Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 549
Filter
1.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38949427

ABSTRACT

Wild animals, sharing pathogens with domestic animals, play a crucial role in the epidemiology of infectious diseases. Sampling from wild animals poses significant challenges, yet it is vital for inclusion in disease surveillance and monitoring programmes. Often, mass surveillance involves serological screenings using enzyme-linked immunosorbent assay (ELISA) tests, typically validated only for domestic animals. This study assessed the diagnostic specificity of commercially available ELISA tests on 342 wild ruminant serum samples and 100 from wild boars. We evaluated three tests for foot-and-mouth disease: two for Peste des petits ruminants, two for Rift Valley fever and one for Capripox virus. Diagnostic specificity was calculated using the formula True Negative/(False Positive + True Negative). Cohen's kappa coefficient measured agreement between tests. Results showed high specificity and agreement across all tests. Specificity for foot-and-mouth disease (FMD) ranged from 93.89% for Prionics to 100% for IDEXX, with IDvet showing 99.6%. The highest agreement was between FMD IDvet and IDEXX at 97.1%. Rift Valley fever (RVF) tests, Ingezim and IDvet, achieved specificities of 100% and 98.83%, respectively. The optimal specificity was attained by retesting single reactors and inactivating the complement.Contribution: Commercially available ELISA kits are specific for foot-and-mouth disease and similar transboundary animal diseases and can be used for highly specific wild animal testing.


Subject(s)
Animals, Wild , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Animals , Enzyme-Linked Immunosorbent Assay/veterinary , Foot-and-Mouth Disease/diagnosis , Rift Valley Fever/diagnosis , Rift Valley Fever/blood , Sus scrofa , Ruminants , Antibodies, Viral/blood
2.
Mol Biol Rep ; 51(1): 777, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904698

ABSTRACT

BACKGROUND: Senecavirus A (SV-A) is an RNA virus that belongs to the genus Senecavirus within the family Picornaviridae. This study aimed to analyze factors that can influence the molecular diagnosis of Senecavirus A, such as oligonucleotides, RNA extraction methods, and RT-qPCR kits. METHODS: Samples from suspected cases of vesicular disease in Brazilian pigs were analyzed for foot-and-mouth disease, swine vesicular disease, and vesicular stomatitis. All tested negative for these diseases but positive for SV-A. RT-qPCR tests were used, comparing different reagent kits and RNA extraction methods. Sensitivity and repeatability were evaluated, demonstrating efficacy in detecting SV-A in clinical samples. RESULTS: In RNA extraction, significant reduction in Cq values was observed with initial dilutions, particularly with larger supernatant volumes. Trizol and Maxwell showed greater sensitivity in automated equipment protocols, though results varied in tissue tests. RT-qPCR kit comparison revealed differences in amplification using viral RNA but minimal differences with plasmid DNA. Sensitivity among methods was comparable, with slight variations in non-amplified samples. Repeatability tests showed consistent results among RT-qPCRs, demonstrating similarity between methods despite minor discrepancies in Cq values. CONCLUSIONS: Trizol, silica columns, and semi-automated extraction were compared, as well as different RT-qPCR kits. The study found significant variations that could impact the final diagnosis.


Subject(s)
Picornaviridae Infections , Picornaviridae , RNA, Viral , Swine Diseases , Animals , Picornaviridae/genetics , Picornaviridae/isolation & purification , Swine , Picornaviridae Infections/diagnosis , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , RNA, Viral/genetics , Swine Diseases/virology , Swine Diseases/diagnosis , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods , Swine Vesicular Disease/diagnosis , Swine Vesicular Disease/virology , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/virology , Brazil , Reproducibility of Results
3.
J Virol Methods ; 328: 114959, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788979

