Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 958
Filter
1.
Environ Health ; 23(1): 55, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858670

ABSTRACT

BACKGROUND: Several legacy and emerging per- and polyfluoroalkyl substances (PFAS) have been regulated around the world. There is growing concern over the proliferation of alternative PFAS, as well as PFAS precursors. Biomonitoring data for PFAS are critical for assessing exposure and human health risk. METHODS: We collected serum samples from 289 adult female participants in a 2018-2021 follow-up study of the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort. Samples were analyzed for 40 PFAS using ultra-performance liquid chromatography-tandem mass spectrometry. For those compounds with > 50% detection, as well as the sum of these compounds, we describe serum concentrations and patterns of exposure according to sociodemographic and obstetrical history characteristics. RESULTS: 17 out of 40 PFAS were detected in > 50% of samples with 7 of these detected in > 97% of samples. Median [95th percentile] concentrations (µg/L) were highest for PFOS (1.62 [4.56]), PFOA (0.69 [1.52]), PFNA (0.38 [0.81]), and PFHxS (0.33 [0.92]). Geometric mean concentrations of PFOA and PFHxS were approximately 2-fold lower among those with more children (≥ 3 vs. 1), greater number of children breastfed (≥ 3 vs. ≤ 1), longer lifetime duration of breastfeeding (> 4 years vs. ≤ 9 months), and shorter time since last pregnancy (≤ 4 years vs. > 8 years). We observed similar patterns for PFOS, PFHpS, and the sum of 17 PFAS, though the differences between groups were smaller. Concentrations of PFOA were higher among "White" participants, while concentrations of N-MeFOSE, N-EtFOSE, 7:3 FTCA, and 4:2 FTS were slightly higher among participants reporting a race or ethnicity other than "White". Concentrations of legacy, alternative, and precursor PFAS were generally similar across levels of age, education, household income, body mass index, and menopausal status. CONCLUSIONS: We report the first Canadian biomonitoring data for several alternative and precursor PFAS. Our findings suggest that exposure to PFAS, including several emerging alternatives, may be widespread. Our results are consistent with previous studies showing that pregnancy and breastfeeding are excretion pathways for PFAS.


Subject(s)
Environmental Pollutants , Fluorocarbons , Humans , Female , Fluorocarbons/blood , Adult , Environmental Pollutants/blood , Canada , Biological Monitoring , Pregnancy , Young Adult , Cohort Studies
2.
Environ Sci Technol ; 58(19): 8264-8277, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691655

ABSTRACT

Prenatal per- and poly-fluoroalkyl substances (PFAS) exposure may influence gestational outcomes through bioactive lipids─metabolic and inflammation pathway indicators. We estimated associations between prenatal PFAS exposure and bioactive lipids, measuring 12 serum PFAS and 50 plasma bioactive lipids in 414 pregnant women (median 17.4 weeks' gestation) from three Environmental influences on Child Health Outcomes Program cohorts. Pairwise association estimates across cohorts were obtained through linear mixed models and meta-analysis, adjusting the former for false discovery rates. Associations between the PFAS mixture and bioactive lipids were estimated using quantile g-computation. Pairwise analyses revealed bioactive lipid levels associated with PFDeA, PFNA, PFOA, and PFUdA (p < 0.05) across three enzymatic pathways (cyclooxygenase, cytochrome p450, lipoxygenase) in at least one combined cohort analysis, and PFOA and PFUdA (q < 0.2) in one linear mixed model. The strongest signature revealed doubling in PFOA corresponding with PGD2 (cyclooxygenase pathway; +24.3%, 95% CI: 7.3-43.9%) in the combined cohort. Mixture analysis revealed nine positive associations across all pathways with the PFAS mixture, the strongest signature indicating a quartile increase in the PFAS mixture associated with PGD2 (+34%, 95% CI: 8-66%), primarily driven by PFOS. Bioactive lipids emerged as prenatal PFAS exposure biomarkers, deepening insights into PFAS' influence on pregnancy outcomes.


Subject(s)
Fluorocarbons , Lipids , Humans , Female , Pregnancy , Lipids/blood , Fluorocarbons/blood , Child Health , Cohort Studies , Cross-Sectional Studies , Adult , Environmental Pollutants/blood , Environmental Exposure , Maternal Exposure , Child
3.
Environ Int ; 187: 108720, 2024 May.
Article in English | MEDLINE | ID: mdl-38718676

ABSTRACT

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES: This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS: The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS: The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (ß = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (ß = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS: Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.


