Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.996
Filter
1.
Pol J Microbiol ; 73(3): 329-342, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39268954

ABSTRACT

Oral bacterial infections are a great health concern worldwide especially in diabetic patients. Emergence of antimicrobial resistance with reference to biofilms in oral cavity is of great concern. We investigated antibiotics combination with proton pump inhibitors against oral clinical isolates. The strains were identified as Staphylococcus epidermidis and Staphylococcus aureus by the 16S rRNA gene sequencing. In molecular docking, ciprofloxacin, levofloxacin, and omeprazole best fit to active pockets of transcriptional regulators 4BXI and 3QP1. None of the proton pump inhibitors were active against S. epidermidis, whereas omeprazole showed significant inhibition (MIC 3.9 µg/ml). Fluoroquinolones were active against both S. epidermidis and S. aureus. In combination analysis, a marked decrease in minimum inhibitory concentration was noticed with omeprazole (MIC 0.12 µg/ml). In antiquorum sensing experiments, a significant inhibitory zone was shown for all fluoroquinolones (14-20 mm), whereas among proton pump inhibitors, only omeprazole (12 ± 0.12 mm) was active against Chromobacterium violaceum. In combination analysis, a moderate increase in antiquorum sensing activity was recorded for ciprofloxacin, ofloxacin, and proton pump inhibitors. Further, significant S. aureus biofilm eradication was recorded using of ciprofloxacin, levofloxacin, and omeprazole combination (78 ± 2.1%). The time-kill kinetic studies indicated a bactericidal effect by ciprofloxacin: levofloxacin: omeprazole combination over 24 hrs. It was concluded that fluoroquinolone combined with omeprazole could be an effective treatment option for eradicating oral bacterial biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Fluoroquinolones , Microbial Sensitivity Tests , Proton Pump Inhibitors , Staphylococcus aureus , Biofilms/drug effects , Proton Pump Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Humans , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Drug Resistance, Bacterial , Mouth/microbiology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology
2.
J Mater Chem B ; 12(35): 8647-8654, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39138924

ABSTRACT

Fluoroquinolones are a widely used class of antibiotics, with a large variety, which are frequently monitored in the aqueous environment, threatening ecological and human health. To date, effective degradation of fluoroquinolone antibiotics remains a major challenge. Focused on the broad-spectrum degradation of fluoroquinolone antibiotics, a novel biomimetic peroxidase nanozyme named Hemin-His-Fe (HHF)-peroxidase nanozyme was synthesized through a green and rapid "one-pot" method involving hemin, Fmoc-L-His and Fe2+ as precursors. After systematic optimization of the reaction conditions, fluoroquinolone antibiotics can be degraded by the HHF-peroxidase nanozyme when supplemented with H2O2 in acidic environments. Through validation and analysis, it was proved that the generated strong oxidative hydroxyl radicals are the main active species in the degradation process. In addition, it was verified that this method shows great universal applicability in real water samples.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Hemin , Iron , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hemin/chemistry , Hemin/metabolism , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Fluoroquinolones/metabolism , Iron/chemistry , Histidine/chemistry , Peroxidase/metabolism , Peroxidase/chemistry , Biomimetic Materials/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Nanostructures/chemistry , Particle Size , Water Pollutants, Chemical/chemistry , Peroxidases/metabolism , Peroxidases/chemistry
3.
Sci Rep ; 14(1): 19719, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39181942

ABSTRACT

Fluoroquinolone resistance is a major challenge in treating Multidrug-Resistant Tuberculosis globally. The GenoType MTBDRsl Ver 2.0, endorsed by the WHO, was used to characterize fluoroquinolone resistance. The fluoroquinolone resistance rates in the MDR-TB, Rifampicin-Resistant TB, and non-MDR-TB were 33%, 16.5%, and 5.4%, respectively. The most common mutation found in fluoroquinolone-resistant isolates was D94G (49.5%) in the gyrA gene. Of the 150 MDR-TB isolates, the prevalence of Extensively Drug-Resistant Tuberculosis and pre-XDR-TB was 1.33% and 30%, respectively. Among the 139 RR-TB isolates, pre-XDR-TB prevalence was 15.8%. The fluoroquinolone resistance rates were 5.12% among the 1230 isoniazid-monoresistant isolates. The study found that MDR-TB and RR-TB have higher risk of fluoroquinolone resistance than non-MDR tuberculosis. Rifampicin-resistant isolates with a mutation at codon S450L have a higher risk (RR = 12.96; 95%CI: 8.34-20.13) of developing fluoroquinolone resistance than isolates with mutations at other codons in the rpoB gene. Isoniazid-resistant isolates with a mutation at codon S315T have a higher risk (RR = 2.09; 95%CI: 1.25-3.50) of developing fluoroquinolone resistance. The study concludes that rapid diagnosis of fluoroquinolone resistance before starting treatment is urgently needed to prevent the spread and increase of resistance and to achieve better treatment outcomes in areas where it is higher.