ABSTRACT

In Foot-and-mouth disease (FMD) enzootic countries, periodic vaccination is the key tool in controlling the disease incidence. Active seromonitoring of the vaccinated population is critical to assess the impact of vaccination. Virus neutralization test (VNT) and enzyme-linked immunosorbent assays (ELISA) are commonly used for antibody detection. Assays like liquid phase blocking ELISA (LPBE) or solid phase competition ELISA (SPCE) are preferred as they do not require handling of live FMDV and are routinely used for seromonitoring or for vaccine potency testing; however, false positives are high in LPBE. Here we report, a monoclonal antibody (mAb) based SPCE as a potential alternate assay for antibody titration. From a panel of 12 mAbs against FMDV serotype A, two mAbs were chosen for the development of SPCE. Based on a set of 453 sera, it was demonstrated that mAb 2C4G11, mAb 6E8D11and polyclonal antibody (pAb) based SPCE had a relative sensitivity of 86.1, 86.1 and 80.3 %; and specificity of 99.6, 99.1 and 99.1 %, respectively. The correlation, repeatability, and level of agreement of the assays were high demonstrating the potential use of mAb in large scale surveillance studies and regular vaccine potency testing.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Sensitivity and Specificity , Serogroup , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Foot-and-Mouth Disease Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Cattle , Neutralization Tests/methods
4.
Sci Rep ; 14(1): 7929, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575673

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Humans , Cattle , Animals , Foot-and-Mouth Disease Virus/genetics , Seroepidemiologic Studies , Cross-Sectional Studies , Ethiopia/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Serogroup , Disease Outbreaks/veterinary , Animals, Wild , Antibodies, Viral
5.
J Virol Methods ; 326: 114906, 2024 May.
Article in English | MEDLINE | ID: mdl-38479084

ABSTRACT

Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/prevention & control , Luminescence , Antibodies, Viral , Viral Nonstructural Proteins , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay
6.
Article in English | MEDLINE | ID: mdl-38341952

ABSTRACT

OBJECTIVE: We created a novel, high sensitivity immunochromatographic assay that allows for clear and precise quantitative analysis by employing innovative bimetallic nanoparticles with peroxide-like activity as markers for the preparation of the test strip. METHODS: Initially, we synthesized Pt-Pd bimetallic nanoparticles through the reduction of K2PtCl4 and Na2PdCl4 using ascorbic acid (AA) in an ultrasonic water bath. These bimetallic nanoparticles were then utilized to label purified antigens from the foot-and-mouth disease virus (FMDV) type O (FMDV-146S), resulting in the creation of antigen-captured nanomarkers. Upon completion of the antigen-antibody reaction, we introduced a color-developing agent (3,3',5,5'-tetramethylbenzidine) for cascade amplification, significantly enhancing detection sensitivity while ensuring clear and accurate quantitative analysis. RESULTS: The quantitative detection sensitivity achieved was 1:28/test, with a linear range spanning from 1:26 âˆ¼ 1:29 /test. For FMDV type O positive serum, the detection sensitivity reached 96.7 %. Furthermore, this method exhibited a 95 % detection sensitivity for FMDV negative serum, FMDV type A and type AsiaⅠ positive sera, as well as sera positive for other common viral diseases in animals. In comparison to the OIE-recommended LPB-ELISA, this approach displayed higher correlation (correlation coefficient = 0.909). Innovation was at the core of establishing this immunochromatographic assay based on Pt-Pd bimetallic nanoparticles for the detection of FMDV antibodies. CONCLUSION: The findings revealed a striking 24-fold improvement in sensitivity when compared to colloidal gold, accompanied by a strong correlation coefficient (R2 > 0.9). This suggests a robust and consistent linear association in the results. This method represents a significant advancement in the field of rapid immunochromatographic assays, offering a promising alternative application for bimetallic nanoparticles.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/diagnosis , Serogroup , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay/methods , Sensitivity and Specificity
7.
Aust Vet J ; 102(4): 200-214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38220215