Subject(s)
Environmental Pollutants , Fluorocarbons , Intelligence , Prenatal Exposure Delayed Effects , Thyroid Gland , Humans , Female , Prenatal Exposure Delayed Effects/chemically induced , Child , Pregnancy , Fluorocarbons/toxicity , Fluorocarbons/blood , Male , Intelligence/drug effects , Thyroid Gland/drug effects , Environmental Pollutants/blood , Environmental Pollutants/toxicity , Birth Cohort , Cohort Studies , Thyroid Hormones/blood , Intelligence Tests , China , Maternal Exposure/adverse effects , Fetal Blood/chemistry , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity
4.
Environ Int ; 187: 108719, 2024 May.
Article in English | MEDLINE | ID: mdl-38718677

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Subject(s)
Blood-Brain Barrier , Fluorocarbons , Humans , Blood-Brain Barrier/metabolism , Pilot Projects , Fluorocarbons/blood , Middle Aged , Female , Adult , Male , Glioma , Aged , Environmental Pollutants/blood , Environmental Exposure , Alkanesulfonic Acids/blood , Brain/metabolism
5.
Sci Total Environ ; 932: 173085, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729377

ABSTRACT

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in various everyday products has raised concerns about their potential impact on prostate health. This study aimed to investigate the effects of different types of PFAS on prostate health, including PFDeA, PFOA, PFOS, PFHxS, and PFNA. To assess the relationship between PFAS exposure and prostate injury, machine learning algorithms were employed to analyze prostate-specific antigen (PSA) metrics. The analysis revealed a linear and positive dose-dependent association between PFOS and the ratio of free PSA to total PSA (f/tPSA). Non-linear dose-response relationships were observed between the other four types of PFAS and the f/tPSA ratio. Additionally, the analysis showed a positive association between the mixture of PFAS and prostate hyperplasia, with PFNA having the highest impact followed by PFOS. These findings suggest that elevated serum levels of PFDeA, PFOA, PFOS, and PFNA are linked to prostate hyperplasia. Therefore, this study utilized advanced machine learning techniques to uncover potential hazardous effects of PFAS exposure on prostate health, specifically the positive association between PFAS and prostate hyperplasia.


Subject(s)
Fluorocarbons , Prostatic Hyperplasia , Male , Fluorocarbons/blood , Humans , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Machine Learning , Alkanesulfonic Acids/blood , Prostate-Specific Antigen/blood
6.
Environ Int ; 187: 108727, 2024 May.
Article in English | MEDLINE | ID: mdl-38735074

ABSTRACT

BACKGROUND: There is inconclusive evidence for an association between per- and polyfluoroalkyl substances (PFAS) and fetal growth. OBJECTIVES: We conducted a nation-wide register-based cohort study to assess the associations of the estimated maternal exposure to the sum (PFAS4) of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) with birthweight as well as risk of small- (SGA) and large-for-gestational-age (LGA). MATERIALS AND METHODS: We included all births in Sweden during 2012-2018 of mothers residing ≥ four years prior to partus in localities served by municipal drinking water where PFAS were measured in raw and drinking water. Using a one-compartment toxicokinetic model we estimated cumulative maternal blood levels of PFAS4 during pregnancy by linking residential history, municipal PFAS water concentration and year-specific background serum PFAS concentrations in Sweden. Individual birth outcomes and covariates were obtained via register linkage. Mean values and 95 % confidence intervals (CI) of ß coefficients and odds ratios (OR) were estimated by linear and logistic regressions, respectively. Quantile g-computation regression was conducted to assess the impact of PFAS4 mixture. RESULTS: Among the 248,804 singleton newborns included, no overall association was observed for PFAS4 and birthweight or SGA. However, an association was seen for LGA, multivariable-adjusted OR 1.08 (95% CI: 1.01-1.16) when comparing the highest PFAS4 quartile to the lowest. These associations remained for mixture effect approach where all PFAS, except for PFOA, contributed with a positive weight. DISCUSSIONS: We observed an association of the sum of PFAS4 - especially PFOS - with increased risk of LGA, but not with SGA or birthweight. The limitations linked to the exposure assessment still require caution in the interpretation.