Subject(s)
Antitubercular Agents , Fluoroquinolones , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Male , Female , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Adult , Mutation , Risk Assessment , Middle Aged , Microbial Sensitivity Tests , Rifampin/pharmacology , Rifampin/therapeutic use , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Isoniazid/pharmacology , Isoniazid/therapeutic use , Aged
4.
Poult Sci ; 103(10): 104168, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137498

ABSTRACT

This experiment aimed to investigate the in vitro antimicrobial activity of danofloxacin against Escherichia coli (E. coli) isolated from pigeons, as well as the pharmacokinetics of danofloxacin in pigeons following oral (PO), intramuscular (IM), and intravenous (IV) administration. The minimum inhibitory concentration (MIC) of danofloxacin was first determined for 38 clinical E. coli strains using the micro broth dilution method. Subsequently, 30 healthy pigeons were weighed and randomly divided into 3 groups: IM, IV, and PO, with 10 pigeons in each group. Danofloxacin was given at 5 mg/kg body weight (BW) through 3 different routes. Blood was collected, and plasma was separated at various time points from 0 to 48 h. Plasma samples were analyzed for danofloxacin concentrations using a validated HPLC method. Pharmacokinetic analysis was performed using Phoenix software and a noncompartmental analytical (NCA) method. The results indicated that danofloxacin had a strong antibacterial effect on E. coli, with a MIC50 of 0.5 µg/mL. The noncompartmental analysis showed that after PO and IM administration at 5 mg/kg in pigeons, peak plasma concentrations (Cmax) of 0.61 and 1.62 µg/mL were reached at 4.5 and 0.53 h, respectively. The oral and intramuscular bioavailability (F) were 68.08% ± 24.82% and 87.82% ± 25.36%, respectively. Following IV administration, danofloxacin was widely distributed in pigeons, with volume of distribution (VZ) and volume of distribution at steady state (VSS) values of 6.11 ± 2.01 and 4.65 ± 1.62 L/kg, respectively, and was eliminated slowly, with an elimination half-life (t1/2λz) of 6.41 ± 2.15 h. Based on the calculated ratio values of AUC/MIC, the current IV, IM, and PO doses of 5 mg/kg of danofloxacin would be expected to effectively treat pigeons infected with E. coli strains with MIC values equal to or less than 0.5 µg/mL.


Subject(s)
Anti-Bacterial Agents , Columbidae , Escherichia coli , Fluoroquinolones , Microbial Sensitivity Tests , Animals , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Microbial Sensitivity Tests/veterinary , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Fluoroquinolones/administration & dosage , Injections, Intramuscular/veterinary , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Administration, Oral , Random Allocation , Injections, Intravenous/veterinary , Male
5.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124943

ABSTRACT

Cancer is the second leading cause of death in the world following cardiovascular disease. Its treatment, including radiation therapy and surgical removal of the tumour, is based on pharmacotherapy, which prompts a constant search for new and more effective drugs. There are high costs associated with designing, synthesising, and marketing new substances. Drug repositioning is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers. This article presents the current progress in the development of new fluoroquinolone derivatives with potential anticancer and cytotoxic activity, as well as structure-activity relationships, along with possible directions for further development.