ABSTRACT

We quantified the sensitivity of surveillance for lumpy skin disease (LSD) and foot and mouth disease (FMD) in cattle in the Kimberley region of Western Australia. We monitored producer and veterinary activity with cattle for 3 years commencing January 2020. Each year, ~274,000 cattle of 685,540 present on 92 pastoral leases (stations) were consigned to other stations, live export or slaughter. Veterinarians examined 103,000 cattle on the stations, 177,000 prior to live export, and 10,000 prior to slaughter. Detection probabilities for the disease prior to transport or during veterinary procedures and inspections were elicited by survey of 17 veterinarians working in Northern Australia. The veterinarians estimated the probabilities that they would notice, recognise, and submit samples from clinical cases of LSD and FMD, given a 5% prevalence of clinical signs in the herd. We used scenario tree methodology to estimate monthly surveillance sensitivity of observations made by producers and by veterinarians during herd management visits, pre-export inspections, and ante-mortem inspections. Average monthly combined sensitivities were 0.49 for FMD and 0.37 for LSD. Sensitivity was high for both diseases during the dry season and low in the wet season. We estimated the confidence in freedom from the estimated surveillance sensitivity given one hypothetically infected herd, estimated probability of introduction, and prior confidence in freedom. This study provided assurance that the Kimberley is free of these diseases and that routine producer and veterinary interactions with cattle are adequate for the timely detection of the disease should they be introduced.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease , Lumpy Skin Disease , Animals , Cattle , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Western Australia/epidemiology , Lumpy Skin Disease/diagnosis , Lumpy Skin Disease/epidemiology , Disease Outbreaks/veterinary , Australia/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology
8.
J Vet Diagn Invest ; 36(2): 192-204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38111309

ABSTRACT

We optimized and verified a single-spot solid-phase competitive ELISA (ss-SPCE) to detect antibodies against structural proteins of Southern African Territories (SAT) serotypes of foot-and-mouth disease virus (FMDV) in small ruminants. Sera from goats vaccinated and experimentally challenged with a SAT1 FMDV pool were tested in duplicate at 4 dilutions (1:10, 1:15, 1:22.5, 1:33.8) to optimize the assay. To assess the performance of the assay in naturally infected animals, we evaluated 316 goat and sheep field sera collected during active SAT2 outbreaks. Relative to results of the virus neutralization test, the optimal serum dilution and cutoff percentage inhibition (PI) were 1:15 and 50%, respectively. At these values, the Spearman rank correlation coefficient was 0.85 (p < 0.001), and the sensitivity and specificity (95% CI) were 80.3% (72.6, 87.2) and 91.1% (84.1, 95.9), respectively. Relative to the liquid-phase blocking ELISA and the nonstructural protein ELISA, the ss-SPCE exhibited divergent performance characteristics between the goat and sheep field sera. Repeatability was better for goats, but the correlation and agreement among all 3 assays were better for the sheep sera. The prevalence of SAT2 FMDV infection in the sampled sheep was 23.6%; sampled goats were seemingly FMDV-free. The ss-SPCE is an appropriate FMDV detection tool to investigate the role of small ruminants in the epidemiology of FMD in Africa.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Goat Diseases , Sheep Diseases , Animals , Sheep , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Serogroup , Goats , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral , Goat Diseases/diagnosis , Goat Diseases/epidemiology , Sheep Diseases/diagnosis , Sheep Diseases/epidemiology
9.
PLoS One ; 18(11): e0294036, 2023.
Article in English | MEDLINE | ID: mdl-37934775

