Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.554
Filter
1.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724958

ABSTRACT

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Subject(s)
Flavonoids , Macrophages , Metal-Organic Frameworks , Osteoarthritis , Reactive Oxygen Species , Metal-Organic Frameworks/chemistry , Osteoarthritis/drug therapy , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Delivery Systems/methods , Folic Acid/chemistry , Male , Rats , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley
2.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696132

ABSTRACT

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Subject(s)
Aminolevulinic Acid , Breast Neoplasms , Gold , Photochemotherapy , Photosensitizing Agents , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Gold/chemistry , Gold/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Acrylic Resins/chemistry , Female , Folic Acid/chemistry , Cell Survival/drug effects
3.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791388

ABSTRACT

The use of targeted drug delivery systems, including those based on selective absorption by certain receptors on the surface of the target cell, can lead to a decrease in the minimum effective dose and the accompanying toxicity of the drug, as well as an increase in therapeutic efficacy. A fullerene C60 conjugate (FA-PVP-C60) with polyvinylpyrrolidone (PVP) as a biocompatible spacer and folic acid (FA) as a targeting ligand for tumor cells with increased expression of folate receptors (FR) was obtained. Using 13C NMR spectroscopy, FT-IR, UV-Vis spectrometry, fluorometry and thermal analysis, the formation of the conjugate was confirmed and the nature of the binding of its components was established. The average particle sizes of the conjugate in aqueous solutions and cell culture medium were determined using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The FA-PVP-C60 showed antiradical activity against •DPPH, •OH and O2•-, but at the same time, it was shown to generate 1O2. It was found that the conjugate in the studied concentration range (up to 200 µg/mL) is non-toxic in vitro and does not affect the cell cycle. To confirm the ability of the conjugate to selectively accumulate through folate-mediated endocytosis, its uptake into cells was analyzed by flow cytometry and confocal microscopy. It was shown that the conjugate is less absorbed by A549 cells with low FR expression than by HeLa, which has a high level of expression of this receptor.


Subject(s)
Drug Delivery Systems , Folic Acid , Fullerenes , Povidone , Folic Acid/chemistry , Folic Acid/pharmacology , Humans , Povidone/chemistry , Fullerenes/chemistry , Fullerenes/pharmacology , Drug Delivery Systems/methods , Cell Line, Tumor , A549 Cells , HeLa Cells , Particle Size
4.
Int J Pharm ; 658: 124213, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38729382

ABSTRACT

Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.


Subject(s)
Copper , Delayed-Action Preparations , Drug Liberation , Folic Acid , Liposomes , Folic Acid/chemistry , Folic Acid/administration & dosage , Animals , Copper/chemistry , Copper/administration & dosage , Cell Line, Tumor , Humans , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/administration & dosage , Hydrogels/chemistry , Nanoparticles/chemistry , Mice, Inbred BALB C , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , Temperature , Cell Survival/drug effects , Female , Mice, Nude , Drug Carriers/chemistry , Polyethylene Glycols/chemistry
5.
Int J Biol Macromol ; 269(Pt 1): 132023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697444

ABSTRACT

Colon cancer is one of the lethal diseases in the world with approximately 700,000 fatalities annually. Nowadays, due to the side effects of existing methods in the treatment of colon cancer such as radiotherapy and chemotherapy, the use of targeted nanocarriers in cancer treatment has received wide attention, and among them, especially liposomes have been studied a lot. Based on this, anti-tumor drugs hidden in targeted active liposomes can selectively act on cancer cells. In this systematic review, the use of various ligands such as folic acid, transferrin, aptamer, hyaluronic acid and cRGD for active targeting of liposomes to achieve improved drug delivery to colon cancer cells has been reviewed. The original articles published in English in the databases of Science Direct, PubMed and Google scholar from 2012 to 2022 were reviewed. From the total of 26,256 published articles, 19 studies met the inclusion criteria. The results of in vitro and in vivo studies have revealed that targeted liposomes lead to increasing the efficacy of anti-cancer agents on colon cancer cells with reducing side effects compared to free drugs and non-targeted liposomes. To the best of our knowledge, this is the first systematic review showing promising results for improvement treatment of colon cancer using targeted liposomes.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Drug Delivery Systems , Liposomes , Liposomes/chemistry , Humans , Colonic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage , Animals , Drug Carriers/chemistry , Folic Acid/chemistry
6.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762934