Subject(s)
Antineoplastic Agents , Fluoroquinolones , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Neoplasms/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Repositioning , Cell Proliferation/drug effects
6.
Commun Biol ; 7(1): 1035, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179666

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a serious threat to global public health. Fluoroquinolones (FQs) are effective against M. tuberculosis; however, resistant strains have limited their efficacy. Mycobacterium fluoroquinolone resistance protein A (MfpA) confers intrinsic resistance to FQs; however, its regulatory mechanisms remain largely unknown. Using M. smegmatis as a model, we investigated whether MfpC is necessary for FQ susceptibility. MfpC mutants were sensitive to moxifloxacin, indicating that MfpC is involved in FQ susceptibility. By testing the mfpC inactivation phenotype in different mutants and using mycobacterial protein fragment complementation, we demonstrated that the function of MfpC depends on its interactions with MfpB. Guanine nucleotide exchange assays and site-directed mutagenesis confirmed that MfpC acts as a guanine nucleotide exchange factor to regulate MfpB. We propose that MfpB influences MfpA at the translational level. In summary, we reveal the role of MfpC in regulating the function of MfpA in FQ resistance.


Subject(s)
Bacterial Proteins , Fluoroquinolones , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/drug effects , Fluoroquinolones/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Mutation
7.
BMC Infect Dis ; 24(1): 856, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179971

ABSTRACT

BACKGROUND: Fluoroquinolones are the most commonly prescribed antibiotics. Because of their known tendency to drive antimicrobial resistance, their prescribing patterns need to be more restricted. This study aimed to describe the clinical practice of fluoroquinolone prescription, dose adjustments for renal impairment patients and bacterial resistance profiles, eventually providing evidence-based recommendations to optimize antibiotic prescribing practices in the local population. METHODS: This retrospective, cross-sectional study was conducted at An-Najah National University Hospital in Palestine. The data were collected from admitted patients who were given ciprofloxacin or levofloxacin from July 2021 to June 2023. Data from 692 inpatients across various hospital departments were examined (409 for levofloxacin and 283 for ciprofloxacin). Statistical analysis was performed via IBM SPSS version 23.0 to summarize the demographic, clinical, and epidemiological data. RESULTS: The sociodemographic profile revealed diverse age distributions, with 25.4% and 39% older than 50 years for ciprofloxacin and levofloxacin, respectively. Ciprofloxacin was predominantly used in the oncology department (28.2%), with surgical prophylaxis (22.6%) and febrile or afebrile neutropenia (21.1%) being the most common indications. Levofloxacin was predominantly used in the medical ward (45.7%), mainly for lower respiratory tract infection (58.8%) and prophylaxis for bone marrow transplantation (16.5%). Enterococcus and methicillin-resistant Staphylococcus aureus were the most commonly isolated pathogens, with 62.5% of the isolates demonstrating resistance to ciprofloxacin. Moreover, extended-spectrum beta-lactamase-producing Enterobacterales were the most common pathogen isolated, with 33.3% being resistant to levofloxacin. Statistical analysis revealed a significant association between the choice of antibiotic and the approach to therapy. Levofloxacin was significantly more likely than ciprofloxacin to be used as empiric therapy (p < 0.001), whereas ciprofloxacin was more likely to be used as targeted therapy (p < 0.001). CONCLUSIONS: This study investigated prescribing practices and resistance to levofloxacin and ciprofloxacin in a large hospital in a developing country. According to the bacterial resistance profiles, we conclude that there is a need for hospital departments to exercise greater restraint on the use of these antibiotics. To this end, further studies addressing the clinical efficacy of fluoroquinolones against the current treatment guidelines to evaluate their appropriateness should be carried out.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Levofloxacin , Tertiary Care Centers , Humans , Retrospective Studies , Cross-Sectional Studies , Male , Middle Aged , Female , Tertiary Care Centers/statistics & numerical data , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Adult , Fluoroquinolones/therapeutic use , Fluoroquinolones/pharmacology , Aged , Levofloxacin/therapeutic use , Levofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Young Adult , Adolescent , Aged, 80 and over , Practice Patterns, Physicians'/statistics & numerical data , Microbial Sensitivity Tests , Middle East/epidemiology , Bacteria/drug effects , Bacteria/isolation & purification
8.
Microbiol Res ; 288: 127872, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39146705

ABSTRACT

Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of ß-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Membrane Transport Proteins , Phenylbutazone , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Fluoroquinolones/pharmacology , Fluoroquinolones/metabolism , Gene Expression Regulation, Bacterial/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Phenylbutazone/pharmacology , Phenylbutazone/metabolism , Protein Binding , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Repressor Proteins/metabolism , Repressor Proteins/genetics
9.
Jt Dis Relat Surg ; 35(3): 654-661, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39189576