ABSTRACT

Thousands of frozen bovine semen doses are produced daily in the US for domestic use. An incursion of foot-and-mouth disease (FMD) in the country would pose strong challenges to the movements of animals and animal products between premises. Secure supply plans require an estimation of the risk associated with target commodities and the effectiveness of mitigation measures. This study presents the results of a quantitative assessment of the risk of release of FMD virus from five of the largest commercial bull studs in the US via contaminated frozen processed semen. The methodology from a previous study was adapted to better fit the US production system and includes more recent data. Two models were combined, a deterministic compartmental model of FMD transmission and a stochastic risk assessment model. The compartmental model simulated an FMD outbreak within a collection facility, following the introduction of a latent-infected bull. The risk of release was defined as the annual likelihood of releasing at least one frozen semen batch, defined as the total amount of semen collected from a single bull on a given collection day, containing viable FMD virus. A scenario tree was built using nine steps leading from the collection to the release of a contaminated batch from a given facility. The first step, the annual probability of an FMD outbreak in a given facility, was modeled using an empirical distribution fitted to incidence data predicted by five models published between 2012 and 2022. An extra step was added to the previously published risk pathway, to account for routine serological or virological surveillance within facilities. The results showed that the mitigation measures included in the assessment were effective at reducing the risk of release. The median annual risk of release from the five facilities was estimated at less than 2 in 10 billion (1.5 x 10-10) in the scenario including a 30-day storage, routine genome detection assays performed every two weeks and RT-PCR testing of the semen. In this scenario, there was a 95% chance that the risk of release would be lower than 0.00041. This work provides strong support to the industry for improving their response plans to an incursion of FMD virus in the US.


Subject(s)
Body Fluids , Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cattle , Male , Semen , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/diagnosis , Risk Assessment , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Seizures/epidemiology , Cattle Diseases/epidemiology
10.
BMC Res Notes ; 16(1): 323, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941022

ABSTRACT

OBJECTIVE: Determining the serotype of circulating virus strains is important in implementing effective vaccination. In this study, Foot-and-Mouth Disease (FMD) Southern African territory 2 (SAT2) specific primers and TaqMan probe were designed towards rapid SAT2 detection and serotyping. The primers were tested by endpoint reverse transcription (RT) polymerase chain reaction (PCR) and quantitative PCR (RT-qPCR) using the vaccine strain SAT2035. The SAT2 serotype-specific RT-qPCR assay was compared with currently used ELISA and VP1 sequencing using Cohen's kappa statistics. RESULTS: The primers yielded amplicons of band size 190 bp during endpoint RT-PCR. When coupled with the probe, the primers reaction efficiency was determined to be 99% with an r2 value of 0.994. The results show that the SAT2 assay has comparable performance to VP1 sequencing (k = 1) and a moderate degree of agreement with ELISA (k = 0.571). The data shows that the newly designed assay could be considered for serotyping of SAT2 strains. However, for this assay to be complete there is a need to design effective SAT1 and SAT3 primers and probes that can be multiplexed to target other serotypes that co-circulate within relevant FMD endemic pools. For future implementation of the assay there is also a need to increase the number of field samples towards validation of the assay.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/genetics , Serotyping/methods , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Serogroup , Africa, Southern
11.
J Virol Methods ; 322: 114829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783396

ABSTRACT

Serotype identification occupies the central part of foot and mouth disease (FMD) diagnosis workflow and vaccination decision tree. In this study, a reverse transcription-multiplex PCR (RT-mPCR) strategy wherein three assays with unique combinations of serotype specific primers targeting the VP1 region was developed to differentiate FMD virus serotypes O, A and Asia 1 based on differential size of the PCR amplicons on agarose gel. Their diagnostic performance relative to the mPCR assay in use in India was evaluated on 169 clinical samples and 210 cell culture grown virus isolates. The relative diagnostic sensitivity was found to be 99.69%, 98.78% and 99.08% for primer combinations 1, 2 and 3, respectively. These assays proved their worth by detecting serotype in three FMD suspected specimens that went undiagnosed in the existing mPCR and also by identifying multiple serotypes in the same sample. Their detection limits varied from log10 2 to log10 4 viral RNA dilution and from 100 to 0.1 TCID50 virus depending on the serotype. The validated novel mPCR assays show promise to be included in the routine diagnostic tool-box to augment the efficiency of diagnosis of FMD virus serotypes that display extreme genetic diversity and a tendency of transboundary dispersal.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Serogroup , Reverse Transcription , Multiplex Polymerase Chain Reaction , Serotyping , Sensitivity and Specificity , Foot-and-Mouth Disease/diagnosis , India , Cell Differentiation
12.
Curr Microbiol ; 80(8): 245, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328626

