Geologic Sediments/analysis , Biological Monitoring , Virginia
8.
Sci Total Environ ; 933: 173157, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740209

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.


Subject(s)
Alkanesulfonic Acids , Diet , Environmental Pollutants , Fluorocarbons , Milk, Human , Humans , Fluorocarbons/blood , Fluorocarbons/analysis , Milk, Human/chemistry , Female , Diet/statistics & numerical data , Environmental Pollutants/blood , Environmental Pollutants/analysis , New Hampshire , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/blood , Adult , Birth Cohort , Maternal Exposure/statistics & numerical data , Pregnancy , Caprylates/blood , Caprylates/analysis , Cohort Studies , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Decanoic Acids/blood , Decanoic Acids/analysis
9.
Sci Total Environ ; 933: 173245, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38754512

ABSTRACT

The present study has investigated per- and poly-fluoroalkyl substances (PFAS) in the gill tissues of various fish species inhabiting different trophic levels within Eleyele Lake, a tropical freshwater lake in Nigeria. The mean concentrations of PFAS congeners were determined, and their trends and patterns were analyzed across different trophic species. The results revealed variations in congener abundance and species-specific patterns that was influenced by habitat and niche preferences. Multivariate associations using canonical-correlation analysis (CCA) revealed distinct trends in the relationships between gill concentrations of specific PFAS congeners and different trophic groups. The strongest congener relationships were observed in the pelagic omnivore (Oreochromic niloticus: ON) with positive associations for 4:2 FTS, 9CL-PF3ONS, PFTDA, MeFOSA and PFHxS. The differences in congener profiles for the two herbivorous fish (Sarotherodon melanotheron (SM) and Coptodon galilaeus (CG)) reflect possible divergence in microhabitat and niche preferences. Furthermore, the congener overlaps between the herbivore (CG), and benthic omnivore (Clarias gariepinus: ClG) indicate a possible niche and microhabitat overlap. Our study provides valuable insights into the congener dynamics of PFAS at Eleyele Lake. However, the dissimilarity and overlapping PFAS congener profile in fish gills reflects the interplay of species niche preference and microhabitat associations. The present study highlights the need for further research to assess ecological risks and develop effective PFAS management strategies.


Subject(s)
Ecosystem , Environmental Monitoring , Fishes , Gills , Lakes , Water Pollutants, Chemical , Animals , Lakes/chemistry , Water Pollutants, Chemical/analysis , Fishes/metabolism , Nigeria , Fluorocarbons/analysis
10.
Water Res ; 257: 121675, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692258

ABSTRACT

Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have aroused great concern owing to their widespread occurrence and toxic effects. However, their long-term trends and multimedia fate remain largely unknown. Here, we investigate the spatiotemporal characteristics and periodic oscillations of PFOS and PFOA in the Elbe River between 2010 and 2021. Anthropogenic emission inventories and multimedia fugacity model were developed to analyse their historical and future transport fates and quantify related human risks in each medium for the three age groups. The results show that average PFOS and PFOA concentrations in the Elbe River were 4.08 and 3.41 ng/L, declining at the annual rate of 7.36% and 4.98% during the study period, respectively. Periodic oscillations of their concentrations and mass fluxes were most pronounced at 40-60 and 20-40 months. The multimedia fugacity model revealed that higher concentrations occurred in fish (PFOS: 14.29, PFOA: 0.40 ng/g), while the soil was their dominant sink (PFOS: 179, PFOA: 95 tons). The exchange flux between water and sediment was the dominant pathway in multimedia transportation (397 kg/year). Although PFOS and PFOA concentrations are projected to decrease by 22.41% and 50.08%, respectively, from 2021 to 2050, the hazard quotient of PFOS in fish is a low hazard. This study provides information for the assessment of PFOS and PFOA pollution in global watersheds and the development of related mitigation policies, such as banning fish predation in polluted rivers, to mitigate their risks.


Subject(s)
Alkanesulfonic Acids , Caprylates , Environmental Monitoring , Fluorocarbons , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Humans , Caprylates/analysis , Environmental Monitoring/methods , Risk Assessment
11.
Environ Sci Pollut Res Int ; 31(22): 33141-33147, 2024 May.
Article in English | MEDLINE | ID: mdl-38709413