ABSTRACT

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Subject(s)
Durapatite , Europium , Folic Acid , Nanoparticles , Humans , Folic Acid/chemistry , Europium/chemistry , Nanoparticles/chemistry , HeLa Cells , Durapatite/chemistry , Luminescence , Microscopy, Fluorescence , Propylamines/chemistry , Particle Size , Luminescent Agents/chemistry
7.
Sci Rep ; 14(1): 10117, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698033

ABSTRACT

In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.


Subject(s)
Curcumin , Nanotubes, Carbon , Curcumin/pharmacology , Curcumin/chemistry , Nanotubes, Carbon/chemistry , Cell Line, Tumor , Humans , Mice , Animals , Folic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/pathology , Melanoma/therapy , Photothermal Therapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Cell Survival/drug effects
8.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692166

ABSTRACT

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Subject(s)
Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
9.
Int J Nanomedicine ; 19: 4217-4234, 2024.
Article in English | MEDLINE | ID: mdl-38766660

ABSTRACT

Introduction: Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that involves synovitis, cartilage destruction, and even joint damage. Traditional agents used for RA therapy remain unsatisfactory because of their low efficiency and obvious adverse effects. Therefore, we here established RA microenvironment-responsive targeted micelles that can respond to the increase in reactive oxygen species (ROS) levels in the joint and improve macrophage-specific targeting of loaded drugs. Methods: We here prepared ROS-responsive folate-modified curcumin micelles (TK-FA-Cur-Ms) in which thioketal (TK) was used as a ROS-responsive linker for modifying polyethylene glycol 5000 (PEG5000) on the micellar surface. When micelles were in the ROS-overexpressing inflammatory microenvironment, the PEG5000 hydration layer was shed, and the targeting ligand FA was exposed, thereby enhancing cellular uptake by macrophages through active targeting. The targeting, ROS sensitivity and anti-inflammatory properties of the micelles were assessed in vitro. Collagen-induced arthritis (CIA) rats model was utilized to investigate the targeting, expression of serum inflammatory factors and histology change of the articular cartilage by micelles in vivo. Results: TK-FA-Cur-Ms had a particle size of 90.07 ± 3.44 nm, which decreased to 78.87 ± 2.41 nm after incubation with H2O2. The micelles exhibited in vitro targeting of RAW264.7 cells and significantly inhibited inflammatory cytokine levels. Pharmacodynamic studies have revealed that TK-FA-Cur-Ms prolonged the drug circulation and exhibited augmented cartilage-protective and anti-inflammatory effects in vivo. Conclusion: The unique ROS-responsive targeted micelles with targeting, ROS sensitivity and anti-inflammatory properties were successfully prepared and may offer an effective therapeutic strategy against RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Curcumin , Folic Acid , Micelles , Reactive Oxygen Species , Animals , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/administration & dosage , Reactive Oxygen Species/metabolism , Rats , Arthritis, Rheumatoid/drug therapy , RAW 264.7 Cells , Mice , Folic Acid/chemistry , Folic Acid/pharmacology , Arthritis, Experimental/drug therapy , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Folate Receptors, GPI-Anchored/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Particle Size , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Disease Models, Animal
10.
BMC Biotechnol ; 24(1): 18, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600497

ABSTRACT

BACKGROUND: Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS: MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS: The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 µg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values ​​of 45 µg/mL and 1500 µg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 µg/mL. CONCLUSIONS: Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.