ABSTRACT

A one-step TaqMan probe-based RT-qPCR assay in the duplex format simultaneously targeting FMD Virus (FMDV) 2B NSP-coding region and 18S rRNA housekeeping gene was developed and evaluated. The duplex RT-qPCR assay specifically detected FMDV genome in both infected cell culture suspensions and a variety of clinical samples such as FMD-affected tongue/feet epithelium, oral/nasal swabs, milk and oro-pharyngeal fluids. The RT-qPCR assay was found to be highly sensitive, since the assay was 105-fold more sensitive than the traditional FMDV detecting antigen-ELISA (Ag-ELISA) and 102-fold better sensitive than both virus isolation and agarose gel-based RT-multiplex PCR. In addition, the assay could detect up to 100 copies of FMDV genome per reaction. In the epithelial samples (n = 582) collected from the FMD-affected animals, the diagnostic sensitivity was 100% (95% CI 99-100%). Similarly, all the FMDV-negative samples (n = 65) tested were confirmed negative by the new RT-qPCR assay, corresponding to 100% diagnostic specificity (95% CI = 94-100%). Further, the duplex RT-qPCR assay proved to be robust, showing an inter-assay co-efficient of variations ranging from 1.4 to 3.56% for FMDV-2B gene target, and from 2 to 4.12% for 18S rRNA gene target. While analyzing FMDV-infected cell culture suspension, a fairly strong positive correlation (correlation coefficient = 0.85) was observed between 2B-based RT-qPCR and WOAH-approved 5'UTR RT-qPCR assays. Therefore, the one-step RT-qPCR assay developed here with an internal control could be used for rapid, effective, and reliable detection of FMDV in pan-serotypic manner, and has the potential for routine diagnosis of FMDV in high throughput manner.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease Virus/genetics , Sensitivity and Specificity , Serogroup , Multiplex Polymerase Chain Reaction
13.
Vet Res Commun ; 47(4): 1915-1924, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37222940

ABSTRACT

Foot-and-mouth disease (FMD) is endemic in India with a majority of outbreaks caused by FMD virus (FMDV) serotype O. In the present study a panel of eight (2F9, 2G10, 3B9, 3H5, 4C8, 4D6, 4G10 and 5B6) mouse monoclonal antibodies (MAbs) were developed against FMDV serotype O Indian vaccine strain, O/IND/R2/75 via hybridoma systems. The MAbs generated were FMDV/O specific without cross-reactivity against FMDV type A and Asia 1. All the MAbs were identified as IgG1/kappa type. Out of eight, three MAbs (3B9, 3H5 and 4G10) demonstrated virus neutralizing activity. The reactivity of all MAbs increased with heat treated (@560C) serotype O antigen compared to untreated antigen in sandwich ELISA indicating that their binding epitopes are linear. Six MAbs (except 2F9 and 4D6) reacted with recombinant P1 protein of homologous virus in an indirect ELISA among which only MAb 3B9 bound to VP1. MAb profiling of 37 serotype O field viruses isolated between the years 1962 and 2021 demonstrated antigenic similarity between field isolates and reference vaccine strain. MAbs 5B6 and 4C8 consistently reacted with all 37 isolates. In indirect immunofluorescence assay MAb 5B6 bound well with FMDV/O antigen. Finally, a sandwich ELISA was successfully developed using rabbit polyclonal anti-FMDV/O serum and MAb 5B6 for detection of FMDV/O antigen in clinical samples (n = 649). The new assay exhibited 100% and 98.89% diagnostic sensitivity and specificity respectively compared to traditional polyclonal antibody-based sandwich ELISA suggesting that the MAb-based ELISA developed here could be an effective method for detection of FMDV serotype O.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Vaccines , Mice , Animals , Rabbits , Antibodies, Monoclonal , Serogroup , O Antigens , Foot-and-Mouth Disease/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral
14.
J Virol Methods ; 319: 114753, 2023 09.
Article in English | MEDLINE | ID: mdl-37209781

