Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.707
Filter
1.
Food Res Int ; 188: 114309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823823

ABSTRACT

Previous studies have demonstrated that Ligilactobacillus salivarius CCFM 1266 exhibits anti-inflammatory properties and the capability to synthesize niacin. This study aimed to investigate the fermentative abilities of L. salivarius CCFM 1266 in fermented milk. Metabonomic analysis revealed that fermentation by L. salivarius CCFM 1266 altered volatile flavor compounds and metabolite profiles, including heptanal, nonanal, and increased niacin production. Genomic investigations confirmed that L. salivarius CCFM 1266 possess essential genes for the metabolism of fructose and mannose, affirming its proficiency in utilizing fructooligosaccharides and mannan oligosaccharides. The addition of fructooligosaccharides and mannan oligosaccharides during the fermentation process significantly facilitated the proliferation of L. salivarius CCFM 1266 in fermented milk, with growth exceeding 107 colony-forming units (CFU)/mL. This intervention not only augmented the microbial density but also modified the metabolite composition of fermented milk, resulting in an elevated presence of advantageous flavor compounds such as nonanal, 2,3-pentanedione, and 3-methyl-2-butanone. However, its influence on improving the texture of fermented milk was observed to be minimal. Co-fermentation of L. salivarius CCFM 1266 with commercial fermentation starters indicated that L. salivarius CCFM 1266 was compatible, similarly altering metabolite composition and increasing niacin content in fermented milk. In summary, the findings suggest that L. salivarius CCFM 1266 holds substantial promise as an adjunctive fermentation starter, capable of enhancing the nutritional diversity of fermented milk products.


Subject(s)
Cultured Milk Products , Fermentation , Ligilactobacillus salivarius , Metabolomics , Metabolomics/methods , Ligilactobacillus salivarius/metabolism , Cultured Milk Products/microbiology , Niacin/metabolism , Food Microbiology , Dairy Products/microbiology , Taste , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Animals
2.
Food Res Int ; 188: 114464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823834

ABSTRACT

Vibrio parahaemolyticus and Vibrio vulnificus are bacteria with a significant public health impact. Identifying factors impacting their presence and concentrations in food sources could enable the identification of significant risk factors and prevent incidences of foodborne illness. In recent years, machine learning has shown promise in modeling microbial presence based on prevalent external and internal variables, such as environmental variables and gene presence/absence, respectively, particularly with the generation and availability of large amounts and diverse sources of data. Such analyses can prove useful in predicting microbial behavior in food systems, particularly under the influence of the constant changes in environmental variables. In this study, we tested the efficacy of six machine learning regression models (random forest, support vector machine, elastic net, neural network, k-nearest neighbors, and extreme gradient boosting) in predicting the relationship between environmental variables and total and pathogenic V. parahaemolyticus and V. vulnificus concentrations in seawater and oysters. In general, environmental variables were found to be reliable predictors of total and pathogenic V. parahaemolyticus and V. vulnificus concentrations in seawater, and pathogenic V. parahaemolyticus in oysters (Acceptable Prediction Zone >70 %) when analyzed using our machine learning models. SHapley Additive exPlanations, which was used to identify variables influencing Vibrio concentrations, identified chlorophyll a content, seawater salinity, seawater temperature, and turbidity as influential variables. It is important to note that different strains were differentially impacted by the same environmental variable, indicating the need for further research to study the causes and potential mechanisms of these variations. In conclusion, environmental variables could be important predictors of Vibrio growth and behavior in seafood. Moreover, the models developed in this study could prove invaluable in assessing and managing the risks associated with V. parahaemolyticus and V. vulnificus, particularly in the face of a changing environment.


Subject(s)
Machine Learning , Ostreidae , Seawater , Vibrio parahaemolyticus , Vibrio vulnificus , Ostreidae/microbiology , Seawater/microbiology , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/growth & development , Animals , Vibrio vulnificus/isolation & purification , Vibrio vulnificus/growth & development , Food Microbiology , Food Contamination/analysis , Shellfish/microbiology , Seafood/microbiology , Temperature , Vibrio/isolation & purification
3.
Food Res Int ; 188: 114463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823831

ABSTRACT

To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.


