Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.700
Filter
1.
Food Res Int ; 188: 114488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823841

ABSTRACT

Direct analysis in real time-mass spectrometry (DART-MS) has evolved as an effective analytical technique for the rapid and accurate analysis of food samples. The current advancements of DART-MS in food analysis are described in this paper. We discussed the DART principles, which include devices, ionization mechanisms, and parameter settings. Numerous applications of DART-MS in the fields of food and food products analysis published during 2018-2023 were reviewed, including contamination detection, food authentication and traceability, and specific analyte analysis in the food matrix. Furthermore, the challenges and limitations of DART-MS, such as matrix effect, isobaric component analysis, cost considerations and accessibility, and compound selectivity and identification, were discussed as well.


Subject(s)
Food Analysis , Food Contamination , Mass Spectrometry , Food Analysis/methods , Mass Spectrometry/methods , Food Contamination/analysis
2.
Wei Sheng Yan Jiu ; 53(3): 472-486, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839590

ABSTRACT

OBJECTIVE: To comprehensively analyze the trace nutrient contents in take-away meals, the simultaneous detection method of common vitamins in take-away meals were explored based on the samples' matrix, and the content of trace nutrients in take-away meals was analyzed combined with inductively coupled plasma-mass spectrometry(ICP-MS) detection of common elements. METHODS: Fifty-seven take-away meals were collected randomly and analyzed. Vitamins were determined by high performance liquid chromatography-ultraviolet detector tandem fluorescence detector after pretreatment of samples including enzymatic digestion, hydrolysis and extraction. The separation was performed on a C_(18) column(250 mm×4.6 mm, 5 µm) with ion-pair acid reagents as the mobile phase for water-soluble vitamins and methanol for fat-soluble vitamins. Vitamin B_1, vitamin B_2, nicotinic acid, nicotinamide and vitamin A were detected by ultraviolet detector(UVD), while vitamin B_6 and E by fluorescence detector(FLD). Elemental analysis of calcium, magnesium, sodium, potassium, zinc, selenium and copper in the take-away meals was carried out according to GB 5009.268-2016 by ICP-MS to comprehensively evaluate the contents of micronutrients. RESULTS: Through optimization of chromatography and sample pretreatment conditions, the sensitivity of the established detection method can meet the needs of micronutrient evaluation with the detection limits and quantification limits of vitamins in the range of 0.002-0.098 mg/100 g and 0.007-0.327 mg/100 g, respectively. Good precision was obtained(<10%). The spiked recovery rates were 80.5%-103.8%(n=6). The result showed that the contents of micronutrients in take-away meals were generally low. The detection rates of vitamins ranged from 21.1% to 98.2%. CONCLUSION: The proposed method is simple and sensitive, and the contents of vitamins and elements determined were low in the collected take-away meals.


Subject(s)
Micronutrients , Micronutrients/analysis , Chromatography, High Pressure Liquid/methods , Vitamins/analysis , Mass Spectrometry/methods , Food Analysis/methods , Trace Elements/analysis , Meals
3.
Mikrochim Acta ; 191(7): 367, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832980

ABSTRACT

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Subject(s)
Electrochemical Techniques , Food Analysis , Hazard Analysis and Critical Control Points , Nanocomposites , Zearalenone , Zearalenone/analysis , Hazard Analysis and Critical Control Points/methods , Food Analysis/instrumentation , Food Analysis/methods , Nanocomposites/chemistry , Nanocomposites/standards , Electrodes , Gold/chemistry , Sensitivity and Specificity , Reproducibility of Results
4.
J Mass Spectrom ; 59(6): e5036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726689

ABSTRACT

Turmeric and ginger are extensively employed as functional ingredients due to their high content of curcuminoids and gingerols, considered the key bioactive compounds found in these roots. In this study, we present an innovative and fast method for the assay of curcuminoids and gingerols in different foods containing the two spices, with the aim of monitoring the quality of products from a nutraceutical perspective. The proposed approach is based on paper spray tandem mass spectrometry coupled with the use of a labeled internal standard, which has permitted to achieve the best results in terms of specificity and accuracy. All the calculated analytical parameters were satisfactory; accuracy values are around 100% for all spiked samples and the precision data result lower than 15%. The protocol was applied to several real samples, and to demonstrate its robustness and reliability, the results were compared to those arising from the common liquid chromatographic method.