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious viral vesicular disease, causing devastating losses to the livestock industry. A diagnostic method that enables quick decisions is required to control the disease, especially in FMD-free countries. Although conventional real-time reverse transcription polymerase chain reaction (RT-PCR) is a highly sensitive method widely used for the diagnosis of FMD, a time lag caused by the transport of samples to a laboratory may allow the spread of FMD. Here, we evaluated a real-time RT-PCR system using a portable PicoGene PCR1100 device for FMD diagnosis. This system could detect the synthetic FMD viral RNA within 20 min with high sensitivity compared to a conventional real-time RT-PCR. Furthermore, the Lysis Buffer S for crude nucleic extraction improved the viral RNA detection of this system in a homogenate of vesicular epithelium samples collected from FMD virus-infected animals. Furthermore, this system could detect the viral RNA in crude extracts prepared using the Lysis Buffer S from the vesicular epithelium samples homogenized using a Finger Masher tube, which allows easy homogenization without any equipment, with a high correlation compared to the standard method. Thus, the PicoGene device system can be utilized for the rapid and pen-side diagnosis of FMD.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Foot-and-Mouth Disease Virus/genetics , RNA, Viral/genetics
15.
J Virol Methods ; 318: 114754, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37230193

ABSTRACT

Early and definitive disease diagnosis is critical for effective disease control. 50% buffered glycerine is commonly used viral transport medium, which is not always available and required cold chain. Tissues samples archived in 10% neutral buffered formalin (NBF) can preserve nucleic acid that can be used in molecular studies and disease diagnosis. The present study's goal was to detect the foot-and-mouth disease (FMD) viral genome in formalin-fixed archived tissue which may avoid cold chain during transportation. This study used FMD suspected samples preserved in 10% neutral buffered formalin from 0 to 730 days post fixation (DPF). All archived tissues were positive for FMD viral genome by multiplex RT-PCR and RT-qPCR up to 30 DPF, whereas archived epithelium tissues and thigh muscle were positive for FMD vial genome up to 120 DPF. FMD viral genome was detected in cardiac muscle up to 60 DPF and 120 DPF, respectively. The findings suggest that 10% neutral buffered formalin could be used for sample preservation and transportation for timely and accurate FMD diagnosis. More samples need to be tested before implementing the use of 10% neutral buffered formalin as a preservative and transportation medium. The technique may add value in ensuring biosafety measures for creation during disease free zone as well.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/diagnosis , Formaldehyde , Foot-and-Mouth Disease Virus/genetics
16.
Prev Vet Med ; 214: 105889, 2023 May.
Article in English | MEDLINE | ID: mdl-36906937