Subject(s)
Alkanesulfonic Acids , Birth Weight , Caprylates , Drinking Water , Fetal Development , Fluorocarbons , Maternal Exposure , Water Pollutants, Chemical , Fluorocarbons/blood , Fluorocarbons/analysis , Humans , Drinking Water/chemistry , Female , Sweden , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Pregnancy , Adult , Alkanesulfonic Acids/blood , Maternal Exposure/statistics & numerical data , Fetal Development/drug effects , Birth Weight/drug effects , Caprylates/blood , Infant, Newborn , Cohort Studies , Sulfonic Acids/blood , Registries , Male , Infant, Small for Gestational Age , Young Adult
7.
Environ Res ; 252(Pt 4): 119072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729411

ABSTRACT

BACKGROUND: Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS: Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS: The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS: This study supports the hypothesis that environmental exposures may impact COVID-19 severity.


Subject(s)
COVID-19 , Environmental Exposure , Environmental Pollutants , Hispanic or Latino , Metals, Heavy , Humans , Middle Aged , Male , Female , Hispanic or Latino/statistics & numerical data , Environmental Pollutants/urine , Environmental Pollutants/blood , Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Metals, Heavy/urine , Metals, Heavy/blood , Risk Factors , Pilot Projects , Fluorocarbons/blood , Fluorocarbons/urine , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , SARS-CoV-2
8.
Int J Hyg Environ Health ; 259: 114387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703464

ABSTRACT

BACKGROUND: In the past, perfluorooctanoic acid (PFOA) was produced and applied as an emulsifier in a fluoropolymer production plant in the Altötting district, southern Bavaria (Germany). This chemical was released directly into the environment, resulting in the contamination of the local drinking water. During a human biomonitoring (HBM) survey in 2018, increased median PFOA blood serum levels, compared to a normally exposed control group with no known source of PFOA exposure from Munich, Germany, were detected in the resident population (23.18 µg/l in the general population, 20.71 µg/l in the children's group). The follow-up study aimed to investigate whether purification of the drinking water as the main PFOA exposure source has been successful in reducing internal PFOA exposure and to estimate the association of internal PFOA exposure with possible influencing factors. METHODS: Only individuals who had already participated in the HBM study in 2018 were included. For the determination of the PFOA serum concentration, 5 ml of blood was drawn from each participating person. Blood samples were collected in the period from June to August 2022. Furthermore, information on sociodemographic characteristics, health status, dietary behaviour and other lifestyle factors were collected by means of a self-administered questionnaire. To examine the association of PFOA blood serum levels with possible influencing factors, such as age, gender and consumption of fish and game meat, a logistic regression model with a PFOA value > 10 µg/l as outcome was used. RESULTS: A total of 764 individuals participated in the follow-up study in 2022. Analyses were performed separately for the general population (n = 559), women of reproductive age (15-49 years old) (n = 120), and children under 12 years old (n = 30). Median PFOA blood levels have decreased by 56.9% in the general population, by 59.8% in the group of women of reproductive age and by 73.4% in the group of children under 12 years old. In the general population, a higher probability of a PFOA value > 10 µg/l was found for those aged 40-59 years (Odds ratio (OR) = 2.33 (95%CI: 1.23 to 4.43, p = 0.01) and those aged 60 years and older (OR = 5.32, 95%CI: 2.78 to 10.19, p < 0.001). CONCLUSIONS: In all study groups, the median PFOA serum levels decreased as expected after a half-life of four years, which confirms that contamination via drinking water has ceased. Furthermore, our study identified age as a significant predictor of internal PFOA exposure, while no influence was found for the consumption of fish and game meat. Further investigations are needed to quantify in a more detailed way the influence of dietary habits on PFOA exposure.


Subject(s)
Biological Monitoring , Caprylates , Environmental Exposure , Fluorocarbons , Humans , Caprylates/blood , Fluorocarbons/blood , Germany , Female , Male , Adult , Middle Aged , Child , Adolescent , Young Adult , Environmental Exposure/analysis , Child, Preschool , Aged , Follow-Up Studies , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/analysis , Infant , Environmental Pollutants/blood , Drinking Water/chemistry , Chemical Industry
9.
Sci Total Environ ; 933: 173157, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740209

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.


Subject(s)
Alkanesulfonic Acids , Diet , Environmental Pollutants , Fluorocarbons , Milk, Human , Humans , Fluorocarbons/blood , Fluorocarbons/analysis , Milk, Human/chemistry , Female , Diet/statistics & numerical data , Environmental Pollutants/blood , Environmental Pollutants/analysis , New Hampshire , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/blood , Adult , Birth Cohort , Maternal Exposure/statistics & numerical data , Pregnancy , Caprylates/blood , Caprylates/analysis , Cohort Studies , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Decanoic Acids/blood , Decanoic Acids/analysis
10.
Environ Int ; 188: 108756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795657

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.