ABSTRACT

OBJECTIVES: This study aimed to evaluate the biomechanical and histological effects of fluoroquinolones on surgically repaired tendon healing. MATERIALS AND METHODS: The Achilles tendons of 40 Wistar rats (mean weight: 213.5 g; range 201 to 242 g) were bilaterally surgically cut and repaired. The rats were randomly divided into four groups: the first and third groups were designated as control groups and did not receive drug therapy, whereas the second and fourth groups received 300 mg/kg ciprofloxacin for a week after the surgical procedure. The first and second groups had both tendons dissected at the end of the first week, while the third and fourth groups were dissected at the end of the third week. The left tendons were examined biomechanically, while the right tendons were examined histologically. RESULTS: Statistical analysis revealed that the mean maximum tensile forces of tendons in the first and second groups were 5.2±1.84 N (range, 2.9 to 8.5 N) and 11.1±2.65 N (range, 7.3 to 13.9 N), respectively, which was found to be statistically significant (p< 0.05). At the end of the third week, mean maximum tensile forces of the third and fourth groups were determined to be 20.7±5.0 N (range, 22.1 to 29.8 N) and 28.7±4.6 N (range, 22.1 to 36.8 N), respectively, which was also statistically significant (p< 0.05). Histologically, our results were compatible. CONCLUSION: This study demonstrated that ciprofloxacin did not exhibit the expected adverse effects on surgically repaired tendon healing in the early stages but likely contributed to healing in the short term by affecting the inflammatory phase.


Subject(s)
Achilles Tendon , Ciprofloxacin , Rats, Wistar , Tendon Injuries , Tensile Strength , Wound Healing , Animals , Wound Healing/drug effects , Achilles Tendon/surgery , Achilles Tendon/injuries , Achilles Tendon/drug effects , Achilles Tendon/pathology , Rats , Ciprofloxacin/adverse effects , Ciprofloxacin/pharmacology , Tensile Strength/drug effects , Tendon Injuries/surgery , Tendon Injuries/drug therapy , Tendon Injuries/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Biomechanical Phenomena/drug effects , Male , Fluoroquinolones/pharmacology , Fluoroquinolones/adverse effects
10.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39028256

ABSTRACT

Introduction. Pre-existing fluoroquinolones (FQs) resistance is a major threat in treating multidrug-resistant (MDR) tuberculosis. Sitafloxacin (Sfx) is a new broad-spectrum FQ.Hypothesis. Sfx is more active against drug-resistant Mycobacterium tuberculosis (Mtb) isolates.Aim. To determine whether there is cross-resistance between Sfx and ofloxacin (Ofx), levofloxacin (Lfx) and moxifloxacin (Mfx) in MDR Mtb.Methods. A total of 106 clinical Mtb isolates, including 23 pan-susceptible and 83 MDR strains, were analysed for Sfx, Lfx and Mfx resistance using MIC assay. The isolates were also subjected to whole-genome sequencing to analyse drug-resistant genes.Results. Sfx exhibited the most robust inhibition activity against Mtb clinical isolates, with a MIC50 of 0.0313 µg ml-1 and MIC90 of 0.125 µg ml-1, which was lower than that of Mfx (MIC50 = 0.0625 µg ml-1, MIC90 = 1 µg ml-1) and Lfx (MIC50 = 0.125 µg ml-1, MIC90 = 2 µg ml-1). We determined the tentative epidemiological cut-off values as 0.5 µg ml-1 for Sfx. Also, 8.43% (7/83), 43.37% (36/83), 42.17% (35/83) and 51.81% (43/83) MDR strains were resistant to Sfx, Mfx, Lfx and Ofx, respectively. Cross-resistance between Ofx, Lfx and Mfx was 80.43% (37/46). Only 15.22% (7/46) of the pre-existing FQs resistance isolates were resistant to Sfx. Among the 30 isolates with mutations in gyrA or gyrB, 5 (16.67%) were Sfx resistant. The combination of Sfx and rifampicin could exert partial synergistic effects, and no antagonism between Sfx and six clinically important anti-Mtb antibiotics was evident.Conclusion. Sfx exhibited superior activity against MDR isolates comparing to Lfx and Mfx, and could potentially overcome the majority pre-existing FQs resistance in Mtb strains.