ABSTRACT

Controlling foot-and-mouth disease (FMD) by vaccination requires adequate population coverage and high vaccine efficacy under field conditions. To assure veterinary services that animals have acquired sufficient immunity, strategic post-vaccination surveys can be conducted to monitor the coverage and performance of the vaccine. Correct interpretation of these serological data and an ability to derive exact prevalence estimates of antibody responses requires an awareness of the performance of serological tests. Here, we used Bayesian latent class analysis to evaluate the diagnostic sensitivity and specificity of four tests. A non-structural protein (NSP) ELISA determines vaccine independent antibodies from environmental exposure to FMD virus (FMDV), and three assays measuring total antibodies derived from vaccine antigen or environmental exposure to two serotypes (A, O): the virus neutralisation test (VNT), a solid phase competitive ELISA (SPCE), and a liquid phase blocking ELISA (LPBE). Sera (n = 461) were collected by a strategic post-vaccination monitoring survey in two provinces of Southern Lao People's Democratic Republic (PDR) after a vaccination campaign in early 2017. Not all samples were tested by every assay and each serotype: VNT tested for serotype A and O, whereas SPCE and LPBE tested for serotype O, and only NSP-negative samples were tested by VNT, with 90 of them not tested (missing by study design). These data challenges required informed priors (based on expert opinion) for mitigating possible lack of model identifiability. The vaccination status of each animal, its environmental exposure to FMDV, and the indicator of successful vaccination were treated as latent (unobserved) variables. Posterior median for sensitivity and specificity of all tests were in the range of 92-99 %, except for the sensitivity of NSP (∼66%) and the specificity of LPBE (∼71 %). There was strong evidence that SPCE outperformed LPBE. In addition, the proportion of animals recorded as having been vaccinated that showed a serological immune response was estimated to be in the range of 67-86 %. The Bayesian latent class modelling framework can easily and appropriately impute missing data. It is important to use field study data as diagnostic tests are likely to perform differently on field survey samples compared to samples obtained under controlled conditions.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cattle , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Serogroup , Bayes Theorem , Serologic Tests/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Vaccination/veterinary , Antibodies, Viral , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control
17.
ACS Sens ; 8(3): 1299-1307, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36786758

ABSTRACT

Infectious disease viruses, such as foot-and-mouth disease virus (FMDV), are highly contagious viruses that cause significant socioeconomic damage upon spreading. Developing an on-site diagnostic tool for early clinical detection and real-time surveillance of FMDV outbreaks is essential to prevent the further spread of the disease. However, early diagnosis of FMDV is still challenging due to the limited sensitivity and time-consuming manual result entry of commercial on-site tests for salivary samples. Here, we report a near-infrared (NIR) signal nanoprobe-based highly accurate detection and remote monitoring system toward FMDVs, which automates the analysis and reporting of diagnosis data. The NIR signal lateral flow immunoassay (LFA) was assembled with a nanoprobe with a stable emission intensity at 800 nm, minimizing the interference signal of opaque salivary samples. We investigated the clinical applicability of the NIR signal LFA at biosafety level 3 (BSL-3) laboratories using 147 opaque salivary samples. The NIR signal LFA achieved a 32-fold lower limit of detection (LOD) than a commercial LFA in detecting live FMDVs, including all isolates occurring in the Republic of Korea during 2010-2017. Our results showed that the NIR signal LFA successfully discriminated the FMDV-positive clinical salivary samples from healthy controls with a sensitivity of 96.9%, specificity of 100.0%, and AUC (area under the receiver operator characteristic curve) value of 0.999. Finally, we substantiated the real-time collection of diagnostic results using a customized portable NIR reader at nine different laboratories of government-certified quarantine institutions for foot-and-mouth disease (FMD).


Subject(s)
Communicable Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Humans , Sensitivity and Specificity , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Communicable Diseases/epidemiology , Disease Outbreaks
18.
Prev Vet Med ; 213: 105880, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36841043

ABSTRACT

Digital images are becoming more readily available and possibilities for image processing are developing rapidly. This opens the possibility to use digital images to monitor and detect diseases in animals. In this paper we present 1) a generic facial feature scoring system based on seven facial features, 2) manual scores of images of Holstein Frisian heifers during foot-and-mouth disease vaccine efficacy trials and 3) automatic disease scores of the same animals. The automatic scoring system was based on the manual version and trained on annotated images from the manual scoring system. For both systems we found an increase in disease scores three days post infection, followed by a recovery. This temporal pattern matched with observations made by animal caretakers. Importantly, the automatic system was able to discern animals that were protected by the vaccine, and did not develop blisters at the feet, and animals that were not protected. Finally, automatic scores could be used to detect healthy and sick animals with a sensitivity and specificity of 0.94 on the second and third days following infection in an experimental setting. This generic facial feature disease scoring system could be further developed and extended to lactating Holstein Frisian dairy cows, other breeds and other infectious diseases. The system could be applied during animal experiments or, after further development, in a farm setting.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cattle , Female , Lactation , Cattle Diseases/prevention & control , Foot-and-Mouth Disease/diagnosis , Sensitivity and Specificity
19.
J Virol Methods ; 314: 114676, 2023 04.
Article in English | MEDLINE | ID: mdl-36669654