Subject(s)
Benzothiazoles , Chitosan , Coumarins , Nanoparticles , Sulfonic Acids , Folic Acid/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Lipids , Drug Carriers/chemistry
11.
Front Biosci (Landmark Ed) ; 29(4): 162, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682177

ABSTRACT

BACKGROUND AND OBJECTIVE: There is a growing need to comprehend the potential outcomes of nanoparticles (NPs) on human well-being, including their potential for detecting and treating leukemia. This study examined the role of iron folate core-shell and iron oxide nanoparticles in inducing apoptosis and altering the expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and Caspase-3 genes in leukemia cells. METHODS: The obtained iron oxide and iron folate core-shell nanoparticles were analyzed using a variety of analytical techniques, including ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Additionally, FTIR and UV-Vis were used to characterize doxorubicin. The MTT test was utilized to investigate the cytotoxicity of iron oxide and iron folate core-shell nanoparticles. The expression of the apoptotic signaling proteins Bcl-2, Bax, and Caspase-3 was evaluated using the real-time reverse transcription polymerase chain reaction (RT-qPCR) method. Additionally, flow cytometry was performed to gauge the degrees of necrosis and apoptosis. RESULTS: UV-Visible spectroscopy analysis showed that the generated iron oxide and iron folate core-shell NPs had a distinctive absorption curve in the 250-300 nm wavelength range. The XRD peaks were also discovered to index the spherical form with a size of less than 50 nm, which validated the crystal structure. The FTIR analysis determined the bonds and functional groups at wavenumbers between 400 and 4000 cm-1. A viable leukemia treatment approach is a nanocomposite consisting of iron and an iron folate core-shell necessary for inhibiting and activating cancer cell death. The nearly resistant apoptosis in the CCRF-CEM cells may have resulted from upregulating Bax and Casepase-3 while downregulating Bcl-2 expression. CONCLUSIONS: Our study documents the successful synthetization and characterization of iron oxide, which has excellent anticancer activities. A metal oxide conjugation with the nanoparticles' core-shell enhanced the effect against acute leukemia.


Subject(s)
Apoptosis , Folic Acid , Humans , Folic Acid/chemistry , Folic Acid/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Leukemia/drug therapy , Leukemia/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/chemistry , Ferric Compounds/chemistry
12.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38640908

ABSTRACT

Extracellular vesicles (EVs) have been recognized as one of the promising specific drugs for myocardial infarction (MI) prognosis. Nevertheless, low intramyocardial retention of EVs remains a major impediment to their clinical application. In this study, we developed a silk fibroin/hydroxypropyl cellulose (SF/HPC) composite hydrogel combined with AC16 cell-derived EVs targeted modification by folic acid for the treatment of acute myocardial infarction repair. EVs were functionalized by distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) via noncovalent interaction for targeting and accelerating myocardial infarction repair.In vitro, cytocompatibility analyses revealed that the as-prepared hydrogels had excellent cell viability by MTT assay and the functionalized EVs had higher cell migration by scratch assay.In vivo, the composite hydrogels can promote myocardial tissue repair effects by delaying the process of myocardial fibrosis and promoting angiogenesis of infarct area in MI rat model.


Subject(s)
Cellulose , Cellulose/analogs & derivatives , Extracellular Vesicles , Fibroins , Hydrogels , Myocardial Infarction , Myocardial Infarction/drug therapy , Animals , Extracellular Vesicles/metabolism , Fibroins/chemistry , Rats , Cellulose/chemistry , Hydrogels/chemistry , Rats, Sprague-Dawley , Cell Survival/drug effects , Male , Polyethylene Glycols/chemistry , Cell Movement/drug effects , Myocardium/metabolism , Myocardium/pathology , Folic Acid/chemistry , Humans , Cell Line
13.
ACS Biomater Sci Eng ; 10(5): 2894-2910, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38556768