Subject(s)
Biofilms , Food Microbiology , Lipase , Milk , Pasteurization , Pseudomonas , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/growth & development , Milk/microbiology , Animals , Biofilms/growth & development , Lipase/metabolism , China , Phylogeny , Peptide Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Food Contamination/analysis , Temperature
4.
Food Res Int ; 188: 114408, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823853

ABSTRACT

Biopreservation strategies such as the use of Mediterranean plant extracts to ensure food safety are promising to deal with the emergence of antimicrobial resistances and the overreliance on food chemical additives. In the last few decades, antimicrobial susceptibility testing (AST) for evaluating the in vitro antibacterial potential of plant extracts against the most relevant foodborne pathogens has been widely reported in the literature. The current meta-analysis aimed to summarise and analyse the extensive evidence available in the literature regarding the in vitro antimicrobial capability of Allium, Ocimum and Thymus spp. extracts against foodborne pathogens. A systematic review was carried out to gather data on AST results of these extracts against Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli and Bacillus cereus, including inhibition diameters (ID) and minimum inhibitory concentrations (MIC). A total of 742 records were gathered from a raw collection of 2,065 articles. Weighted mixed-effect linear models were adjusted to data to obtain pooled ID, pooled MIC and the relationship between both model estimations and observations. The pooled results revealed B. cereus as the most susceptible bacteria to Allium sativum (pooled ID = 20.64 ± 0.61 mm) by diffusion methods and S. aureus (pooled MIC = 0.146 mg/mL) by dilution methods. Diffusion methods did not yield conclusive results for Ocimum spp. extracts; however, the lowest pooled MIC was obtained for S. aureus (0.263 mg/mL). Among the foodborne pathogens evaluated, B. cereus showed the highest sensitivity to Thymus spp. extracts by both diffusion and dilution methods (pooled ID = 28.90 ± 2.34 mm and MIC = 0.075 mg/mL). The methodology used for plant extraction was found to not significantly affect MIC values (p > 0.05). Overall, the antimicrobial effectiveness of the studied extracts against Gram-positive and Gram-negative bacteria was demonstrated. Finally, the robustness of the meta-regression model was confirmed, also revealing an inversely proportional correlation between the ID and MIC measurements (p < 0.0001). These results provide a robust scientific basis on the factors affecting the in vitro antimicrobial efficacy of extracts from Mediterranean plants. They also provide valuable information for stakeholders involved in their industrial application in food, including producers, regulatory agencies and consumers which demand green-labelled foods.


Subject(s)
Allium , Anti-Bacterial Agents , Food Microbiology , Microbial Sensitivity Tests , Ocimum , Plant Extracts , Thymus Plant , Thymus Plant/chemistry , Plant Extracts/pharmacology , Ocimum/chemistry , Allium/chemistry , Anti-Bacterial Agents/pharmacology , Food Safety , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development
5.
Food Res Int ; 188: 114491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823842

ABSTRACT

Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Listeria monocytogenes , Microbial Sensitivity Tests , Salmonella enterica , Tetracycline , Ciprofloxacin/pharmacology , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Gastrointestinal Tract/microbiology , Gastrointestinal Microbiome/drug effects , Food Microbiology , Hydrogen-Ion Concentration , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control
6.
Food Res Int ; 188: 114441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823858

ABSTRACT

Rice (Oryza sativa L.) is one of the most consumed cereals that along with several important nutritional constituents typically provide more than 21% of the caloric requirements of human beings. Aflatoxins (AFs) are toxic secondary metabolites of several Aspergillus species that are prevalent in cereals, including rice. This review provides a comprehensive overview on production factors, prevalence, regulations, detection methods, and decontamination strategies for AFs in the rice production chain. The prevalence of AFs in rice is more prominent in African and Asian than in European countries. Developed nations have more stringent regulations for AFs in rice than in the developing world. The contamination level of AFs in the rice varied at different stages of rice production chain and is affected by production practices, environmental conditions comprising temperature, humidity, moisture, and water activity as well as milling operations such as de-husking, parboiling, and polishing. A range of methods including chromatographic techniques, immunochemical methods, and spectrophotometric methods have been developed, and used for monitoring AFs in rice. Chromatographic methods are the most used methods of AFs detection followed by immunochemical techniques. AFs decontamination strategies adopted worldwide involve various physical, chemical, and biological strategies, and even using plant materials. In conclusion, adopting good agricultural practices, implementing efficient AFs detection methods, and developing innovative aflatoxin decontamination strategies are imperative to ensure the safety and quality of rice for consumers.


