Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.599
Filter
1.
BMC Vet Res ; 20(1): 172, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702691

ABSTRACT

BACKGROUND: Lameness examinations are commonly performed in equine medicine. Advancements in digital technology have increased the use of video recordings for lameness assessment, however, standardization of ideal video angle is not available yielding videos of poor diagnostic quality. The objective of this study was to evaluate the effect of video angle on the subjective assessment of front limb lameness. A randomized, blinded, crossover study was performed. Six horses with and without mechanically induced forelimb solar pain were recorded using 9 video angles including horses trotting directly away and towards the video camera, horses trotting away and towards a video camera placed to the left and right side of midline, and horses trotting in a circle with the video camera placed on the inside and outside of the circle. Videos were randomized and assessed by three expert equine veterinarians using a 0-5 point scoring system. Objective lameness parameters were collected using a body-mounted inertial sensor system (Lameness Locator®, Equinosis LLC). Interobserver agreement for subjective lameness scores and ease of grading scores were determined. RESULTS: Induction of lameness was successful in all horses. There was excellent agreement between objective lameness parameters and subjective lameness scores (AUC of the ROC = 0.87). For horses in the "lame" trials, interobserver agreement was moderate for video angle 2 when degree of lameness was considered and perfect for video angle 2 and 9 when lameness was considered as a binary outcome. All other angles had no to fair agreement. For horses in the "sound" trials, interobserver agreement was perfect for video angle 5. All other video angles had slight to moderate agreement. CONCLUSIONS: When video assessment of forelimb lameness is required, a video of the horse trotting directly towards the video camera at a minimum is recommended. Other video angles may provide supportive information regarding lameness characteristics.


Subject(s)
Cross-Over Studies , Horse Diseases , Lameness, Animal , Video Recording , Animals , Horses , Lameness, Animal/diagnosis , Horse Diseases/diagnosis , Forelimb , Female , Male
2.
J Neurophysiol ; 131(6): 997-1013, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691528

ABSTRACT

During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.


Subject(s)
Forelimb , Hindlimb , Locomotion , Muscle, Skeletal , Reflex , Spinal Cord Injuries , Animals , Cats , Hindlimb/physiology , Forelimb/physiology , Reflex/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Spinal Cord Injuries/physiopathology , Movement/physiology , Female , Male , Skin/innervation
3.
J Vis Exp ; (205)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38557586

ABSTRACT

Behavioral testing in rat models is frequently utilized for diverse purposes, including psychological, biomedical, and behavioral research. Many traditional approaches involve individual, one-on-one testing sessions between a single researcher and each animal in an experiment. This setup can be very time consuming for the researcher, and their presence may impact the behavioral data in unwanted ways. Additionally, traditional caging for rat research imposes a lack of enrichment, exercise, and socialization that would normally be typical for the species, and this context may also skew the results of behavioral data. Overcoming these limitations may be worthwhile for several research applications, including the study of acquired brain injury. Here, an example method is presented for automatically training and testing individual rat behavior in a colony cage without the presence of humans. Radio frequency identification can be utilized to tailor sessions to the individual rat. The validation of this system occurred in the example context of measuring skilled forelimb motor performance before and after stroke. Traditional characteristics of post-stroke behavioral impairments and novel measures enabled by the system are measured, including success rate, various aspects of pull force, bout analysis, initiation rate and patterns, session duration, and circadian patterns. These variables can be collected automatically with few limitations; though the apparatus removes experimental control of exposure, timing and practice, the validation produced reasonable consistency in these variables from animal to animal.


Subject(s)
Brain Injuries , Stroke , Rats , Humans , Animals , Forelimb , Upper Extremity , Disease Models, Animal
4.
PLoS One ; 19(4): e0302008, 2024.
Article in English | MEDLINE | ID: mdl-38603768