ABSTRACT

Fish and seafood are valuable sources of both nutrients and organic contaminants. The expansion of the analytical per- and polyfluoroalkyl substances (PFAS) panel with toxicological characterisation necessitates an update of PFAS intake assessment and management within the context of cumulative exposure. Benthic and demersal seafood, such as clams, squid, and cuttlefish, are more prone to contamination with C9-C14 perfluorocarboxylic acids, exhibiting the highest relative potency factors in terms of immunotoxicity, according to the grid recently proposed by the European Commission Scientific Committee on Health, Environment, and Emerging Risk. Based on the Italian food consumption database referring to demersal and benthic biota such as squid, cuttlefish, crustaceans, and clams, a toxicology-based intake scenario was drafted to highlight the relevant contribution of such wild species to PFAS intake, well above the provisional health-based guidance value of 4.4 ng/kg body weight per week. Ensuring consistency between PFAS reduction and substitution policies, environmental quality standards for water bodies, and the issuance of advisories and regulations regarding safe and sustainable intake of fish and seafood is crucial. This is done to prevent a loss of accountability for institutional bodies, which aim to protect fragile (sensitive and vulnerable) groups from PFAS exposure and simultaneously promote 'blue growth' as a sustainable food production system.


Subject(s)
Fishes , Fluorocarbons , Seafood , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Fluorocarbons/toxicity , Food Contamination , Environmental Monitoring , Risk Assessment
12.
Anal Chem ; 96(21): 8282-8290, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717341

ABSTRACT

Hamburger wrapping paper, coated with water-based barrier coatings, used in the food packaging industry was studied by using the total organic fluorine (TOF) method based on combustion ion chromatography and fluorine-19 solid-state nuclear magnetic resonance (19F ss-NMR) spectroscopy. Although the TOF method is a fast and affordable method used to screen for per- and polyfluoroalkyl substances (PFAS), the amount of fluorine it measures is heavily dependent on the extraction step and, therefore could lead to inaccurate results. Fluorine-19 ss-NMR spectroscopy can differentiate between organic and inorganic fluorinated sources, eliminating the need for sample clean up. To illustrate this, the 19F ss-NMR spectra of clean coated paper samples that contained naturally occurring F- ions from the talc raw material and spiked samples containing perfluorooctanoic acid were compared. A range of experimental conditions was explored to improve sensitivity for low PFAS concentrations (in the order of 10-20 mg/kg). Despite the disadvantages of ss-NMR spectroscopy, such as the low limit of detection and resolution, the results demonstrate it can be a viable tool to directly detect PFAS moieties in consumer and food packaging. Therefore, 19F solid-state NMR spectroscopy challenges and complements current methods, which only provide indirect evidence of the presence of PFAS.


Subject(s)
Food Packaging , Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Fluorine/analysis , Fluorocarbons/analysis , Fluorocarbons/chemistry , Food Contamination/analysis , Caprylates/analysis , Caprylates/chemistry
13.
Environ Sci Technol ; 58(21): 9283-9291, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752583

ABSTRACT

The concerns about the fate of per- and polyfluoroalkyl substances (PFAS) in the atmosphere are continuously growing. In this study, size-fractionated particles, gas, and rainwater samples were simultaneously collected in Shijiazhuang, China, to investigate the multiphase distribution of PFAS in the atmosphere. Perfluoroalkyl carboxylic acids (PFCAs) dominated the total concentration of PFAS in atmospheric media. A strong positive relationship (0.79 < R2 < 0.99) was observed between the concentration of PFCAs and organic matter fraction (fOM) in different particle size fractions, while no such relationship for perfluoroalkyl sulfonic acids (PFSAs) and fOM, suggesting fOM may be an important factor influencing the size-dependent distribution of PFCAs. Temperature played a key role in the gas-particle partitioning of PFAS, while it did not significantly affect their particle-size-dependent distribution. The associative concentration fluctuation of particle and particle-bound PFAS during precipitation suggested that precipitation scavenging was an important mechanism for the removal of PFAS from the atmosphere. Furthermore, temporary increases in atmospheric PFAS concentrations were observed during the precipitation. Fugacity ratios of PFAS in rainwater and gas phase (log fR/fG ranged between 2.0 and 6.6) indicated a strong trend for PFAS to diffuse from the rainwater to the gas phase during the precipitation, which may explain that the concentration of PFAS in the gas phase continued to increase even at the end of the precipitation.


Subject(s)
Atmosphere , Fluorocarbons , Particle Size , Fluorocarbons/analysis , Atmosphere/chemistry , Air Pollutants/analysis , Rain/chemistry , China , Environmental Monitoring , Gases , Chemical Precipitation
14.
Environ Sci Technol ; 58(21): 9303-9313, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752648

ABSTRACT

As part of the Integrated Atmospheric Deposition Network, precipitation (n = 207) and air (n = 60) from five sites and water samples (n = 87) from all five Great Lakes were collected in 2021-2023 and analyzed for 41 per- and polyfluoroalkyl substances (PFAS). These measurements were combined with other available data to estimate the mass budget for four representative compounds, PFBA, PFBS, PFOS, and PFOA for the basin. The median Σ41PFAS concentrations in precipitation across the five sites ranged between 2.4 and 4.5 ng/L. The median Σ41PFAS concentration in lake water was highest in Lake Ontario (11 ng/L) and lowest in Lake Superior (1.3 ng/L). The median Σ41PFAS concentration in air samples was highest in Cleveland at 410 pg/m3 and lowest at Sleeping Bear Dunes at 146 pg/m3. The net mass transfer flows were generally negative for Lakes Superior, Michigan, and Huron and positive for Lakes Erie and Ontario, indicating that the three most northern lakes are accumulating PFAS and the other two are eliminating PFAS. Atmospheric deposition is an important source of PFAS, particularly for Lake Superior.