ABSTRACT

Over the past decades, evidence has consistently shown that treatment of central nervous system (CNS)-related disorders, including Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and brain cancer, is limited due to the presence of the blood-brain barrier (BBB). To assist with the development of new therapeutics, it is crucial to engineer a drug delivery system that can cross the BBB efficiently and reach target cells within the brain. In this study, we present a potentially efficient strategy for targeted brain delivery through utilization of folic acid (FA)-conjugated brush polymers, that specifically target the reduced folate carrier (RFC, SLC19A1) expressed on brain endothelial cells. Here, azide (N3)-decorated brush polymers were prepared in a straightforward manner coupling a heterotelechelic α-NH2, ω-N3-poly(2-ethyl-2-oxazoline) (NH2-PEtOx-N3) to N-acylated poly(amino ester) (NPAE)-based brushes. Strain-promoted azide-alkyne cycloaddition (SPAAC) 'click chemistry' with DBCO-folic acid (FA) yielded FA-brush polymers. Interestingly, while azide functionalization of the brush polymers dramatically reduced their association to brain microvascular endothelial cells (hCMEC/D3), the introduction of FA to azide led to a substantial accumulation of the brush polymers in hCMEC/D3 cells. The ability of the polymeric brush polymers to traverse the BBB was quantitatively assessed using different in vitro BBB models including static Transwell and microfluidic platforms. FA-brush polymers showed efficient transport across hCMEC/D3 cells in a manner dependent on FA composition, whereas nonfunctionalized brush polymers exhibited limited trafficking under the same conditions. Further, cellular uptake inhibition studies suggested that the interaction and transport pathway of FA-brush polymers across BBB relies on the RFC-mediated pathways. The potential application of the developed FA-brush polymers in brain cancer delivery was also investigated in a microfluidic model of BBB-glioblastoma. Brush polymers with more FA units successfully presented an enhanced accumulation into U-87 MG glioma cells following its BBB crossing, compared to controls. These results demonstrate that FA-modified brush polymers hold a great potential for more efficient delivery of future brain therapeutics.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Folic Acid , Polymers , Folic Acid/chemistry , Folic Acid/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Polymers/chemistry , Drug Delivery Systems/methods , Cell Line, Tumor , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Drug Carriers/chemistry
14.
J Colloid Interface Sci ; 667: 259-268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636227

ABSTRACT

Indocyanine green (ICG) is an FDA-approved medical diagnostic agent that is widely used as a near-infrared (NIR) fluorescent imaging molecular probe. However, ICG tends to aggregate to form dimers or H-aggregates in water and lacks physical and optical stability, which greatly decreases its absorbance and fluorescence intensity in various applications. Additionally, ICG has no tissue- or tumor-targeting properties, and its structure is not easy to modify, which has further limited its application in cancer diagnosis. In this study, we addressed these challenges by developing a supramolecular colloidal carrier system that targets tumor cells. To this end, we synthesized a water-soluble ß-cyclodextrin (ß-CD) polymer conjugated with folate (FA), denoted PCD-FA, which is capable of forming inclusion complexes with ICG in water through host-guest interactions between the ß-CD moieties and ICG molecules. The inclusion complexes formed by PCD-FA and ICG, called ICG@PCD-FA, dispersed stably in solution as colloidal nanoparticles, greatly improving the physical and optical properties of ICG by preventing ICG dimer formation, where ICG appeared as monomers and even J-aggregates. This resulted in stronger and more stable absorption at a longer wavelength of 900 nm, which may allow for deeper tissue penetration and imaging with reduced interference from biological tissues' autofluorescence. Moreover, ICG@PCD-FA showed a targeting effect on folate receptor-positive (FR+) tumor cells, which specifically highlighted FR+ cells via NIR endoscopic imaging. Notably, ICG@PCD-FA further improved permeation and accumulation in FR+ 3D tumor spheroids. Therefore, this ICG@PCD-FA supramolecular colloidal system may have a great potential for use in tumor NIR imaging and diagnostic applications.


Subject(s)
Colloids , Folic Acid , Indocyanine Green , Spheroids, Cellular , beta-Cyclodextrins , Indocyanine Green/chemistry , beta-Cyclodextrins/chemistry , Folic Acid/chemistry , Humans , Colloids/chemistry , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Particle Size , Tumor Cells, Cultured , Polymers/chemistry , Nanoparticles/chemistry
15.
Mol Pharm ; 21(5): 2441-2455, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38623055