Subject(s)
Antitubercular Agents , Drug Resistance, Multiple, Bacterial , Fluoroquinolones , Levofloxacin , Microbial Sensitivity Tests , Moxifloxacin , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Fluoroquinolones/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Moxifloxacin/pharmacology , Levofloxacin/pharmacology , Humans , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/pharmacology , Whole Genome Sequencing
11.
Microb Drug Resist ; 30(9): 391-397, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019029

ABSTRACT

The majority of Klebsiella pneumonia isolates possess the extended-spectrum beta-lactamase (ESBL) enzymes. Therefore, K. pneumoniae can easily develop drug resistance. How to effectively overcome the problem of drug resistance in K. pneumoniae is still a research hotspot. This study aimed to compare the mutant prevention concentration (MPC) of ESBL-positive and ESBL-negative K. pneumoniae isolated from orthopedic patients, which may provide a basis for the effective use of drugs to control the enrichment of resistance mutants of K. pneumoniae. The MPC90 values of 55 isolates of ESBL-positive K. pneumoniae against 4 fluoroquinolones were 32 µg/mL for levofloxacin and gatifloxacin, 16 µg/mL for ciprofloxacin, and 4 µg/mL for gemifloxacin. The selection index value was 8 for levofloxacin and ciprofloxacin and 2 for gemifloxacin and gatifloxacin, respectively. For ESBL-negative K. pneumoniae isolates, the MPC90 values were 16 µg/mL for levofloxacin and ciprofloxacin, 4 µg/mL for gemifloxacin, and 32 µg/mL for gatifloxacin. The selection index value was 8 for levofloxacin and ciprofloxacin, 2 for gemifloxacin, and 4 for gatifloxacin. For the ESBL-positive K. pneumoniae, the %T>MIC90 order was gemifloxacin > levofloxacin > ciprofloxacin > gatifloxacin. For the ESBL-negative K. pneumoniae, the %T>MIC90 order was levofloxacin > gemifloxacin > ciprofloxacin > gatifloxacin. The mutant-preventing ability of gatifloxacin and gemifloxacin was the strongest among the 4 fluoroquinolones. So gemifloxacin may be the first choice of drug to treat K. pneumoniae infection.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Fluoroquinolones , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Ciprofloxacin/pharmacology , Levofloxacin/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Gatifloxacin/pharmacology , Gemifloxacin , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
12.
BMC Microbiol ; 24(1): 265, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026143

ABSTRACT

BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , Quinolones , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , DNA Gyrase/genetics , Plasmids/genetics , DNA Topoisomerase IV/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Iran , Bacterial Proteins/genetics , Prevalence , Fluoroquinolones/pharmacology
13.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39066496

ABSTRACT

AIMS: Staphylococcus aureus is an opportunistic pathogen whose treatment is further complicated by its ability to form biofilms. In this study, we examine the impact of growing S. aureus biofilms on different polymerizing surfaces, specifically agar and agarose, on the pathogen's tolerance to fluoroquinolones. METHODS AND RESULTS: Biofilms of two methicillin-resistant strains of S. aureus were grown on agar or agarose in the presence of the same added nutrients, and their antibiotic susceptibility to two fluoroquinolones, moxifloxacin (MXF) and delafloxacin (DLX), were measured. We also compared the metabolism and extracellular polymeric substances (EPS) production of biofilms that were grown on agar and agarose. CONCLUSIONS: Biofilms that were grown on agarose were consistently more susceptible to antibiotics than those grown on agar. We found that in biofilms that were grown on agar, extracellular protein composition was higher, and adding EPS to agarose-grown biofilms increased their tolerance to DLX to levels that were comparable to agar-grown biofilms.