Subject(s)
Dust , Environmental Exposure , Dust/analysis , Humans , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Adult , Middle Aged , Female , Male , Biological Monitoring , United States , Fluorocarbons/blood , Fluorocarbons/analysis , Young Adult , Housing , Drinking Water/chemistry , Aged , Adolescent , Environmental Monitoring/methods , Environmental Pollutants/blood , Environmental Pollutants/analysis
11.
J Pharm Biomed Anal ; 246: 116203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759320

ABSTRACT

The ubiquity of perfluoroalkyl substances has raised concerns about the unintended consequences of PFAS exposure on human health. In the present study, an eco-friendly ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of 17 PFAS in human serum and semen samples. QuEChERS salts MgSO4:NaCl 4:1 (w/w) were used for the extraction. The separation of analytes was performed on an ACQUITY BEH C18 column (100 × 2.1 mm, 1.7 µm), using water:methanol 95:5 and methanol as mobile phases A and B, respectively, both containing 2 mM ammonium acetate. Multiple reaction monitoring (MRM) in negative ion mode was used, selecting two transitions for each analyte, except for perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA). The analytical method was validated according to the Organization of Scientific Area Committees (OSAC) for Forensic Sciences guidelines and AGREE approach software was used to evaluate the greenness of the method. The developed procedure was applied to the analysis of 10 paired human serum and semen samples, proving the suitability in high throughput laboratories due to the easy preparation and the reduced volume of toxic solvents. Moreover, it allows to perform further investigation on the correlation between serum and semen PFAS concentration, focusing on male reproductive system correlated pathologies, such as male infertility.


Subject(s)
Fluorocarbons , Semen , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Fluorocarbons/blood , Fluorocarbons/analysis , Chromatography, High Pressure Liquid/methods , Male , Semen/chemistry , Green Chemistry Technology/methods , Reproducibility of Results , Environmental Pollutants/blood , Environmental Pollutants/analysis , Limit of Detection , Liquid Chromatography-Mass Spectrometry
12.
Environ Res ; 254: 119131, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759771

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) include thousands of manufactured compounds with growing public health concerns due to their potential for widespread human exposure and adverse health outcomes. While PFAS contamination remains a significant concern, especially from ingestion of contaminated food and water, determinants of the variability in PFAS exposure among regional and statewide populations in the United States remains unclear. OBJECTIVES: The objective of this study was to leverage The Survey of the Health of Wisconsin (SHOW), the only statewide representative cohort in the US, to assess and characterize the variability of PFAS exposure in a general population. METHODS: This study sample included a sub-sample of 605 adult participants from the 2014-2016 tri-annual statewide representative sample. Geometric means for PFOS, PFOA, PFNA, PFHxS, PFPeS, PFHpA, and a summed measure of 38 analyzed serum PFAS were presented by demographic, diet, behavioral, and residential characteristics. Multivariate linear regression was used to determine significant predictors of serum PFAS after adjustment. RESULTS: Overall, higher serum concentrations of long-chain PFAS were observed compared with short-chain PFAS. Older adults, males, and non-Hispanic White individuals had higher serum PFAS compared to younger adults, females, and non-White individuals. Eating caught fish in the past year was associated with elevated levels of several PFAS. DISCUSSION: This is among the first studies to characterize serum PFAS among a representative statewide sample in Wisconsin. Both short- and long-chain serum PFAS were detectable for six prominent PFAS. Age and consumption of great lakes fish were the most significant predictors of serum PFAS. State-level PFAS biomonitoring is important for identifying high risk populations and informing state public health standards and interventions, especially among those not living near known contamination sites.


Subject(s)
Environmental Exposure , Environmental Pollutants , Fluorocarbons , Humans , Wisconsin , Fluorocarbons/blood , Fluorocarbons/analysis , Female , Male , Adult , Middle Aged , Aged , Environmental Pollutants/blood , Environmental Pollutants/analysis , Young Adult , Adolescent
13.
J Hazard Mater ; 473: 134645, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762989

ABSTRACT

While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.