ABSTRACT

Folate receptors including folate receptor α (FRα) are overexpressed in up to 90% of ovarian cancers. Ovarian cancers overexpressing FRα often exhibit high degrees of drug resistance and poor outcomes. A porphyrin chassis has been developed that is readily customizable according to the desired targeting properties. Thus, compound O5 includes a free base porphyrin, two water-solubilizing groups that project above and below the macrocycle plane, and a folate targeting moiety. Compound O5 was synthesized (>95% purity) and exhibited aqueous solubility of at least 0.48 mM (1 mg/mL). Radiolabeling of O5 with 64Cu in HEPES buffer at 37 °C gave a molar activity of 1000 µCi/µg (88 MBq/nmol). [64Cu]Cu-O5 was stable in human serum for 24 h. Cell uptake studies showed 535 ± 12% bound/mg [64Cu]Cu-O5 in FRα-positive IGROV1 cells when incubated at 0.04 nM. Subcellular fractionation showed that most radioactivity was associated with the cytoplasmic (39.4 ± 2.7%) and chromatin-bound nuclear (53.0 ± 4.2%) fractions. In mice bearing IGROV1 xenografts, PET imaging studies showed clear tumor uptake of [64Cu]Cu-O5 from 1 to 24 h post injection with a low degree of liver uptake. The tumor standardized uptake value at 24 h post injection was 0.34 ± 0.16 versus 0.06 ± 0.07 in the blocking group. In summary, [64Cu]Cu-O5 was synthesized at high molar activity, was stable in serum, exhibited high binding to FRα-overexpressing cells with high nuclear translocation, and gave uptake that was clearly visible in mouse tumor xenografts.


Subject(s)
Copper Radioisotopes , Ovarian Neoplasms , Positron-Emission Tomography , Animals , Humans , Mice , Female , Copper Radioisotopes/chemistry , Positron-Emission Tomography/methods , Cell Line, Tumor , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/metabolism , Porphyrins/chemistry , Folate Receptor 1/metabolism , Tissue Distribution , Mice, Nude , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Folic Acid/chemistry , Xenograft Model Antitumor Assays
16.
Biochem Biophys Res Commun ; 714: 149976, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38677007

ABSTRACT

BACKGROUND: The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS: In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS: The drug sensitivity test revealed an IC50 value of 96.94 µg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 µg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION: EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.


Subject(s)
Carcinoma, Hepatocellular , Catechin , Catechin/analogs & derivatives , Folic Acid , Liver Neoplasms , Humans , Catechin/pharmacology , Catechin/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Hep G2 Cells , Folic Acid/chemistry , Folic Acid/pharmacology , Cell Movement/drug effects , Immunogenic Cell Death/drug effects , Nanospheres/chemistry , Apoptosis/drug effects , Cell Survival/drug effects , Temperature , Calreticulin/metabolism
17.
Food Chem ; 450: 139296, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636381

ABSTRACT

Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.


Subject(s)
Chitosan , Folic Acid , Nanoparticles , Quercetin , Resveratrol , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Folic Acid/chemistry , Folic Acid/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Quercetin/pharmacology , Quercetin/administration & dosage , Nanoparticles/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/administration & dosage , Animals , Mice , Humans , Drug Carriers/chemistry , Drug Delivery Systems , RAW 264.7 Cells
18.
Acta Biomater ; 180: 383-393, 2024 May.
Article in English | MEDLINE | ID: mdl-38570106

ABSTRACT

Ferroptosis has emerged as a promising strategy for treating triple-negative breast cancer (TNBC) due to bypassing apoptosis and triggering immunogenic cell death (ICD) of tumor cells. However, the antitumor efficacy has been limited by the insufficient intracellular ferrous iron concentration required for ferroptosis and inadequate antitumor immune response. To address these limitations, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which exhibited a synergistic effect of ferroptosis, apoptosis and induced immune response for enhanced antitumor therapy. MP-FA@R-F NPs target folate receptors, which are over-expressed on the tumor cell's surface to promote intracellular uptake. The cargoes, including Rhein and Fe3O4, would be released in intracellular acid, accelerating by NIR laser irradiation. The released Rhein induced apoptosis of tumor cells mediated by the caspase 3 signal pathway, while the released Fe3O4 triggered ferroptosis through the Fenton reaction and endowed the nanoplatform with magnetic resonance imaging (MRI) capabilities. In addition, ferroptosis-dying tumor cells could release damage-associated molecular patterns (DAMPs) to promote T cell activation and infiltration for immune response and induce immunogenic cell death (ICD) for tumor immunotherapy. Together, MP-FA@R-F NPs represent a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy. STATEMENT OF SIGNIFICANCE: The massive strategies of cancer therapy based on ferroptosis have been emerging in recent years, which provided new insights into designing materials for cancer therapy. However, the antitumor efficacy of ferroptosis is still unsatisfactory, mainly due to insufficient intracellular pro-ferroptotic stimuli. In the current study, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which represented a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy.