Subject(s)
Aflatoxins , Decontamination , Food Contamination , Oryza , Oryza/chemistry , Oryza/microbiology , Aflatoxins/analysis , Food Contamination/analysis , Decontamination/methods , Humans , Aspergillus/metabolism , Food Handling/methods , Food Microbiology
7.
Food Res Int ; 188: 114476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823866

ABSTRACT

Kimchi cabbage, the key ingredient in kimchi, is cultivated year-round to meet high production demands. This study aimed to examine the effects of seasonal harvesting (spring, summer, fall, and winter) on the microbial and metabolic profiles of kimchi during 30 days of fermentation. Lactic acid bacteria distribution is notably influenced by seasonal variations, with Latilactobacillus dominant in fall-harvested kimchi group and Weissella prevailing in spring, summer, and winter. The microbial communities of spring and fall group exhibited similar profiles before fermentation, whereas the microbial communities and metabolic profiles of spring and summer group were similar after 30 days of fermentation. Seasonal disparities in metabolite concentrations, including glutamic acid, serine, and cytosine, persist throughout fermentation. This study provides a comprehensive understanding of the substantial impact of seasonal harvesting of kimchi cabbage on the microbial and metabolic characteristics of kimchi, providing valuable insights into producing kimchi with diverse qualities.


Subject(s)
Brassica , Fermentation , Fermented Foods , Food Microbiology , Seasons , Brassica/microbiology , Brassica/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Metabolome , Microbiota , Weissella/metabolism
8.
Food Res Int ; 188: 114484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823870

ABSTRACT

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Subject(s)
Fermentation , Food Microbiology , Garlic , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Garlic/chemistry , Antioxidants/analysis , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermented Foods/microbiology , Fermented Foods/analysis
9.
Food Res Int ; 188: 114483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823869

ABSTRACT

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Subject(s)
Cheese , Fermentation , Food Microbiology , Metagenomics , Monascus , Taste , Volatile Organic Compounds , Cheese/microbiology , Cheese/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Monascus/metabolism , Monascus/genetics , Monascus/growth & development , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flavoring Agents/metabolism
10.
Food Res Int ; 188: 114497, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823877

ABSTRACT

The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.


Subject(s)
Fermentation , Food Microbiology , Microbiota , Microbiota/physiology , Microbial Interactions/physiology , Beer/microbiology , Bacteria/metabolism , Bacteria/classification
11.
Food Res Int ; 188: 114501, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823874

ABSTRACT

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Subject(s)
Biogenic Amines , Fermentation , Glycine , Glycine/metabolism , Biogenic Amines/metabolism , Salts , Putrescine/metabolism , Tyramine/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/genetics , Fermented Foods/microbiology , Pichia/metabolism , Pichia/genetics
12.
Antonie Van Leeuwenhoek ; 117(1): 85, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811466

ABSTRACT

Kars Kashar cheese is an artisanal pasta-filata type cheese and geographically marked in Eastern Anatolia of Turkey. The aims of this research were to determine for the first time thermophilic lactic acid bacteria (LAB) of Kars Kashar cheese and characterize the technological properties of obtained isolates. In our research, a number of 15 samples of whey were collected from the different villages in Kars. These samples were incubated at 45 °C and used as the source material for isolating thermophilic LAB. A total of 250 colonies were isolated from thermophilic whey, and 217 of them were determined to be presumptive LAB based on their Gram staining and catalase test. A total of 170 isolates were characterized by their phenotypic properties and identified using the MALDI-TOF mass spectrometry method. Phenotypic identification of isolates displayed that Enterococcus and Lactobacillus were the predominant microbiota. According to MALDI-TOF MS identification, 89 isolates were identified as Enterococcus (52.35%), 57 isolates as Lactobacillus (33.53%), 23 isolates as Streptococcus (13.53%), and one isolate as Lactococcus (0.59%). All thermophilic LAB isolates were successfully identified to the species level and it has been observed that MALDI-TOF MS can be successfully used for the identification of selected LAB. The acidification and proteolytic activities of the isolated thermophilic LAB were examined, and the isolates designated for use as starter cultures were also genotypically defined.