Subject(s)
Agar , Anti-Bacterial Agents , Biofilms , Fluoroquinolones , Microbial Sensitivity Tests , Sepharose , Staphylococcus aureus , Biofilms/drug effects , Biofilms/growth & development , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcus aureus/growth & development , Culture Media/chemistry , Moxifloxacin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology
14.
Antimicrob Agents Chemother ; 68(8): e0069824, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38953622

ABSTRACT

In contrast to the epidemiology 10 years earlier at our hospital when the epidemic restriction endonuclease analysis (REA) group strain BI accounted for 72% of Clostridioides difficile isolates recovered from first-episode C. difficile infection (CDI) cases, BI represented 19% of first-episode CDI isolates in 2013-2015. Two additional REA group strains accounted for 31% of isolates (Y, 16%; DH, 12%). High-level resistance to fluoroquinolones and azithromycin was more common among BI isolates than among DH, Y, and non-BI/DH/Y isolates. Multivariable analysis revealed that BI cases were 2.47 times more likely to be associated with fluoroquinolone exposure compared to non-BI cases (95% confidence interval [CI]: 1.12-5.46). In addition, the odds of developing a CDI after third- or fourth-generation cephalosporin exposure was 2.83 times for DH cases than for non-DH cases (95% CI: 1.06-7.54). Fluoroquinolone use in the hospital decreased from 2005 to 2015 from a peak of 113 to a low of 56 antimicrobial days/1,000 patient days. In contrast, cephalosporin use increased from 42 to 81 antimicrobial days/1,000 patient days. These changes correlated with a decrease in geometric mean MIC for ciprofloxacin (61.03 to 42.65 mg/L, P = 0.02) and an increase in geometric mean MIC for ceftriaxone (40.87 to 86.14 mg/L, P < 0.01) among BI isolates. The BI strain remained resistant to fluoroquinolones, but an overall decrease in fluoroquinolone use and increase in cephalosporin use were associated with a decrease in the prevalence of BI, an increased diversity of C. difficile strain types, and the emergence of strains DH and Y.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Fluoroquinolones , Microbial Sensitivity Tests , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Clostridium Infections/drug therapy , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Male , Female , Aged , Prevalence , Middle Aged , Prohibitins , Hospitals , Disease Outbreaks , Azithromycin/therapeutic use , Azithromycin/pharmacology , Cross Infection/microbiology , Cross Infection/epidemiology , Cross Infection/drug therapy , Aged, 80 and over , Cephalosporins/therapeutic use , Cephalosporins/pharmacology
15.
J Mater Chem B ; 12(31): 7626-7634, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39005154

ABSTRACT

The achievement of smart pharmaceuticals whose bioactivity can be spatiotemporally controlled by light stimuli is known as photopharmacology, an emerging area aimed at improving the therapeutic outcome and minimizing side effects. This is especially attractive for antibiotics, for which the inevitable development of multidrug resistance and the dwindling of new clinically approved drugs represent the main drawbacks. Here, we show that nitrosation of the fluoroquinolone norfloxacin (NF), a broad-spectrum antibiotic, leads to the nitrosated bioconjugate NF-NO, which is inactive at the typical minimum inhibitory concentration of NF. Irradiation of NF-NO with visible blue light triggers the simultaneous release of NF and nitric oxide (NO). The photouncaging process is accompanied by the revival of the typical fluorescence emission of NF, quenched in NF-NO, which acts as an optical reporter. This permits the real-time monitoring of the photouncaging process, even within bacteria cells where antibacterial activity is switched on exclusively upon light irradiation. The mechanism of photorelease seems to occur through a two-step hopping electron transfer mediated by the lowest triplet state of NF-NO and the phosphate buffer ions or aminoacids such as tyrosine. Considering the well-known role of NO as an "unconventional" antibacterial, the NF-NO conjugate may represent a potential bimodal antibacterial weapon activatable on demand with high spatio-temporal control.


Subject(s)
Anti-Bacterial Agents , Nitric Oxide , Norfloxacin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nitric Oxide/metabolism , Norfloxacin/pharmacology , Norfloxacin/chemistry , Fluorescence , Photochemical Processes , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Light , Molecular Structure , Escherichia coli/drug effects
16.
BMC Infect Dis ; 24(1): 763, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085804