Subject(s)
Environmental Monitoring , Lakes , Lakes/chemistry , Atmosphere/chemistry , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Great Lakes Region , Air Pollutants/analysis
15.
Water Res ; 256: 121570, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640564

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern due to their long persistence in the environment, toxicity, and widespread presence in humans and wildlife. Knowledge regarding the extent of PFAS contamination in the environment is limited due to the need for analytical methods that can reliably quantify all PFAS, since traditional target methods using liquid chromatography (LC)-mass spectrometry (MS) fail to capture many. For a more comprehensive analysis, a total organic fluorine (TOF) method can be used as a screening tool. We combined TOF analysis with target LC-MS/MS analysis to create a statewide PFAS hotspot map for surface waters throughout South Carolina. Thirty-eight of 40 locations sampled contained detectable concentrations of organic fluorine (above 100 ng/L). Of the 33 target PFAS analyzed using LC-MS/MS, the most prevalent were perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), and perfluorohexanesulfonate (PFHxS). On average, LC-MS/MS only accounted for 2 % of the TOF measured. Locations with high TOF did not necessarily correlate to high total quantified PFAS concentrations and vice-versa, demonstrating the limitations of target PFAS analysis and indicating that LC-MS may miss highly contaminated sites. Results suggest that future surveys should utilize TOF to more comprehensively capture PFAS in water bodies.


Subject(s)
Fluorocarbons , Tandem Mass Spectrometry , Water Pollutants, Chemical , South Carolina , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Environmental Monitoring/methods , Fluorine/analysis , Alkanesulfonic Acids/analysis , Liquid Chromatography-Mass Spectrometry , Caprylates
16.
Biosens Bioelectron ; 257: 116330, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677022

ABSTRACT

Perfluorooctanoic acid (PFOA) poses a threat to the environment and human health due to its persistence, bioaccumulation, and reproductive toxicity. Herein, a lanthanide metal-organic framework (Ln-MOF)-based surface molecularly imprinted polymers (SMIPs) ratiometric fluorescence probe (Eu/Tb-MOF@MIPs) and a smartphone-assisted portable device were developed for the detection of PFOA with high selectivity in real water samples. The integration of Eu/Tb MOFs as carriers not only had highly stable multiple emission signals but also prevented deformation of the imprinting cavity of MIPs. Meanwhile, the MIPs layer preserved the fluorescence of Ln-MOF and provided selective cavities for improved specificity. Molecular dynamics (MD) was employed to simulate the polymerization process of MIPs, revealing that the formation of multiple recognition sites was attributed to the establishment of hydrogen bonds between functional monomers and templates. The probe showed a good linear relationship with PFOA concentration in the range of 0.02-2.8 µM, by giving the limit of detection (LOD) of 0.98 nM. Additionally, The red-green-blue (RGB) values analysis based on the smartphone-assisted portable device demonstrated a linear relationship of 0.1-2.8 µM PFOA with the LOD of 3.26 nM. The developed probe and portable device sensing platform exhibit substantial potential for on-site detecting PFOA in practical applications and provide a reliable strategy for the intelligent identification of important targets in water environmental samples.


Subject(s)
Biosensing Techniques , Caprylates , Fluorescent Dyes , Fluorocarbons , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Smartphone , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Caprylates/analysis , Caprylates/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/instrumentation , Fluorocarbons/chemistry , Fluorocarbons/analysis , Molecularly Imprinted Polymers/chemistry , Water Pollutants, Chemical/analysis , Limit of Detection , Lanthanoid Series Elements/chemistry , Spectrometry, Fluorescence/methods , Humans
17.
Environ Sci Technol ; 58(19): 8457-8463, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38685907