Subject(s)
Cheese , Lactobacillales , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Cheese/microbiology , Lactobacillales/isolation & purification , Lactobacillales/classification , Lactobacillales/genetics , Lactobacillales/metabolism , Whey/microbiology , Whey/chemistry , Food Microbiology , Turkey , Lactobacillus/isolation & purification , Lactobacillus/genetics , Lactobacillus/classification , Lactobacillus/metabolism , Enterococcus/isolation & purification , Enterococcus/classification , Enterococcus/genetics , Enterococcus/metabolism
13.
Sci Rep ; 14(1): 12461, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816376

ABSTRACT

Contaminated lake water and fish can be sources of bacterial pathogens of public health concern, including pathogenic E. coli. Within Ethiopia, specifically, Central Oromia, raw fish consumption is a common practice. Although there are few reports on occurrence of E. coli O157 in fish destined for human consumption and children under five years, information on the transmission pathways of E. coli O157 and other sorbitol non-fermenting (SN-F) E. coli from water-to-fish-to-human, and their virulence factors and antimicrobial resistant determinants along the fish supply chain is lacking. The study aimed to investigate the occurrence, molecular characteristics, and antimicrobial susceptibility of E. coli O157 and other SN-F E. coli strains in fish, lake water and humans in central Oromia, Ethiopia. A total of 750 samples (450 fish samples, 150 water samples, 150 human stool samples) were collected from five lakes and three health facilities. The samples were processed following the standard protocol recommended by European Food Safety Authority and Kirby-Bauer disc diffusion method for detection of the bacteria, and antimicrobial susceptibility tests, respectively. Molecular characterization of presumptive isolates was performed using Whole-Genome Sequencing (WGS) for serotyping, determination of virulence factors, antimicrobial resistance traits, and genetic linkage of the isolates. Overall, 3.9% (29/750) of the samples had SN-F E. coli; of which 6.7% (n = 10), 1.8% (n = 8) and 7.3% (n = 11) were retrieved from water, fish, and diarrheic human patients, respectively. The WGS confirmed that all the isolates were SN-F non-O157: H7 E. coli strains. We reported two new E. coli strains with unknown O-antigen from fish and human samples. All the strains have multiple virulence factors and one or more genes encoding for them. Genetic relatedness was observed among strains from the same sources (water, fish, and humans). Most isolates were resistant to ampicillin (100%), tetracycline (100%), cefotaxime (100%), ceftazidime (100%), meropenem (100%), nalidixic acid (93.1%) and sulfamethoxazole/trimethoprim (79.3%). Majority of the strains were resistant to chloramphenicol (58.6%) and ciprofloxacin (48.3%), while small fraction showed resistance to azithromycin (3.45%). Isolates had an overall MDR profile of 87.5%. Majority, (62.1%; n = 18) of the strains had acquired MDR traits. Genes encoding for mutational resistance and Extended-spectrum beta-lactamases (ESBL) were also detected. In conclusion, our study revealed the occurrence of virulent and MDR SN-F E. coli strains in water, fish, and humans. Although no genetic relatedness was observed among strains from various sources, the genomic clustering among strains from the same sources strongly suggests the potential risk of transmission along the supply chain at the human-fish-environment interface if strict hygienic fish production is not in place. Further robust genetic study of the new strains with unknown O-antigens, and the epidemiology of SN-F E. coli is required to elucidate the molecular profile and public health implications of the pathogens.