ABSTRACT

BACKGROUND: One of the most prevalent bacteria that cause nosocomial infections is Pseudomonas aeruginosa. Fluoroquinolones (FQ) and aminoglycosides are vital antipseudomonal drugs, but resistance is increasingly prevalent. The study sought to investigate the diverse mechanisms underlying FQ and aminoglycoside resistance in various P. aeruginosa strains particularly during the COVID-19 crisis. METHODS: From various clinical and environmental samples, 110 P. aeruginosa isolates were identified and their susceptibility to several antibiotic classes was evaluated. Molecular techniques were used to track target gene mutations, the presence of genes encoding for quinolone resistance, modifying enzymes for aminoglycosides and resistance methyltransferase (RMT). Efflux pump role was assessed phenotypically and genotypically. Random amplified polymorphic DNA (RAPD) analysis was used to measure clonal diversity. RESULTS: QnrS was the most frequently encountered quinolone resistance gene (37.5%) followed by qnrA (31.2%) and qnrD (25%). Among aminoglycoside resistant isolates, 94.1% harbored modifying enzymes genes, while RMT genes were found in 55.9% of isolates. The aac(6')-Ib and rmtB were the most prevalent genes (79.4% and 32.3%, respectively). Most FQ resistant isolates overexpressed mexA (87.5%). RAPD fingerprinting showed 63.2% polymorphism. CONCLUSIONS: Aminoglycosides and FQ resistance observed in this study was attributed to several mechanisms with the potential for cross-contamination existence so, strict infection control practices are crucial.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , COVID-19 , Fluoroquinolones , Genotype , Microbial Sensitivity Tests , Phenotype , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Humans , Aminoglycosides/pharmacology , Egypt/epidemiology , COVID-19/epidemiology , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Drug Resistance, Bacterial/genetics , Hospitals , Random Amplified Polymorphic DNA Technique , Pandemics , Drug Resistance, Multiple, Bacterial/genetics
17.
Indian J Tuberc ; 71 Suppl 1: S37-S43, 2024.
Article in English | MEDLINE | ID: mdl-39067953

ABSTRACT

BACKGROUND & OBJECTIVES: The purpose of present study is to analyse the distribution and pattern of genetic mutations in PRE-XDR-TB and extensive drug resistant Mycobacterium tuberculosis (XDR-TB) using second-line line probe assay and to compare them with different parameters. METHOD: Sputum, Lymph node aspirate and cold accesses from patients with rifampicin resistant Tuberculosis were subjected to first line and second line Probe Assay (Genotype MTBDRsl by Hain Life Science, Germany) to assess additional drug resistance to fluroquinolones (Levofloxacin & Moxifloxacin) and Aminoglycosides (Amikacin, Ofloxacin and Kanamycin). The genetic mutation pattern was analysed and compared with demographic, clinical and other parameters. RESULTS: The final study population included 123 fluoroquinolone resistant isolates including 14 isolates with additional second line aminoglycosides drug resistance. The most frequent mutation observed among Gyr A drug resistance mutation was D94G (Gyr A MUT3C, 50/123,40%) corresponding to high level resistance to levofloxacin and moxifloxacin. The most frequent wild type mutant among Gyr A gene locus was WT 3 (85/123,69%). The most common mutation among second line aminoglycoside resistant isolates was at eis WT2 (7/14,50%) followed by rrs MUT 2 (4/14,29%). CONCLUSIONS: GyrA MUT3C (Asp94Gly) was the most common mutation in Gyr A gene locus in M. tuberculosis causing high level levofloxacin and moxifloxacin resistance. Patients with Asp94Gly mutation was significantly associated with underweight body mass index (p = 0.026). This study also observed that history of anti-tuberculosis therapy is a risk factor for FQ drug resistance mutations (p < 0.001).


Subject(s)
Antitubercular Agents , Mutation , Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Middle Aged , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Microbial Sensitivity Tests , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Levofloxacin/pharmacology , Levofloxacin/therapeutic use , Moxifloxacin/therapeutic use , Moxifloxacin/pharmacology , Young Adult
18.
J Pharmacol Toxicol Methods ; 128: 107527, 2024.
Article in English | MEDLINE | ID: mdl-38852685