Subject(s)
Curcuma , Fatty Alcohols , Tandem Mass Spectrometry , Zingiber officinale , Zingiber officinale/chemistry , Curcuma/chemistry , Tandem Mass Spectrometry/methods , Fatty Alcohols/analysis , Reproducibility of Results , Limit of Detection , Catechols/analysis , Food Analysis/methods , Curcumin/analysis , Curcumin/analogs & derivatives , Paper
5.
Sci Rep ; 14(1): 10668, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724593

ABSTRACT

Currently food fraud and authenticity of products composition are topics of great concern; ingredients quantification could allow to identify small amounts of contaminats or voluntary addition of improper components. Many molecular methods are available for species identification in foodstuffs but, for a better application, they should not be affected by the interference of other ingredients. The main purpose of this work was to verify the Real Time PCR and the Digital PCR (dPCR) quantification performances on baby food samples, specifically selected for their high miscibility to limit variability; chicken was selected as target to verify the performance of quantification of methods after having spiked the same quantity in different baby foods. The other aims were: (1) to verify a constant genome copies ratio existence between mammalian and avian species (2) to verify the dPCR performance, set up on housekeeping, to quantify mammalian and avian species in commercial products. Digital PCR showed fewer differences respect to Real Time PCR, at the same 15% w/w chicken spiking level. Despite the constant difference between mammalian and avian genome copies, in samples with the same spiking weight, the confidence intervals increasing towards the extreme values, made impossible to use genome copies ratio as a sort of correction factor between species. Finally, the dPCR system using the myostatin housekeeping gene to determine the chicken content seemed reliable to verify the labelling compliance in meat-based commercial products.


Subject(s)
Chickens , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/methods , Chickens/genetics , Mammals/genetics , Food Labeling , Food Analysis/methods , Birds/genetics , Meat/analysis , Polymerase Chain Reaction/methods
6.
Compr Rev Food Sci Food Saf ; 23(3): e13360, 2024 05.
Article in English | MEDLINE | ID: mdl-38741454

ABSTRACT

Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.


Subject(s)
Food Contamination , Animals , Humans , Food Analysis/methods , Food Contamination/analysis , Metabolomics/methods , Proteomics/methods
7.
Food Res Int ; 183: 114234, 2024 May.
Article in English | MEDLINE | ID: mdl-38760147

ABSTRACT

Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.


Subject(s)
Receptors, G-Protein-Coupled , Taste Perception , Taste , Humans , Receptors, G-Protein-Coupled/metabolism , Flavoring Agents/analysis , Metabolomics/methods , Food Analysis/methods , Food Preferences
8.
Food Res Int ; 187: 114353, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763640

ABSTRACT

The food industry has grown with the demands for new products and their authentication, which has not been accompanied by the area of analysis and quality control, thus requiring novel process analytical technologies for food processes. An electronic tongue (e-tongue) is a multisensor system that can characterize complex liquids in a fast and simple way. Here, we tested the efficacy of an impedimetric microfluidic e-tongue setup - comprised by four interdigitated electrodes (IDE) on a printed circuit board (PCB), with four pairs of digits each, being one bare sensor and three coated with different ultrathin nanostructured films with different electrical properties - in the analysis of fresh and industrialized coconut water. Principal Component Analysis (PCA) was applied to observe sample differences, and Partial Least Squares Regression (PLSR) was used to predict sample physicochemical parameters. Linear Discriminant Analysis (LDA) and Partial Least Square - Discriminant Analysis (PLS-DA) were compared to classify samples based on data from the e-tongue device. Results indicate the potential application of the microfluidic e-tongue in the identification of coconut water composition and determination of physicochemical attributes, allowing for classification of samples according to soluble solid content (SSC) and total titratable acidity (TTA) with over 90% accuracy. It was also demonstrated that the microfluidic setup has potential application in the food industry for quality assessment of complex liquid samples.


Subject(s)
Cocos , Dielectric Spectroscopy , Principal Component Analysis , Cocos/chemistry , Least-Squares Analysis , Dielectric Spectroscopy/methods , Discriminant Analysis , Water/chemistry , Food Analysis/methods , Microfluidics/methods , Microfluidics/instrumentation , Electronic Nose
9.
Anal Chim Acta ; 1310: 342705, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811142

ABSTRACT

BACKGROUND: Reliability and robustness have been recognized as key challenges for Surface-enhanced Raman scattering (SERS) analytical techniques. Quantifying the concentration of an analyte using a single characteristic peak from SERS has been a controversial topic because the Raman signal is susceptible to highly concentrated electromagnetic hotspots, inhomogeneity of SERS substrate, or non-standardization of measurement conditions. Ratiometric SERS strategies have been demonstrated as a promising solution to effectively balance and compensate for signal fluctuations caused by matrix heterogeneity. However, it is not easy to construct ratiometric SERS sensors with monitoring the ratio of two different signal intensities for target analysis. RESULTS: An attempt has been made to develop a novel ratiometric biosensor that can be applied to detect okadaic acid (OA). Aptamer-anchored magnetic particles were first combined with gold-tagged short complementary DNA (Au-cDNA) to create heterogeneous nanostructures. When the target was present, the Au-cDNA was dissociated from nanostructures, and 4-nitrothiophenol (4-NTP) was initiated to reduce to 4-aminothiophenol (4-ATP) in the presence of hydrogen sources. The SERS ratio change of 4-NTP and 4-ATP was finally detected by AuNPs-coated film. OA was successfully quantified, and the detection limit was as low as 2.4524 ng/mL. The constructed biosensor had good stability and reproducibility with a relative standard deviation of less than 4.47%. The proposed method used gold nanoparticles as an intermediate to achieve catalytic signal amplification and subsequently increased the sensitivity of the biosensor. SIGNIFICANCE AND NOVELTY: Catalytic reaction-based ratiometric SERS biosensors combine the multiple advantages of catalytic signal amplification and signal self-calibration and provide new insights into the development of stable, reproducible, and reliable SERS detection techniques. This ratiometric SERS technique offered a universal method that is anticipated to be applicable for the detection of other targets by substituting the aptamer.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , Okadaic Acid , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Gold/chemistry , Biosensing Techniques/methods , Okadaic Acid/analysis , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Food Contamination/analysis , Limit of Detection , Food Analysis/methods , Surface Properties
10.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792053

ABSTRACT

Sulfite, a widely used food additive, is subject to regulated labeling. The extraction of sulfite as the stable hydroxymethylsulfonate (HMS) form and its quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been recognized for their good sensitivity, selectivity, and versatility across various food materials. This study aimed to develop a cost-effective and simpler method for sulfite quantitation, while maintaining the superior sensitivity and selectivity of mass spectrometry (MS). To achieve this, we introduced paper spray ionization (PSI), an ambient desorption ionization technique that could achieve the direct measurement of analytes without employing separation. We also employed a novel internal standard (IS) structurally similar to the analyte, replacing the more expensive isotopically labeled IS. Although the PSI-MS/MS method developed in this study exhibited slightly lower analytical performance compared to the conventional LC-MS/MS, it remained effective for sulfite analysis in dried fruits.


Subject(s)
Fruit , Sulfites , Tandem Mass Spectrometry , Sulfites/analysis , Sulfites/chemistry , Tandem Mass Spectrometry/methods , Fruit/chemistry , Chromatography, Liquid/methods , Paper , Food Analysis/methods
11.
Food Chem ; 452: 139534, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38713981

ABSTRACT

In this work, based on the Förster resonance energy transfer (FRET) mechanism strategy, a new dual-increasing emission proportional near-infrared (NIR) fluorescent probe Lay-1 was designed for fast benzoyl peroxide (BPO) detection in real food samples and biosystems. Specifically, it employed a naphthylimide derivative and a NIR fluorophore dicyanoisophorone derivative as the energy transfer donor and acceptor, respectively, and a phenylboronic acid (Ph-B(OH)2) as the responding group of BPO. In addition, the results exhibited that the fluorescence color of Lay-1 was changed from red to orange in the absence and the presence of BPO with a fast response time (∼120 s), high sensitivity, and an excellent limit of detection as low as 60.8 nM. Impressively, Lay-1 has been successfully used for BPO detection in real food samples and biosystems with satisfactory results. Therefore, Lay-1 can be a robust molecular tool to further investigate the physiological and pathological function of BPO.


Subject(s)
Benzoyl Peroxide , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescent Dyes/chemistry , Benzoyl Peroxide/analysis , Benzoyl Peroxide/chemistry , Food Contamination/analysis , Food Analysis , Limit of Detection
12.
Food Chem ; 453: 139638, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781898

ABSTRACT

As primary polyphenol oxidant products, the occurrence of o-quinone is greatly responsible for quality deterioration in wine, including browning and aroma loss. The high reactivity of o-quinone causes huge difficulty in its determination. Herein, a derivative strategy combined with UHPLC-MS/MS analysis was established with chlorogenic acid quinone (CQAQ) and 4-methylcatechol quinone (4MCQ) as model compounds. Method validation demonstrated its efficiency for two analytes (R2 > 0.99, accuracy 98.71-106.39 %, RSD of precision 0.46-6.11 %, recovery 85.83-99.37 %). This approach was successfully applied to detect CQAQ and 4MCQ, suggesting its applicability in food analysis. CQAQ in coffee was much more than 4MCQ and with the deepening of baking degree, CQAQ decreased and 4MCQ increased. The amounts of CQAQ in various vegetables were markedly different, seemingly consistent with their respective browning degrees in practical production. This study developed an accurate and robust analytical approach for o-quinones, providing technical support for their further investigation in foods.


Subject(s)
Quinones , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Quinones/chemistry , Quinones/analysis , Vegetables/chemistry , Food Analysis , Coffee/chemistry , Chlorogenic Acid/analysis , Chlorogenic Acid/chemistry , Catechols/analysis , Catechols/chemistry
13.
J Oleo Sci ; 73(6): 875-885, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38797689

ABSTRACT

This study investigated the effect of cooking on the levels of 3-chloro-1, 2-propanediol esters (3-MCPDEs), 2-chloro-1, 3-propanediol esters (2-MCPDEs) and glycidyl esters (GEs) in deep-fried rice cracker, fried potato, croquette, fish fillet, chicken fillet and cooking oils (rice bran oil and palm oil). The levels of 2-/3-MCPDE in rice cracker fried with rice bran oil and the used oil remained about the same, while the levels of GEs in them fell with frying time. The levels of 2-/3-MCPDEs in fried potato, croquette, fried fish and chicken cutlet fried with rice bran oil and palm oil respectively fell with frying time, while the level of GEs in them remained about the same. The levels of 2-/3-MCPDEs and GEs in fried rice cooked with rice bran oil were under the method limit of quantification. These results provide insights the cooking has no influence with the levels of 2-/3-MCPDEs and GEs in cooked foods.


Subject(s)
Cooking , Esters , Hot Temperature , Palm Oil , Rice Bran Oil , alpha-Chlorohydrin , Cooking/methods , Esters/analysis , Palm Oil/chemistry , Rice Bran Oil/chemistry , alpha-Chlorohydrin/analysis , Fatty Acids/analysis , Plant Oils/chemistry , Food Analysis , Animals , Time Factors , Propylene Glycols/analysis , Epoxy Compounds/analysis , Dietary Fats/analysis , Chickens , Food, Processed
14.
Biotechnol Adv ; 73: 108368, 2024.
Article in English | MEDLINE | ID: mdl-38692442

ABSTRACT

Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Food Analysis , Paper , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Food Analysis/methods , Food Analysis/instrumentation , Humans , Food Safety/methods , Food Contamination/analysis
15.
Int J Biol Macromol ; 269(Pt 1): 132005, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777686