ABSTRACT

Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation. Thus, our objectives were to determine if a modified ER program comprised of environmental enrichment and skilled reaching practice motivated by a short fast would enhance post-stroke forelimb motor recovery and preserve forelimb muscle size and metabolic fiber type, relative to a group exposed to stroke without ER. At one week after photothrombotic cortical stroke, male, Sprague-Dawley rats were assigned to modified ER or standard care for 2 weeks. Forelimb recovery was assessed in the Montoya staircase and cylinder task before stroke and on days 5-6, 22-23, and 33-34 after stroke. ER failed to improve forelimb function in either task (p > 0.05). Atrophy of extensor digitorum communis (EDC) and triceps brachii long head (TBL) muscles was not evident in the stroke-targeted forelimb on day 35, but the area occupied by hybrid fibers was increased in the EDC muscle (p = 0.038). ER bilaterally increased EDC (p = 0.046), but not TBL, muscle size; EDC muscle fiber type was unchanged by ER. While the modified ER did not promote forelimb motor recovery, it does appear to have utility for studying the role of skeletal muscle plasticity in post-stroke recovery.


Subject(s)
Stroke Rehabilitation , Stroke , Rats , Male , Animals , Humans , Rats, Sprague-Dawley , Recovery of Function/physiology , Forelimb , Muscle, Skeletal , Disease Models, Animal
5.
Anat Histol Embryol ; 53(3): e13040, 2024 May.
Article in English | MEDLINE | ID: mdl-38623947

ABSTRACT

The study aims to analyse the normal anatomical and radiographical features of the Manus of the southern Aswanian-adapted Arabian one-humped camel, providing crucial data for diagnosing and treating various ailments. Our study was applied to 10 cadaver forelimbs of adult male one-humped camels (4-5 years old) for an explanation of the gross anatomy of the bones of the Manus region from under the carpal bones by using traditional techniques, including the gross anatomical, radiographic and x-ray (at the dorsopalmar and lateral planes) of the preparation of Manus bones. Our results showed that the large fused (third and fourth) metacarpal bones, in which the fusion extended along the entire length of the bone except at the distal end, diverged to form separate articulations with cross-ponding digits. As described in all ruminant species, especially the camel, there were two digits, and each digit consisted of three phalanges and two proximal sesamoid bones. Our radiographic x-ray data revealed that the complete radiopaque septum that completely divided the medullary cavity into two separate parts was clear from the dorsopalmar view, while the lateral view showed the proximal sesamoid bones that were placed over each other and located palmar to the head of the large metacarpal bone. In conclusion, our study reveals the adaptations of the Arabian one-humped camel to Egyptian conditions, aiding in the early diagnosis of lameness and digit problems and enabling veterinarians and camel owners to better address these issues, thereby improving the overall health and well-being of these animals.


Subject(s)
Camelus , Metacarpal Bones , Male , Animals , Camelus/anatomy & histology , Foot , Forelimb , Radiography , Metacarpal Bones/diagnostic imaging
6.
J Vis Exp ; (205)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38619242

ABSTRACT

Powerful genetic and molecular tools available in mouse systems neuroscience research have enabled researchers to interrogate motor system function with unprecedented precision in head-fixed mice performing a variety of tasks. The small size of the mouse makes the measurement of motor output difficult, as the traditional method of electromyographic (EMG) recording of muscle activity was designed for larger animals like cats and primates. Pending commercially available EMG electrodes for mice, the current gold-standard method for recording muscle activity in mice is to make electrode sets in-house. This article describes a refinement of established procedures for hand fabrication of an electrode set, implantation of electrodes in the same surgery as headplate implantation, fixation of a connector on the headplate, and post-operative recovery care. Following recovery, millisecond-resolution EMG recordings can be obtained during head-fixed behavior for several weeks without noticeable changes in signal quality. These recordings enable precise measurement of forelimb muscle activity alongside in vivo neural recording and/or perturbation to probe mechanisms of motor control in mice.


Subject(s)
Hand , Upper Extremity , Animals , Mice , Electrodes , Forelimb , Muscles
7.
Open Vet J ; 14(3): 885-894, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682140