Subject(s)
Diabetes Mellitus , Fluorocarbons , Prediabetic State , Seafood , Humans , Seafood/analysis , Prediabetic State/epidemiology , Prediabetic State/blood , Male , Cross-Sectional Studies , Middle Aged , Female , Adult , China/epidemiology , Fluorocarbons/blood , Diabetes Mellitus/epidemiology , Food Contamination/analysis , Aged , Diet , Young Adult
14.
Environ Sci Technol ; 58(23): 9954-9966, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804966

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.


Subject(s)
Blood Proteins , Fluorocarbons , Protein Binding , Species Specificity , Trout , Animals , Humans , Fluorocarbons/metabolism , Fluorocarbons/blood , Blood Proteins/metabolism , Cattle , Trout/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/chemistry
15.
Chemosphere ; 360: 142363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768789

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals linked to adverse pregnancy outcomes. Although their underlying biological mechanisms are not fully understood, evidence suggests PFAS may disrupt endocrine functions and contribute to oxidative stress (OS) and inflammation. OBJECTIVE: We examined associations between early pregnancy PFAS exposure and OS biomarkers, exploring potential effect modifications by fetal sex and maternal race. METHODS: We used data from 469 LIFECODES participants with measured plasma PFAS (median 10 weeks gestation) and repeated measures (median 10, 18, 26, and 35 weeks gestation) of urinary OS biomarkers [8-iso-prostaglandin-F2α (8-isoprostane) and 8-hydroxydeoxyguanosine (8-OHdG)]. Protein damage biomarkers (chlorotyrosine, dityrosine, and nitrotyrosine) were additionally measured in plasma from a subset (N = 167) during the third visit. Associations between each PFAS and OS biomarkers were examined using linear mixed-effects models and multivariable linear regressions, adjusting for potential confounders, including maternal age, race, education level, pre-pregnancy BMI, insurance status, and parity. Effect modifications were evaluated by including an interaction term between each PFAS and fetal sex or maternal race in the models. RESULTS: We observed significant positive associations between PFOS and 8-isoprostane, with a 9.68% increase in 8-isoprostane levels (95% CI: 0.10%, 20.18%) per interquartile range increase in PFOS. In contrast, PFUA was negatively associated [9.32% (95% CI: -17.68%, -0.11%)], while there were suggestive positive associations for MPAH and PFOA with 8-isoprostane. The associations of several PFAS with 8-OHdG varied by fetal sex, showing generally positive trends in women who delivered females, but negative or null in those who delivered males. No significant effect modification by maternal race was observed. CONCLUSIONS: This study provides evidence linking PFAS exposure to OS during pregnancy, with potential sex-specific effects of certain PFAS on 8-OHdG. Further research should explore additional OS/inflammatory biomarkers and assess the modifying effects of dietary and behavioral patterns across diverse populations.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Dinoprost , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Oxidative Stress , Humans , Female , Fluorocarbons/blood , Oxidative Stress/drug effects , Pregnancy , Adult , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Biomarkers/blood , Environmental Pollutants/blood , Dinoprost/analogs & derivatives , Dinoprost/blood , Male , Young Adult , Alkanesulfonic Acids/blood
16.
Environ Int ; 186: 108565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574403

ABSTRACT

BACKGROUND: Endocrine disruptors (EDs) have emerged as potential contributors to the development of type-2 diabetes. Perfluorooctane sulfonate (PFOS), is one of these EDs linked with chronic diseases and gathered attention due to its widespread in food. OBJECTIVE: To assess at baseline and after 1-year of follow-up associations between estimated dietary intake (DI) of PFOS, and glucose homeostasis parameters and body-mass-index (BMI) in a senior population of 4600 non-diabetic participants from the PREDIMED-plus study. METHODS: Multivariable linear regression models were conducted to assess associations between baseline PFOS-DI at lower bound (LB) and upper bound (UB) established by the EFSA, glucose homeostasis parameters and BMI. RESULTS: Compared to those in the lowest tertile, participants in the highest tertile of baseline PFOS-DI in LB and UB showed higher levels of HbA1c [ß-coefficient(CI)] [0.01 %(0.002 to 0.026), and [0.06 mg/dL(0.026 to 0.087), both p-trend ≤ 0.001], and fasting plasma glucose in the LB PFOS-DI [1.05 mg/dL(0.050 to 2.046),p-trend = 0.022]. Prospectively, a positive association between LB of PFOS-DI and BMI [0.06 kg/m2(0.014 to 0.106) per 1-SD increment of energy-adjusted PFOS-DI was shown. Participants in the top tertile showed an increase in HOMA-IR [0.06(0.016 to 0.097), p-trend = 0.005] compared to participants in the reference tertile after 1-year of follow-up. DISCUSSION: This is the first study to explore the association between DI of PFOS and glucose homeostasis. In this study, a high baseline DI of PFOS was associated with a higher levels of fasting plasma glucose and HbA1c and with an increase in HOMA-IR and BMI after 1-year of follow-up.