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals. Vaccination and surveillance against non-structure protein (NSP) are the most efficacious and cost-effective strategy to control this disease. Therefore, vaccine purity control is vital for successful prevention. Currently, vaccine purity is tested by an in-vivo test that recommended in the World Organization for Animal Health (WOAH), but it is time consuming and costly. Herein, we develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for quantitative detection of residual NSPs in inactivated FMD virus (FMDV) vaccines. In this assay, the monoclonal antibody 3A24 was selected as capture antibody and biotinylated 3B4B1 (Biotin-3B4B1) as detection antibody. A standard curve was developed using the NSP 3AB concentration versus OD value with the linear range of concentration of 2.5-160 ng/mL. The lowest limit of detection was 2.5 ng/mL. In addition, we determined 2.5 ng/mL of NSP as an acceptable threshold value of FMD vaccine purity using a dose-response experiment in cattle. The DAS-ELISA combined with the threshold value of FMD vaccine purity could provide a quick and simple tool for evaluation the antigenic purity of FMD vaccine during the manufacturing process.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Cattle , Vaccines, Inactivated , Antibodies, Viral , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/prevention & control , Enzyme-Linked Immunosorbent Assay/veterinary
20.
Virologie (Montrouge) ; 26(5): 355-373, 2022 09 01.
Article in French | MEDLINE | ID: mdl-36413121

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most contagious viral animal diseases. It is an old disease which still poses a permanent threat of re-emergence for free zones. Foot-and-Mouth Disease Virus (FMDV), a Picornavirus belonging to genus Aphthovirus affects domestic and wild artiodactyls. FMD has a considerable socio-economic impact on agricultural production and trade in endemic regions, but also when incursions occur into FMD free areas, as in Europe in 2001. FMDV is historically one of the most studied viruses. Due to its high genetic and antigenic variability, the absence of cross-immunity between its seven serotypes, its ability to survive in the environment, its high contagiousness, its wide range of hosts and its particular biology, FMDV remains of major interest in animal health and the subject of many research projects. This review presents different aspects of FMDV infection, ranging from basic biology to diagnosis, surveillance and control.


La fièvre aphteuse (FA) est l'une des maladies virales animales les plus contagieuses. Bien que très ancienne, la FA reste toujours d'actualité et représente une menace permanente de réémergence pour les pays indemnes. Le virus de la FA ou FMDV (pour foot-and-mouth disease virus), de la famille Picornaviridae, genre Aphthovirus, affecte les artiodactyles domestiques comme sauvages (principalement bovins, ovins, caprins, porcins, camélidés et cervidés). La fièvre aphteuse a un impact socio-économique considérable sur la production et le commerce agricoles en zone d'enzootie mais également en cas d'incursion dans une zone précédemment indemne comme ce fut le cas en 2001 en Europe. Le virus de la FA est historiquement l'un des virus les plus étudiés. Par sa grande variabilité génétique et antigénique, l'absence d'immunité croisée entre ses sept sérotypes, sa capacité de survie dans l'environnement, sa grande contagiosité, son large spectre d'hôtes ainsi que sa biologie particulière, ce virus reste d'intérêt majeur en santé animale et l'objet de nombreux travaux de recherche. Cette revue vise à présenter différents aspects de l'infection par le virus de la fièvre aphteuse et ses problématiques actuelles, de la biologie fondamentale au diagnostic en passant par la surveillance et les moyens de lutte.


Subject(s)
Artiodactyla , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Serogroup , Europe/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...