ABSTRACT

INTRODUCTION: Cardiovascular safety and the risk of developing the potentially fatal ventricular tachyarrhythmia, Torsades de Pointes (TdP), have long been major concerns of drug development. TdP is associated with a delayed ventricular repolarization represented by QT interval prolongation in the electrocardiogram (ECG), typically due to block of the potassium channel encoded by the human ether-a-go-go related gene (hERG). Importantly however, not all drugs that prolong the QT interval are torsadagenic and not all hERG blockers prolong the QT interval. Recent clinical reports suggest that partitioning the QT interval into early (J to T peak; JTp) and late repolarization (T peak to T end; TpTe) components may be valuable for distinguishing low-risk mixed ion channel blockers (hERG plus calcium and/or late sodium currents) from high-risk pure hERG channel blockers. This strategy, if true for nonclinical animal models, could be used to de-risk QT prolonging compounds earlier in the drug development process. METHODS: To explore this, we investigated JTp and TpTe in ECG data collected from telemetered dogs and/or monkeys administered moxifloxacin or amiodarone at doses targeting relevant clinical exposures. An optimized placement of the Tpeak fiducial mark was utilized, and all intervals were corrected for heart rate (QTc, JTpc, TpTec). RESULTS: Increases in QTc and JTpc intervals with administration of the pure hERG blocker moxifloxacin and an initial QTc and JTpc shortening followed by prolongation with the mixed ion channel blocker amiodarone were detected as expected, aligning with clinical data. However, anticipated increases in TpTec by both standard agents were not detected. DISCUSSION: The inability to detect changes in TpTec reduces the utility of these subintervals for prediction of arrhythmias using continuous single­lead ECGs collected from freely moving dogs and monkeys.


Subject(s)
Amiodarone , Electrocardiography , Long QT Syndrome , Moxifloxacin , Torsades de Pointes , Animals , Moxifloxacin/administration & dosage , Moxifloxacin/pharmacology , Dogs , Amiodarone/administration & dosage , Amiodarone/pharmacology , Electrocardiography/drug effects , Electrocardiography/methods , Torsades de Pointes/chemically induced , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Male , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Female , Macaca fascicularis , Fluoroquinolones/administration & dosage , Fluoroquinolones/pharmacology , Heart Rate/drug effects , Potassium Channel Blockers/administration & dosage , Potassium Channel Blockers/pharmacology , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism
19.
Antimicrob Agents Chemother ; 68(7): e0042824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38899925

ABSTRACT

Delafloxacin, a fluoroquinolone antibiotic to treat skin infections, exhibits a broad-spectrum antimicrobial activity. The first randomized, open-label phase I clinical trial was conducted to assess the safety and pharmacokinetics (PK) of intravenous delafloxacin in the Chinese population. A population pharmacokinetic (PopPK) model based on the clinical trial was conducted by NONMEM software. Monte Carlo simulation was performed to evaluate the antibacterial effects of delafloxacin at different doses in different Chinese populations. The PK characteristics of delafloxacin were best described by a three-compartment model with mixed linear and nonlinear clearance. Body weight was included as a covariate in the model. We simulated the AUC0-24h in a steady state at five doses in patient groups of various weights. The results indicated that for patients weighing 70 kg and treated with methicillin-resistant Staphylococcus aureus (MRSA) infections, a minimum dose of 300 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, suggesting an ideal bactericidal effect. For patients weighing less than 60 kg, a dose of 200 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, also suggesting an ideal bactericidal effect. Additionally, this trial demonstrated the high safety of delafloxacin in single-dose and multiple-dose groups of Chinese. Delafloxacin (300 mg, q12h, iv) was recommended for achieving optimal efficacy in Chinese bacterial skin infections patients. To ensure optimal efficacy, an individualized dose of 200 mg (q12h, iv) could be advised for patients weighing less than 60 kg, and 300 mg (q12h, iv) for those weighing more than 60 kg.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Healthy Volunteers , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Monte Carlo Method , Humans , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Fluoroquinolones/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Female , Middle Aged , Administration, Intravenous , Young Adult , Area Under Curve , Body Weight/drug effects
20.
Nat Chem ; 16(9): 1462-1472, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38898213

ABSTRACT

Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , Drug Resistance, Bacterial , Escherichia coli , Fluoroquinolones , Isoquinolines , Sulfonamides , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Fluoroquinolones/pharmacology , Fluoroquinolones/chemistry , Fluoroquinolones/chemical synthesis , DNA Gyrase/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Microbial Sensitivity Tests , Structure-Activity Relationship , Drug Discovery , Allosteric Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL