Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.159
Filter
1.
Mikrochim Acta ; 191(7): 367, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832980

ABSTRACT

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Subject(s)
Electrochemical Techniques , Food Analysis , Hazard Analysis and Critical Control Points , Nanocomposites , Zearalenone , Zearalenone/analysis , Hazard Analysis and Critical Control Points/methods , Food Analysis/instrumentation , Food Analysis/methods , Nanocomposites/chemistry , Nanocomposites/standards , Electrodes , Gold/chemistry , Sensitivity and Specificity , Reproducibility of Results
2.
Biotechnol Adv ; 73: 108368, 2024.
Article in English | MEDLINE | ID: mdl-38692442

ABSTRACT

Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Food Analysis , Paper , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Food Analysis/methods , Food Analysis/instrumentation , Humans , Food Safety/methods , Food Contamination/analysis
3.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692247

ABSTRACT

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Subject(s)
Biosensing Techniques , Equipment Design , Food Analysis , Limit of Detection , Molybdenum , Nitrites , Molybdenum/chemistry , Biosensing Techniques/instrumentation , Nitrites/analysis , Food Analysis/instrumentation , Humans , Dimethylpolysiloxanes/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis
4.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602359

ABSTRACT

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Subject(s)
Fishes , Formaldehyde , Limit of Detection , Trityl Compounds , Formaldehyde/analysis , Formaldehyde/chemistry , Animals , Trityl Compounds/chemistry , Trityl Compounds/analysis , Gases/chemistry , Gases/analysis , Seafood/analysis , Food Contamination/analysis , Solutions , Food Analysis/methods , Food Analysis/instrumentation , Spectrometry, Fluorescence/methods
5.
Food Chem ; 450: 139326, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38615530

ABSTRACT

Although nanozymes sensor arrays have the potential to recognize multiple target substances simultaneously, they currently rarely identify phenolic acids in food due to limited catalytic performance and complex preparation conditions of nanozymes. Here, inspired by the structure of polyphenol oxidase, we have successfully prepared a novel gallic acid-Cu (GA-Cu) nanozyme with laccase-like activity. Due to the different catalytic efficiency of GA-Cu nanozymes towards six common phenolic acids, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six phenolic acids within a concentration range from 1 to 100 µM. This method avoids the creation of numerous sensing units. Notably, the successful discrimination of six phenolic acids in samples of juice, beer, and wine has been achieved by the sensor array. Finally, aided by smartphones, a portable technique has been devised for the detection of phenolic acids.


Subject(s)
Colorimetry , Gallic Acid , Hydroxybenzoates , Wine , Hydroxybenzoates/chemistry , Hydroxybenzoates/analysis , Colorimetry/methods , Wine/analysis , Gallic Acid/chemistry , Gallic Acid/analysis , Beer/analysis , Copper/chemistry , Copper/analysis , Fruit and Vegetable Juices/analysis , Catalysis , Nanostructures/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/instrumentation , Food Analysis/methods
6.
Food Chem ; 451: 139410, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670024

ABSTRACT

Dipicolinic acid (DPA), as a biomarker for Bacillus anthracis, is highly toxic at trace levels. Rapid and on-site quantitative detection of DPA is essential for maintaining food safety and public health. This work develops a dual-channel self-calibrated fluorescence sensor constructed by the YVO4:Eu and Tb-ß-diketone complex for rapid visual detection of DPA. This sensor exhibits high selectivity, fast response time, excellent detection sensitivity, and the detection limit is as low as 4.5 nM in the linear range of 0-16 µM. A smartphone APP and portable ultraviolet lamp can assemble a mobile fluorescence sensor for on-site analysis. Interestingly, adding Cu2+ ions can quench the fluorescence intensity of Tb3+. In contrast, the addition of cysteine can restore the fluorescence, allowing the accurate detection of Cu2+ ions and cysteine in environmental water and food samples. This work provides a portable sensor that facilitates real-time analysis of multiple targets in food and the environment.


Subject(s)
Anthrax , Bacillus anthracis , Biomarkers , Copper , Cysteine , Food Analysis , Food Contamination , Picolinic Acids , Smartphone , Copper/analysis , Cysteine/analysis , Bacillus anthracis/isolation & purification , Bacillus anthracis/chemistry , Biomarkers/analysis , Food Contamination/analysis , Anthrax/diagnosis , Food Analysis/instrumentation , Food Analysis/methods , Picolinic Acids/analysis , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Limit of Detection , Fluorescence , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
7.
Food Chem ; 451: 139402, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678650

ABSTRACT

A colorimetric sensing method based on a paper-based vapor-test kit was successfully developed for the selective and sensitive real-time monitoring of formalin in food samples. The device was specifically designed to efficiently extract and detect formalin simultaneously. A microcentrifuge tube was used as the sample solution container, with the inner cap serving as the reaction and detection zone. Formalin was converted into gaseous formaldehyde through controlled heating, which was then extracted and collected on a filter paper coated with Nash's reagent. The color change on paper was used for formalin quantification using a smartphone for detection and image analysis. Under optimal conditions, our method provided a linear range of 0.5-75 mg L-1 with a detection limit of 0.11 mg L-1. This method effectively determined formalin in fresh food and vegetable samples, with recoveries ranging from 92 to 111%, demonstrating comparable accuracy to the standard method for practical food quality control and safety.


Subject(s)
Colorimetry , Food Contamination , Formaldehyde , Paper , Formaldehyde/chemistry , Formaldehyde/analysis , Food Contamination/analysis , Colorimetry/instrumentation , Colorimetry/methods , Vegetables/chemistry , Limit of Detection , Food Analysis/instrumentation , Food Analysis/methods
8.
Lab Chip ; 24(10): 2700-2711, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651374

ABSTRACT

Mycotoxins are secondary metabolites of certain moulds, prevalent in 60-80% of food crops and many processed products but challenging to eliminate. Consuming mycotoxin-contaminated food and feed can lead to various adverse effects on humans and livestock. Therefore, testing mycotoxin residue levels is critical to ensure food safety. Gold standard analytical methods rely on liquid chromatography coupled with optical detectors or mass spectrometers, which are high-cost with limited capacity. This study reported the successful development of a microfluidic "lab-on-a-chip" device to enrich and detect zearalenone in food samples based on the fluorescence quenching effect of quantum dots and selective affinity of molecularly imprinted polymers (MIPs). The dummy template and functional polymer were synthesized and characterized, and the detailed microfluidic chip design and optimization of the flow conditions in the enrichment module were discussed. The device achieved an enrichment factor of 9.6 (±0.5) in 10 min to quantify zearalenone spiked in food with high recoveries (91-105%) at 1-10 mg kg-1, covering the concerned residue levels in the regulations. Each sample-to-answer test took only 20 min, involving 3 min of manual operation and no advanced equipment. This microfluidic device was mostly reusable, with a replaceable detection module compatible with fluorescence measurement using a handheld fluorometer. To our best knowledge, the reported device was the first application of an MIP-based microfluidic sensor for detecting mycotoxin in real food samples, providing a novel, rapid, portable, and cost-effective tool for monitoring mycotoxin contamination for food safety and security.


Subject(s)
Food Contamination , Lab-On-A-Chip Devices , Molecularly Imprinted Polymers , Quantum Dots , Zearalenone , Zearalenone/analysis , Quantum Dots/chemistry , Food Contamination/analysis , Molecularly Imprinted Polymers/chemistry , Molecular Imprinting , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Food Analysis/instrumentation
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124314, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38669985

ABSTRACT

Cerium (Ce) are the most widely distributed rare earth element. However, humans exposed to Ce through inhalation have been reported to experience heat sensitivity, itching, and heightened taste and odour perception. The present study aims to develop an optical sensor device with a short response time and high selectivity for Ce amongst other ions in various environments. The potential applicability of a 6-hydroxy-5-((4-hydroxy-2-methylphenyl)diazenyl)pyrimidine-2,4(1H,3H)-dione (HHMDPD) assembled ligand as aceric ion (Ce4+)-selective caption optode was examined. After generating an ion pair with Tetra-n-octylammonium bromide (TOABr) and immobilizing on a tri-acetyl cellulose (TAC) membrane, the solubility of the HHMDPD ligand is improved. The constructed optode membrane reacts with Ce4+ by turning its orange colour to violet in Thiel buffer (pH of 5.5), which can be detected spectrophotometrically at λmax 667 nm. The measurement linearity was in the range of 0.70 - 18.7 × 10-6 mol/L of Ce4+ concentration with detection and quantification limits of 0.23 × 10-6 and 0.70 × 10-6 mol/L, respectively. Whatever the Ce4+ concentration in its real samples, the response time of the constructed device was 5.0 min. Additionally, it recorded repeatability and reproducibility with a %RSD of 1.37 and 2.55, respectively (n = 3). The proposed optode device exhibited complete reversibility, for multiple measurements, which could be easily achieved with the aid of a solution of HCl, 0.01 mol/L. The applicability of the proposed device has been effectively extended to analyze synthetic mixes corresponding to different Ce4+ real human, foods, water, and magnesium-based Ce4+ alloys.


Subject(s)
Alloys , Cerium , Humans , Alloys/chemistry , Cerium/chemistry , Food Analysis/methods , Food Analysis/instrumentation , Limit of Detection , Optical Devices , Water/chemistry , Ions/analysis
10.
Talanta ; 275: 126080, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615454

ABSTRACT

The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.


Subject(s)
Biosensing Techniques , Environmental Monitoring , Food Safety , Smartphone , Humans , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Food Analysis/methods , Food Analysis/instrumentation , Point-of-Care Systems , Colorimetry/methods , Colorimetry/instrumentation
11.
Talanta ; 275: 126116, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640518

ABSTRACT

Fragmentation characteristics are crucial for nontargeted screening to discover and identify unknown exogenous chemical residues in animal-derived foods. In this study, first, fragmentation characteristics of 51 classes of exogenous chemical residues were summarized based on experimental mass spectra of standards in reversed-phase and hydrophilic interaction liquid chromatography-high-resolution mass spectrometry (MS) and mass spectra from the MassBank of North America (MoNA) library. According to the proportion of fragmentation characteristics to the total number of chemical residues in each class, four screening levels were defined to classify 51 classes of chemical residues. Then, a nontargeted screening method was developed based on the fragmentation characteristics. The evaluation results of 82 standards indicated that more than 90 % of the chemical residues with MS/MS spectra can be identified at concentrations of 100 and 500 µg/kg, and about 80 % can be identified at 10 µg/kg. Finally, the nontargeted screening method was applied to 16 meat samples and 21 egg samples as examples. As a result, eight chemical residues and transformation products (TPs) of 5 classes in the exemplary samples were found and identified, in which 3 TPs of azithromycin were identified by fragmentation characteristics-assisted structure interpretation. The results demonstrated the practicability of the nontargeted screening method for routine risk screening of food safety.


Subject(s)
Food Analysis , Hazardous Substances , Liquid Chromatography-Mass Spectrometry , Food Analysis/instrumentation , Food Analysis/methods , Food Analysis/standards , Eggs/analysis , Meat/analysis , Food Safety , Databases, Chemical , Hazardous Substances/analysis , Agrochemicals/analysis , Molecular Structure , Animals
12.
Biosens Bioelectron ; 256: 116260, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38613935

ABSTRACT

Various bioelectronic noses have been recently developed for mimicking human olfactory systems. However, achieving direct monitoring of gas-phase molecules remains a challenge for the development of bioelectronic noses due to the instability of receptor and the limitations of its surrounding microenvironment. Here, we report a MXene/hydrogel-based bioelectronic nose for the sensitive detection of liquid and gaseous hexanal, a signature odorant from spoiled food. In this study, a conducting MXene/hydrogel structure was formed on a sensor via physical adsorption. Then, canine olfactory receptor 5269-embedded nanodiscs (cfOR5269NDs) which could selectively recognize hexanal molecules were embedded in the three-dimensional (3D) MXene/hydrogel structures using glutaraldehyde as a linker. Our MXene/hydrogel-based bioelectronic nose exhibited a high selectivity and sensitivity for monitoring hexanal in both liquid and gas phases. The bioelectronic noses could sensitively detect liquid and gaseous hexanal down to 10-18 M and 6.9 ppm, and they had wide detection ranges of 10-18 - 10-6 M and 6.9-32.9 ppm, respectively. Moreover, our bioelectronic nose allowed us to monitor hexanal levels in fish and milk. In this respect, our MXene/hydrogel-based bioelectronic nose could be a practical strategy for versatile applications such as food spoilage assessments in both liquid and gaseous systems.


Subject(s)
Biosensing Techniques , Electronic Nose , Biosensing Techniques/methods , Animals , Gases/chemistry , Gases/analysis , Aldehydes/chemistry , Food Analysis/instrumentation , Food Analysis/methods , Dogs , Receptors, Odorant/chemistry , Humans , Milk/microbiology , Milk/chemistry , Equipment Design , Odorants/analysis
13.
Food Chem ; 448: 138994, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38522301

ABSTRACT

Integrating a pre-enrichment step into electrochemical detection methodologies has traditionally been employed to enhance the performance of heavy metal detection. However, this augmentation also introduces a degree of intricacy into the sensing process and increases energy consumption. In this work, Mo-doped WO3 is grown in situ on carbon cloth by one-step electrodeposition. The electrode detect multiple heavy metal ions simultaneously in the range of 0.1-100.0 µM with LODs ranging from 11.2 to 17.1 nM. The electrode successfully detected heavy metal ions in diverse food samples. This pioneering detection strategy realized the direct and simultaneous detection of multiple heavy metal ions by utilizing the valence property of WO3 and oxygen vacancies generated by molybdenum doping. The Mo-WO3/CC pre-enrichment-free detection electrode boasts straightforward preparation, a streamlined detection procedure, swift response kinetics, and superior performance relative to previously reported electrodes, which makes it possible to develop a portable heavy metal ion detection device.


Subject(s)
Electrochemical Techniques , Electrodes , Food Contamination , Metals, Heavy , Molybdenum , Tungsten , Metals, Heavy/analysis , Food Contamination/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Tungsten/chemistry , Molybdenum/chemistry , Oxides/chemistry , Limit of Detection , Food Analysis/instrumentation , Food Analysis/methods
14.
Small ; 20(22): e2309357, 2024 May.
Article in English | MEDLINE | ID: mdl-38102797

ABSTRACT

Ensuring an appropriate nitrite level in food is essential to keep the body healthy. However, it still remains a huge challenge to offer a portable and low-cost on-site food nitrite analysis without any expensive equipment. Herein, a portable integrated electrochemical sensing system (IESS) is developed to achieve rapid on-site nitrite detection in food, which is composed of a low-cost disposable microfluidic electrochemical patch for few-shot nitrite detection, and a reusable smartphone-assisted electronic device based on self-designed circuit board for signal processing and wireless transmission. The electrochemical patch based on MXene-Ti3C2Tx/multiwalled carbon nanotubes-cyanocobalamin (MXene/MWCNTs-VB12)-modified working electrode achieves high sensitivity of 10.533 µA mm-1 and low nitrite detection limit of 4.22 µm owing to strong electron transfer ability of hybrid MXene/MWCNTs conductive matrix and high nitrite selectivity of VB12 bionic enzyme-based ion-selective layer. Moreover, the portable IESS can rapidly collect pending testing samples through a microfluidic electrochemical patch within 1.0 s to conduct immediate nitrite analysis, and then wirelessly transmit data from a signal-processing electronic device to a smartphone via Bluetooth module. Consequently, this proposed portable IESS demonstrates rapid on-site nitrite analysis and wireless data transmission within one palm-sized electronic device, which would pave a new avenue in food safety and personal bespoke therapy.


Subject(s)
Electrochemical Techniques , Nitrites , Nitrites/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nanotubes, Carbon/chemistry , Food Analysis/instrumentation , Food Analysis/methods , Electrodes , Limit of Detection , Biosensing Techniques/methods , Biosensing Techniques/instrumentation
15.
Food Chem Toxicol ; 169: 113411, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36087621

ABSTRACT

The current finding reports on the development of highly ordered closely packed TiO2 nanotube arrays on Ti substrate via two-step anodization process. The nanotubes developed by second anodization step (TNT2) were encapsulated with Pt nanoflakes using electro-deposition followed by hydrothermal treatment process. The FE-SEM, FTIR, XRD and contact angle measurement, respectively were done to find out the morphological, functional group, phase structural and wettability of the samples. The tube diameter and length were found to be 110-120 and 50-100 nm and 437 and 682, respectively for first (TNT1) and second anodization. The structural order of the TNT has enhanced in the second anodization process. Chronoamperometric results showed that the Pt-TNT2 exhibited enhanced and steady state electro-catalytic activity than Pt-TNT1. Pt-TNT2 nanoflake composite showed near SHP behaviour than the TNT without Pt. The food processing machinery developed using near SHP Pt-TNT2 could be cleaned easily due to its high non-wettability. Hence, Pt-TNT2 can be used for making food processing equipment.


Subject(s)
Food Analysis , Food-Processing Industry , Nanotubes , Wettability , Nanotubes/chemistry , Titanium/chemistry , Food Analysis/instrumentation
16.
Anal Methods ; 14(5): 508-517, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35050274

ABSTRACT

Data transmission between spectroscopy equipment and mobile terminals is critical to realising hand-held field-level monitoring. Currently, on-the-go (OTG) communication technology is a convenient and efficient method of data transmission for mobile devices. However, few people associate spectroscopy equipment with smartphones through the OTG port. This study developed a portable imaging spectrometer with a spectral resolution of approximately 12 nm in the visible-near-infrared band (400-1000 nm). It can be connected to a smartphone through the USB-OTG port to process the spectral signal through the smartphone's system on a chip (SoC). It also displays real-time spectral images of the food samples through the smartphone's screen. Using a support vector machine (SVM) to classify the spectra of the various experimental samples (e.g. eggs and pork), the model prediction accuracy rate is approximately 90%. This further proves the reliability of the proposed smartphone imaging spectrometer for monitoring the freshness of food samples onsite.


Subject(s)
Eggs/analysis , Food Analysis/instrumentation , Meat , Smartphone , Meat/analysis , Reproducibility of Results , Spectroscopy, Near-Infrared , Support Vector Machine
17.
Braz. J. Pharm. Sci. (Online) ; 58: e20312, 2022. tab
Article in English | LILACS | ID: biblio-1403691

ABSTRACT

Abstract Bjerkandera adusta, a globally distributed fungus, is commonly used in the nutritional practices of the East Asian population. In this study, we evaluated the nutritional composition of the lyophilized mycelium of B. adusta as well as the phenolic composition and antioxidant activity of its extracts. The mycelium exhibited moisture (7.97 %), ash (3.27 %), and fiber (5.31 %) content values similar to the established values reported in the available literature. In addition, a high protein (9.32 %) and carbohydrate (63.45 %) content was shown, with a low lipid (1.36 %) content. The energy value per 100 g sample of mycelium was 1445.85 kJ. The results obtained indicated a statistically significant variation (p < 0.05) in the phenolic composition (81.84-110.96 mg gallic acid equivalents (GAE) per g of extract), free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity (IC50 29.05-340.46 µg·mL-1), phosphomolybdenum antioxidant content (34.89-55.64 %), reduction of ferricyanide ion (66.55-69.4 %), and thiobarbituric acid reactive substance (TBARS) values (44.66-133.03 %). These results are unprecedented for this species and emphasize its nutraceutical potential.