Subject(s)
Escherichia coli , Fishes , Lakes , Sorbitol , Humans , Ethiopia/epidemiology , Animals , Lakes/microbiology , Sorbitol/pharmacology , Fishes/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Whole Genome Sequencing , Water Microbiology , Drug Resistance, Bacterial/genetics , Food Microbiology , Feces/microbiology , Escherichia coli O157/genetics , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Escherichia coli O157/pathogenicity
14.
Emerg Infect Dis ; 30(6): 1291-1293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781985

ABSTRACT

Food irradiation can reduce foodborne illnesses but is rarely used in the United States. We determined whether outbreaks related to Campylobacter, Salmonella, Escherichia coli, and Listeria monocytogenes were linked to irradiation-eligible foods. Of 482 outbreaks, 155 (32.2%) were linked to an irradiation-eligible food, none of which were known to be irradiated.


Subject(s)
Disease Outbreaks , Food Irradiation , Food Microbiology , Foodborne Diseases , Humans , United States/epidemiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , History, 21st Century
15.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38817159

ABSTRACT

Milk is a source of essential nutrients, but food safety across the milk supply chain has emerged as an integral part of food trade. Of the several food safety hazards, antimicrobial-resistant Staphylococcus species have emerged as one of the major microbial hazards with significant public health concerns. The present crosssectional study was undertaken with the objective to isolate Staphylococcus species from the milk supply chain, characterize isolates for antimicrobial resistance, and trace the origin of isolates using molecular techniques. Samples collected from the formal and informal milk supply chains showed prevalence of Staphylococcus species of 4.3% (n=720); isolates were identified as coagulase-positive (S. aureus 67.7% and S. intermedius 6.4%) and coagulase-negative (S. lentus 9.6%, S. sciuri 3.2%, S. xylosus 3.2%, S. schleiferi 3.2%, S. felis 3.2%, and S. gallinarum 3.2%) species. Staphylococcus isolates showed antimicrobial resistance to methicillin (32.2%), ß-lactam (41.9%), and macrolide-lincosamide-streptogramin B (3.2%). Staphylococcus isolates phenotypically resistant to methicillin also carried the mecA gene and displayed diverse pulsed field gel electrophoresis (PFGE) profiles, indicating their diverse origins in the milk supply chain. Based on the similarity of PFGE profile, the origin of one of the Staphylococcus isolates was traced to the soil in contact with milch cows. The findings of this study highlight the need for more comprehensive microbial risk analysis studies across the milk supply chain, capacity building, creation of awareness among stakeholders about the judicious use of antimicrobials, and protection of public health using a One-Health approach.


Subject(s)
Anti-Bacterial Agents , Milk , Staphylococcus , Milk/microbiology , Animals , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Food Microbiology , Humans , Cattle , Bacterial Proteins/genetics , Coagulase/genetics , Coagulase/metabolism , Drug Resistance, Bacterial/genetics
16.
Carbohydr Polym ; 337: 122160, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710575

ABSTRACT

Sterilisation technologies are essential to eliminate foodborne pathogens from food contact surfaces. However, most of the current sterilisation methods involve high energy and chemical consumption. In this study, a photodynamic inactivation coating featuring excellent antibacterial activity was prepared by dispersing curcumin as a plant-based photosensitiser in a chitosan solution. The coating generated abundant reactive oxygen species (ROS) after light irradiation at 420 nm, which eradicated ≥99.999 % of Escherichia coli O157:H7. It was also found that ROS damaged the cell membrane, leading to the leakage of cell contents and cell shrinkage on the basis of chitosan. In addition, the production of ROS first excited the bacterial antioxidant defence system resulting in the increase of peroxidase (POD) and superoxide dismutase (SOD). ROS levels exceed its capacity, causing damage to the defence system and further oxidative decomposition of large molecules, such as DNA and proteins, eventually leading to the death of E. coli O157:H7. We also found the curcumin/chitosan coating could effectively remove E. coli O157:H7 biofilms by oxidative of extracellular polysaccharides and proteins. All the contributors made the chitosan/curcumin coating an efficient detergent comparable with HClO.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Curcumin , Escherichia coli O157 , Photosensitizing Agents , Reactive Oxygen Species , Chitosan/chemistry , Chitosan/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Escherichia coli O157/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Biofilms/drug effects , Food Microbiology , Light
17.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731432