Subject(s)
Anthraquinones , Ferroptosis , Immunotherapy , Anthraquinones/chemistry , Anthraquinones/pharmacology , Animals , Immunotherapy/methods , Humans , Cell Line, Tumor , Mice , Ferroptosis/drug effects , Female , Mice, Inbred BALB C , Folic Acid/chemistry , Folic Acid/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Apoptosis/drug effects
19.
Mol Pharm ; 21(6): 2781-2794, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38676649

ABSTRACT

The nanocrystal (NC) technology has become one of the most commonly used strategies for the formulation of poorly soluble actives. Given their large specific surface, NCs are mainly used to enhance the oral absorption of poorly soluble actives. Differently from conventional nanoparticles, which require the use of carrier materials and have limited drug loadings, NCs' drug loading approaches 100% since they are formed of the pure drug and surrounded by a thin layer of a stabilizer. In this work, we report the covalent decoration of curcumin NCs with folic acid (FA) using EDC/NHS chemistry and explore the novel systems as highly loaded "Trojan horses" to target cancer cells. The decorated NCs demonstrated a remarkable improvement in curcumin uptake, exhibiting enhanced growth inhibition in cancer cells (HeLa and MCF7) while sparing healthy cells (J774A.1). Cellular uptake studies revealed significantly heightened entry of FA-decorated NCs into cancer cells compared to unmodified NCs while also showing reduced uptake by macrophages, indicating a potential for prolonged circulation in vivo. These findings underline the potential of NC highly loaded nanovectors for drug delivery and, in particular, for cancer therapies, effectively targeting folate receptor-overexpressing cells while evading interception by macrophages, thus preserving their viability and offering a promising avenue for precise and effective treatments.


Subject(s)
Curcumin , Folic Acid , Nanoparticles , Folic Acid/chemistry , Humans , Nanoparticles/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/administration & dosage , Animals , MCF-7 Cells , HeLa Cells , Drug Delivery Systems/methods , Mice , Drug Carriers/chemistry , Macrophages/drug effects , Macrophages/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Neoplasms/drug therapy , Neoplasms/pathology , Cell Survival/drug effects , Cell Line, Tumor
20.
Int J Biol Macromol ; 268(Pt 2): 131646, 2024 May.
Article in English | MEDLINE | ID: mdl-38636765

ABSTRACT

Plant-based food proteins are a promising choice for the preparation of nanoparticles (NPs) due to their high digestibility, low cost, and ability to interact with various compounds and nutrients. Moreover, nanoencapsulation offers a potential solution for protecting nutrients during processing and enhancing their bioavailability. This study aimed to develop and evaluate nanoparticles (NPs) based on legumin/vicilin (LV) proteins extracted from fava beans, with the goal of encapsulating and delivering a model nutraceutical compound, folic acid (FA). Specifically, NPs were self-assembled from LV proteins extracted from commercially available frozen fava beans using a pH-coacervation method with poloxamer 188 (P188) and chemically cross-linked with glutaraldehyde. Microscopy and spectroscopy studies were carried out on the empty and FA-loaded NPs in order to evaluate the particle morphology, size, size distribution, composition, mechanism of formation, impact of FA loading and release behavior. In vitro studies with Caco-2 cells also confirmed that the empty and FA-loaded nanoparticles were non-toxic. Thus, the LV-NPs are good candidates as food additives for the delivery and stabilization of nutrients as well as in drug delivery for the controlled release of therapeutics.


Subject(s)
Delayed-Action Preparations , Folic Acid , Nanoparticles , Poloxamer , Folic Acid/chemistry , Humans , Nanoparticles/chemistry , Poloxamer/chemistry , Caco-2 Cells , Delayed-Action Preparations/chemistry , Drug Liberation , Particle Size , Plant Proteins/chemistry , Drug Carriers/chemistry , Drug Compounding
SELECTION OF CITATIONS
SEARCH DETAIL
...