Subject(s)
Functional Food/analysis , Fungi/metabolism , Antioxidants , Asian People , Food Analysis/instrumentation , Nutritive Value
18.
Anal Biochem ; 635: 114448, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34742932

ABSTRACT

A new sandwich-type Enzyme-Linked Immunosorbent Assay (ELISA) method was developed based on goat IgG as capturing antibody and rabbit IgG as detecting antibody targeting soluble antigenic fish proteins in foods as detection targets. The assay has provided a relatively lower limit of quantitation (LoQ) for fish proteins with LoQ 0.5 ng/ml and appears highly sensitive. The analysis of 24 different substances, both raw and boiled, revealed no cross-reactivity above the cut-off point of the limit of quantitation. Recoveries of the SB spiked food matrixes were in the range of 83-131%. Assay precision testing proved that repeatability (<5%) and reproducibility (<11%) had an acceptable level of variation. The sandwich ELISA was capable of detecting all tested commercially important fish. As a potential analytical tool, the newly developed immunoenzymatic method is suitable for detecting undeclared fish residues in real food samples available in the market, thereby will help to reduce the incidents of fish allergies.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Food Analysis , Food Contamination/analysis , Pesticide Residues/analysis , Animals , Bass , Enzyme-Linked Immunosorbent Assay/instrumentation , Equipment Design , Food Analysis/instrumentation
19.
Molecules ; 26(22)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34833939

ABSTRACT

Current trends in Analytical Chemistry are focused on the development of more sustainable and environmentally friendly procedures. However, and despite technological advances at the instrumental level having played a very important role in the greenness of the new methods, there is still work to be done regarding the sample preparation stage. In this sense, the implementation of new materials and solvents has been a great step towards the development of "greener" analytical methodologies. In particular, the application of deep eutectic solvents (DESs) has aroused great interest in recent years in this regard, as a consequence of their excellent physicochemical properties, general low toxicity, and high biodegradability if they are compared with classical organic solvents. Furthermore, the inclusion of DESs based on natural products (natural DESs, NADESs) has led to a notable increase in the popularity of this new generation of solvents in extraction techniques. This review article focuses on providing an overview of the applications and limitations of DESs in solvent-based extraction techniques for food analysis, paying especial attention to their hydrophobic or hydrophilic nature, which is one of the main factors affecting the extraction procedure, becoming even more important when such complex matrices are studied.


Subject(s)
Deep Eutectic Solvents , Food Analysis/methods , Animals , Deep Eutectic Solvents/chemistry , Equipment Design , Food Analysis/instrumentation , Hydrophobic and Hydrophilic Interactions
20.
Biosensors (Basel) ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34821642

ABSTRACT

Tracking unreported allergens in commercial foods can avoid acute allergic reactions. A 2-step electrochemical immunosensor was developed for the analysis of the peanut allergen Ara h 1 in a 1-h assay (<15 min hands-on time). Bare screen-printed carbon electrodes (SPCE) were used as transducers and monoclonal capture and detection antibodies were applied in a sandwich-type immunoassay. The short assay time was achieved by previously combining the target analyte and the detection antibody. Core/shell CdSe@ZnS Quantum Dots were used as electroactive label for the detection of the immunological interaction by differential pulse anodic stripping voltammetry. A linear range between 25 and 1000 ng·mL-1 (LOD = 3.5 ng·mL-1), an adequate precision of the method (Vx0 ≈ 6%), and a sensitivity of 23.0 nA·mL·ng-1·cm-2 were achieved. The immunosensor was able to detect Ara h 1 in a spiked allergen-free product down to 0.05% (m/m) of peanut. Commercial organic farming cookies and cereal and protein bars were tested to track and quantify Ara h 1. The results were validated by comparison with an ELISA kit.


Subject(s)
Antigens, Plant/analysis , Arachis , Biosensing Techniques , Food Analysis/instrumentation , Quantum Dots , Allergens , Antibodies , Immunoassay , Plant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...