ABSTRACT

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Subject(s)
Cheese , Food Preservation , Hypromellose Derivatives , Propolis , Cheese/microbiology , Cheese/analysis , Propolis/chemistry , Hypromellose Derivatives/chemistry , Food Preservation/methods , Phenols/chemistry , Phenols/analysis , Food Microbiology , Escherichia coli/drug effects
18.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734600

ABSTRACT

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Subject(s)
Anti-Bacterial Agents , Escherichia coli O157 , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Nanoparticles , Nisin , Yogurt , Nisin/pharmacology , Nisin/chemistry , Yogurt/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli O157/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservatives/pharmacology , Vero Cells , Food Microbiology , Chlorocebus aethiops , Food Preservation/methods
19.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38757512

ABSTRACT

This study aimed to detect the presence of Staphylococcus aureus in some animal source food (ASF) including emulsified meat products (sausage and salami), dry fermented meat product (soudjouk), semi dry meat product (pastrami) and raw chicken meat. Sixty six  (38.8%) of 170 samples were found to be positive for S. aureus. It was determined that S. aureus was found in 17 (56.6%) salami, 27 (54%) raw chicken meat, 9 (30%) soudjouk, 9 (30%) pastrami, 4 (13.3%) sausage samples. Staphylococcal enterotoxins (SEs) were identified in 5 out of 66 (7.5 %) isolates food matrices including 3 (4.5%) SEA, 2 (3.03%) SEC. The sea and sec genes were detected in 3 (4.5%) of 66 isolates. The results of this study highlight the need to provide suitable control strategies concerning production, sales, and storage to prevent the spread of enterotoxigenic S. aureus isolates in ASF. The key contribution of this study is its revelation of the presence of S. aureus in animal products sold in Turkish local markets, highlighting the potential public health risks associated with animal foods.


Subject(s)
Food Microbiology , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Animals , Turkey , Public Health , Meat Products/microbiology , Meat Products/analysis , Chickens/microbiology
20.
Environ Monit Assess ; 196(6): 547, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743188

ABSTRACT

Foodborne illnesses caused by the consumption of contaminated foods have frequent occurrences in developing countries. The incorporation of contaminated water in food processes, preparation, and serving is directly linked to several gastrointestinal infections. Keeping in view, this study was conducted to assess the microbial quality of both drinking water sources and commonly consumed fresh ready-to-eat (RTE) foods in the region. The drinking water samples from water sources and consumer points, as well as food samples from canteens, cafes, hotels, and restaurants, were collected for the microbiological analysis. Fifty-five percent (n = 286) of water samples were found to be positive for total coliforms with MPN counts ranging from 3 to 2600 (100 ml) -1. E. coli was detected in nearly 30% of the total water samples. Overall, 65% tap water samples were found unsatisfactory, followed by submersible (53%), filter (40%), and WTP (30%) sources. Furthermore, the examination of RTE foods (n = 80) found that 60% were of unsatisfactory microbial quality with high aerobic plate counts. The salads were the most contaminated category with highest mean APC 8.3 log CFU/g followed by pani puri, chats, and chutneys. Presence of coliforms and common enteropathogens was observed in both water and food samples. The detected isolates from the samples were identified as Enterobacter spp., Klebsiella spp., Pseudomonas aeruginosa, Salmonella spp., Shigella spp., and Staphylococcus spp. Based on these findings, microbiological quality was found compromised and this may pose hazard to public health. This exploratory study in the Punjab region also suggests that poor microbiological quality of water sources can be an important source of contamination for fresh uncooked RTE foods, thus transferring pathogens to the food chain. Therefore, only safe potable drinking water post-treatment should be used at all stages.


Subject(s)
Drinking Water , Fast Foods , Food Microbiology , Water Microbiology , Drinking Water/microbiology , India , Fast Foods/microbiology , Bacteria/isolation & purification , Bacteria/classification , Food Contamination/analysis , Environmental Monitoring , Humans , Escherichia coli/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...