Subject(s)
Alkanesulfonic Acids , Blood Glucose , Fluorocarbons , Homeostasis , Alkanesulfonic Acids/blood , Humans , Fluorocarbons/blood , Male , Female , Aged , Blood Glucose/analysis , Middle Aged , Body Mass Index , Diabetes Mellitus, Type 2 , Endocrine Disruptors , Diet/statistics & numerical data , Aged, 80 and over , Prospective Studies , Environmental Pollutants/blood
17.
Environ Int ; 186: 108621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593693

ABSTRACT

In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.


Subject(s)
Alkanesulfonic Acids , Breast Feeding , Caprylates , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Humans , Fluorocarbons/blood , Alkanesulfonic Acids/blood , Female , Caprylates/blood , Pregnancy , Child , Child, Preschool , Infant , Environmental Pollutants/blood , Maternal Exposure/statistics & numerical data , Infant, Newborn , Male , Environmental Exposure/analysis , Diet , Prenatal Exposure Delayed Effects , Adult
18.
J Hazard Mater ; 471: 134312, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640681

ABSTRACT

Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.


Subject(s)
Fluorocarbons , Hyperuricemia , Kidney , Uric Acid , Humans , Uric Acid/blood , Hyperuricemia/chemically induced , Hyperuricemia/blood , Male , Middle Aged , Female , Adult , Fluorocarbons/toxicity , Fluorocarbons/blood , Cross-Sectional Studies , Kidney/drug effects , Kidney/physiopathology , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Environmental Exposure/adverse effects , Nutrition Surveys , Aged
19.
Eur Thyroid J ; 13(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657654

ABSTRACT

Objective: The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid cancer (TC) in an Italian case-control cohort. Methods: We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases. Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (4,4'-DDT and 4,4'-DDE) were measured in the serum by liquid or gas chromatography-mass spectrometry. Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were used to estimate the association between TC and pollutants' levels, considered individually or as mixture. BRAFV600E mutation was assessed by standard methods. Results: The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10-3.75, P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95% CI: 0.41-0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls (PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association between pollutants' mixture and TC. BRAF V600E mutations were associated with PCB-153, PCB-138, and PCB-180. Conclusion: Our study suggests, for the first time in a case-control population, that exposure to some PFAS and PCBs associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with both PFHxS and pollutants' mixture, likely due to a potential reverse causality.


Subject(s)
Alkanesulfonic Acids , Endocrine Disruptors , Fluorocarbons , Persistent Organic Pollutants , Polychlorinated Biphenyls , Thyroid Neoplasms , Humans , Case-Control Studies , Fluorocarbons/blood , Fluorocarbons/adverse effects , Female , Male , Middle Aged , Endocrine Disruptors/blood , Endocrine Disruptors/adverse effects , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/blood , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/genetics , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/adverse effects , Alkanesulfonic Acids/blood , Adult , Persistent Organic Pollutants/adverse effects , Persistent Organic Pollutants/blood , Aged , Dichlorodiphenyl Dichloroethylene/blood , Decanoic Acids/blood , Decanoic Acids/adverse effects , DDT/blood , DDT/adverse effects , Italy/epidemiology , Caprylates/blood , Caprylates/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Fatty Acids/blood , Sulfonic Acids/blood , Mutation , Environmental Exposure/adverse effects
20.
Environ Health Perspect ; 132(4): 47014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683744

ABSTRACT

BACKGROUND: Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS: We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥16 y of age residing in Nunavik (n=1,193). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS: Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS: Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.


Subject(s)
Dietary Exposure , Environmental Pollutants , Fluorocarbons , Inuit , Humans , Fluorocarbons/blood , Inuit/statistics & numerical data , Adult , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Female , Male , Environmental Pollutants/blood , Adolescent , Young Adult , Alkanesulfonic Acids/blood , Food Contamination/analysis , Middle Aged , Decanoic Acids/blood , Environmental Exposure/statistics & numerical data , Biomarkers/blood , Diet/statistics & numerical data , Arctic Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...