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) constitute a diverse group of man-made chemicals characterized by their water- and oil-repellent properties and persistency. Given their widespread use in consumer products, PFASs will inevitably be present in waste streams sent to Waste-to-Energy (WtE) plants. We have previously observed a subset of PFASs in residual streams (ashes, treated process water, and flue gas) from a WtE plant. However, the transport and distribution of PFASs inside the WtE plant have remained unaddressed. This study is part of a comprehensive investigation to create a synoptic overview of the distribution of PFASs in WtE residues. PFASs were found in all sample types except for boiler ash. The total levels of 18 individual PFASs (Σ18PFASs) in untreated flue gas ranged from 5.2 to 9.5 ng m-3, decreasing with 35% ± 10% after wet flue gas treatment. Σ18PFASs in the condensate ranged from 46 to 50 ng L-1, of which perfluorohexanoic acid (PFHxA) made up 90% on a ng L-1 basis. PFHxA was also dominant in filter ash, where Σ18PFASs ranged from 0.28 to 0.79 ng g-1. This study shows that flue gas treatment can capture some PFASs and transfer them into WtE residues.


Subject(s)
Fluorocarbons , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
18.
Sci Total Environ ; 927: 172275, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583608

ABSTRACT

Growing concern over the presence of per- and polyfluoroalkyl substances (PFAS) in agricultural compartments (e.g., soil, water, plants, soil fauna) has led to an increased interest in scalable and economically feasible remediation technologies. Biochar is the product of pyrolyzing organic materials (crop waste, wood waste, manures, grasses) and has been used as a low-cost adsorbent to remove contaminants including PFAS. This review frames biochar as a strategy for mitigating the detrimental impacts of PFAS in agricultural systems and discusses the benefits of this strategy within the framework of the needs and challenges of contaminant remediation in agriculture. To gauge the optimal physicochemical characteristics of biochar in terms of PFAS adsorption, principal component analysis using >100 data points from the available literature was performed. The main biochar-based PFAS treatment strategies (water filtration, soil application, mixing with biosolids) were also reviewed to highlight the benefits and complications of each. Life cycle analyses on the use of biochar for contaminant removal were summarized, and data from selected studies were used to calculate (for the first time) the global warming potential and net energy demand of various agriculturally important biochar classes (crop wastes, wood wastes, manures) in relation to their PFAS adsorption performance. This review serves to identify key gaps in our knowledge of (i) PFAS adsorption by biochars in agricultural remediation applications and (ii) environmental costs/benefits of biochars in relation to their adsorptive properties toward PFAS. The concepts introduced in this review may assist in developing large-scale biochar-based PFAS remediation strategies to help protect the agricultural food production environment.


Subject(s)
Agriculture , Charcoal , Environmental Restoration and Remediation , Charcoal/chemistry , Agriculture/methods , Environmental Restoration and Remediation/methods , Soil Pollutants/analysis , Soil Pollutants/chemistry , Fluorocarbons/chemistry , Fluorocarbons/analysis , Adsorption
20.
Environ Health Perspect ; 132(4): 47011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656167

ABSTRACT

BACKGROUND: Policymakers have become increasingly concerned regarding the widespread exposure and toxicity of per- and polyfluoroalkyl substances (PFAS). While concerns exist about unequal distribution of PFAS contamination in drinking water, research is lacking. OBJECTIVES: We assess the scope of PFAS contamination in drinking water in New Jersey (NJ), the first US state to develop regulatory levels for PFAS in drinking water. We test for inequities in PFAS concentrations by community sociodemographic characteristics. METHODS: We use PFAS testing data for community water systems (CWS) (n=491) from the NJ Department of Environmental Protection (NJDEP) from 2019 to 2021 and demographic data at the block group level from the US Census to estimate the demographics of the NJ population served by CWS. We use difference in means tests to determine whether CWSs serving "overburdened communities" (OBCs) have a statistically significant difference in likelihood of PFAS detections. OBCs are defined by the NJDEP to be census block groups in which: a) at least 35% of the households qualify as low-income, b) at least 40% of the residents identify as people of color, or c) at least 40% of the households have limited English proficiency. We calculate statewide summary statistics to approximate the relative proportions of sociodemographic groups that are served by CWSs with PFAS detections. RESULTS: We find that 63% of all CWSs tested by NJDEP from 2019 to 2021 had PFAS detections in public drinking water, collectively serving 84% of NJ's population receiving water from CWSs. Additionally, CWSs serving OBCs had a statistically significant higher likelihood of PFAS detection and a higher likelihood of exposure above state MCLs. We also find that a larger proportion of people of color lived in CWS service areas with PFAS detections compared to the non-Hispanic white population. DISCUSSION: These findings quantitatively identify disparities in PFAS contamination of drinking water by CWS service area and highlight the extent of PFAS drinking water contamination and the importance of PFAS remediation efforts for protecting environmental health and justice. https://doi.org/10.1289/EHP12787.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , New Jersey , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Humans , Environmental Exposure/statistics & numerical data , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...