ABSTRACT

To enhance the mechanics performance, sensitivity and response range of multi-responsive photonic films, herein, a facile method for fabricating multi-responsive films is demonstrated using the evaporative self-assembly of a mixture of grape skin red (GSR), cellulose nanocrystal (CNC), polyvinyl alcohol (PVA) and deep eutectic solvent (DES). The prepared materials exhibited excellent thermal stability, strain properties, solvent resistance, ultraviolet (UV) resistance and antioxidant activity. Compared to a pure PVA film, the presence of GSR strengthened the antioxidant property of the film by 240.1 % and provided excellent UV barrier capability. The additional cross-linking of DES and CNC promoted more efficient phase fusion, yielding a film strain of 41.5 %. The addition of hydrophilic compound GSR, wetting and swelling due to the DES and the surface inhomogeneity of the films rendered the multi-responsive films high sensitivity, wide response range and multi-cyclic stability in environments with varying pH and humidity. A sample application showed that a PVA/CNC/DES film has the potential to differentiate between fresh, sub-fresh and fully spoiled shrimps. The above results help in designing intelligent thin film materials that integrate antioxidant properties, which help in monitoring the changes in food freshness and food packaging.


Subject(s)
Antioxidants , Cellulose , Nanoparticles , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Antioxidants/chemistry , Deep Eutectic Solvents/chemistry , Food Packaging/methods , Vitis/chemistry , Food Analysis/methods , Hydrogen-Ion Concentration
16.
J Colloid Interface Sci ; 669: 295-304, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718583

ABSTRACT

Perovskite nanocrystals (PNCs) have emerged as promising candidates for fluorescent probes owing to their outstanding photoelectric properties. However, the conventional CsPbBr3 (CPB) NCs are extremely unstable in water, which has seriously limited their sensing applications in water environment. Herein, we present a powerful ligand engineering strategy for fabricating highly water-stable CPB NCs by using a biopolymer of wool keratin (WK) as the passivator and the polyaryl polymethylene isocyanate (PAPI) as the cross-linking agent. In particular, WK with multi-functional groups can serve as a polydentate ligand to firmly passivate CPB NCs by the ligand exchange process in hot toluene; and then the addition of PAPI can further encapsulate CPB NCs by the crosslinking reaction between PAPI and WK. Consequently, the as-prepared CPB/WK-PAPI NCs can maintain âˆ¼ 80 % of their relative photoluminescence (PL) intensity after 60 days in water, and they still maintain âˆ¼ 40 % of their relative PL intensity even after 512 days in the same environment, which is one of the best water stabilities compared previously reported polymer passivation methods. As a proof-of their application, the portable CPB/WK-PAPI NCs-based test strips are further developed as a fluorescent nanoprobe for real-time and visual monitoring amines and food freshness. Among various amine analytes, the as-prepared test strips exhibit higher sensitivity towards conjugated amines, achieving a remarkable detection limit of 18.3 nM for pyrrole. Our research not only introduces an innovative strategy involving natural biopolymers to enhance the water stability of PNCs, but also highlights the promising potential of PNCs for visually and portably detecting amines and assessing food freshness.


Subject(s)
Fluorescent Dyes , Keratins , Nanoparticles , Water , Wool , Nanoparticles/chemistry , Animals , Water/chemistry , Keratins/chemistry , Keratins/analysis , Wool/chemistry , Fluorescent Dyes/chemistry , Amines/chemistry , Particle Size , Surface Properties , Food Analysis/methods
17.
Anal Methods ; 16(21): 3364-3371, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38742948

ABSTRACT

Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 µM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.


Subject(s)
Copper , Fluorescent Dyes , Glycine , Glyphosate , Herbicides , Glycine/analogs & derivatives , Glycine/chemistry , Fluorescent Dyes/chemistry , Humans , Copper/chemistry , Copper/analysis , Herbicides/analysis , Herbicides/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Optical Imaging/methods , Food Contamination/analysis , Smartphone , Food Analysis/methods
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124452, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38761559

ABSTRACT

Histamine has been known as a momentous cause of biogenic amine poisoning. Therefore, the content of histamine in foods is strictly required to be controlled within a certain range. Here, an aptamer fluorescent sensor was developed for detection of histamine. Poly [(9, 9-di-n-octylfluorenyl-2, 7-diyl)-alt-(benzo [2,1,3] thiadia-zol-4, 8-diyl)] (PF8BT) and the styrene maleic anhydride copolymer (PSMA) were used for the preparation of PF8BT-Polymer dots (PF8BT-Pdots). PF8BT-Pdots and the cyanine3-phosphoramidite (Cy3) were linked through aptamer to achieve the ratiometric detection for histamine. PF8BT-Pdots were partly quenched by Cy3 due to the fluorescence resonance energy transfer (FRET), when the histamine molecule was recognized by aptamer on the surface of PF8BT-Pdots. A linear range (3-21 µmol/L) was obtained for histamine detection with a low limit of detection (LOD = 0.38 µmol/L). PF8BT aptamer Pdots (PF8BT-A) were used to detect histamine in simply treated aquaculture water and tuna. The cell imaging of HeLa cells presented a good biosecurity and outstanding fluorescent imaging capability of PF8BT-A. The aptamer fluorescent sensors provided a new platform for rapid and accurate detection of histamine in aquatic products and had great potential for the application in food safety and quality control.


Subject(s)
Aptamers, Nucleotide , Histamine , Polymers , Quantum Dots , Histamine/analysis , Aptamers, Nucleotide/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Humans , Limit of Detection , Food Analysis/methods , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Animals , Food Contamination/analysis , HeLa Cells , Spectrometry, Fluorescence/methods
19.
J Sep Sci ; 47(9-10): e2400155, 2024 May.
Article in English | MEDLINE | ID: mdl-38772742

ABSTRACT

Rapid evaporative ionization mass spectrometry (REIMS) is a relatively recent MS technique explored in many application fields, demonstrating high versatility in the detection of a wide range of chemicals, from small molecules (phenols, amino acids, di- and tripeptides, organic acids, and sugars) to larger biomolecules, that is, phospholipids and triacylglycerols. Different sampling devices were used depending on the analyzed matrix (liquid or solid), resulting in distinct performances in terms of automation, reproducibility, and sensitivity. The absence of laborious and time-consuming sample preparation procedures and chromatographic separations was highlighted as a major advantage compared to chromatographic methods. REIMS was successfully used to achieve a comprehensive sample profiling according to a metabolomics untargeted analysis. Moreover, when a multitude of samples were available, the combination with chemometrics allowed rapid sample differentiation and the identification of discriminant features. The present review aims to provide a survey of literature reports based on the use of such analytical technology, highlighting its mode of operation in different application areas, ranging from clinical research, mostly focused on cancer diagnosis for the accurate identification of tumor margins, to the agri-food sector aiming at the safeguard of food quality and security.


Subject(s)
Mass Spectrometry , Mass Spectrometry/methods , Humans , Metabolomics , Food Analysis/methods
20.
Food Chem ; 451: 139461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701733

ABSTRACT

Copper as a widely applied element in food supply chain can cause serious contamination issues that threats food safety. In this research, we present a quick and visible method for trace copper ion (Cu2+) quantification in practical food samples. Polymer dots (Pdots) were firstly conjugated with a copper-specific DNA aptamer and then tailored with rhodamine B (RhB) to extinguish the electrochemiluminescence (ECL) signal through a resonance energy transfer process. The selective release of RhB leads to signal restoration when exposed to trace Cu2+ levels, achieving remarkable linearity with the logarithm of Cu2+ concentration within the range of 1 ng/L to 10 µg/L with an impressively low limit of detection at 11.8 pg/L. Most notably, our device was also applicable on visualizing and quantifying trace Cu2+ (∼0.2 µg/g) in practical Glycyrrhiza uralensis Fisch. samples, underscoring its potential as a tool for the early prevention of potential copper contamination in food samples.


Subject(s)
Copper , Electrochemical Techniques , Food Contamination , Luminescent Measurements , Copper/analysis , Copper/chemistry , Food Contamination/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/methods , Aptamers, Nucleotide/chemistry , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...