ABSTRACT

Background: The study employs finite element analysis to investigate stress distribution in the radius of toy poodles after screw removal. The examination focuses on the biomechanical implications of varied screw hole configurations using 1.5 and 2.0-mm locking compression plates (LCPs) with notched head T-Plates. Aim: To provide a noninvasive approach to analyzing the immediate consequences of screw removal from the radius bone in toy poodles. Specifically, it explores the impact of varied plate designs and screw arrangements on stress distribution within the forelimb bones. Methods: The study constructs a three-dimensional bone model of the toy poodle's forelimb based on computed tomography (CT) images. Simulations were designed to replicate jumping and landing from a 40 cm height, comparing stress distribution in the radius post-screw removal. Results: The analysis reveals significant variations in stress distribution patterns between the two LCPs. The radius implanted with the 2.0-mm LCP displays a uniform stress distribution, contrasting with the 1.5-mm plates. Localized stress concentration is observed around the screw holes, while trabecular bone regions near the screw holes exhibit lower stress levels. Conclusion: The study highlights the plate designs and screw configurations that affect bone stress in toy poodle forelimbs post-screw removal. The findings provide valuable insights for veterinarians, aiding informed decisions in veterinary orthopedic practices.


Subject(s)
Bone Plates , Bone Screws , Finite Element Analysis , Animals , Bone Screws/veterinary , Bone Screws/adverse effects , Bone Plates/veterinary , Biomechanical Phenomena , Stress, Mechanical , Radius/surgery , Forelimb , Tomography, X-Ray Computed/veterinary
8.
Behav Brain Res ; 466: 115007, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38648867

ABSTRACT

Although active touch in rodents arises from the forepaws as well as whiskers, most research on active touch only focuses on whiskers. This results in a paucity of tasks designed to assess the process of active touch with a forepaw. We develop a new experimental task, the Reach-to-Grasp and Tactile Discrimination task (RGTD task), to examine active touch with a forepaw in rodents, particularly changes in processes of active touch during motor skill learning. In the RGTD task, animals are required to (1) extend their forelimb to an object, (2) grasp the object, and (3) manipulate the grasped object with the forelimb. The animals must determine the direction of the manipulation based on active touch sensations arising during the period of the grasping. In experiment 1 of the present study, we showed that rats can learn the RGTD task. In experiment 2, we confirmed that the rats are capable of reversal learning of the RGTD task. The RGTD task shared most of the reaching movements involved with conventional forelimb reaching tasks. From the standpoint of a discrimination task, the RGTD task enables rigorous experimental control, for example by removing bias in the stimulus-response correspondence, and makes it possible to utilize diverse experimental procedures that have been difficult in prior tasks.


Subject(s)
Discrimination Learning , Forelimb , Touch , Animals , Rats , Male , Forelimb/physiology , Touch/physiology , Discrimination Learning/physiology , Hand Strength/physiology , Touch Perception/physiology , Psychomotor Performance/physiology , Discrimination, Psychological/physiology , Motor Skills/physiology , Rats, Long-Evans , Reversal Learning/physiology
9.
Cell Rep ; 43(4): 113986, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598336

ABSTRACT

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.


Subject(s)
Forelimb , Motor Cortex , Neuronal Plasticity , Animals , Forelimb/physiology , Neuronal Plasticity/physiology , Motor Cortex/physiology , Motor Cortex/cytology , Rats , Learning/physiology , Hand Strength/physiology , Neurons/physiology , Male , Pyramidal Tracts/physiology , Motor Skills/physiology , Female , Optogenetics , Rats, Long-Evans
10.
Curr Biol ; 34(8): 1718-1730.e3, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38582078

ABSTRACT

Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.


Subject(s)
Somatosensory Cortex , Animals , Mice , Somatosensory Cortex/physiology , Touch/physiology , Neurons/physiology , Mice, Inbred C57BL , Forelimb/physiology , Touch Perception/physiology , Male , Physical Stimulation
11.
J Physiol ; 602(9): 1987-2017, 2024 May.
Article in English | MEDLINE | ID: mdl-38593215

ABSTRACT

When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.


Subject(s)
Hindlimb , Locomotion , Muscle, Skeletal , Reflex , Spinal Cord Injuries , Animals , Cats , Hindlimb/innervation , Hindlimb/physiology , Hindlimb/physiopathology , Male , Female , Spinal Cord Injuries/physiopathology , Reflex/physiology , Locomotion/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Skin/innervation , Thoracic Vertebrae , Forelimb/physiopathology , Forelimb/physiology , Electric Stimulation
12.
Poult Sci ; 103(6): 103672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564834

ABSTRACT

The development of the avian wing pattern has been the subject of heated debate due to its special shape. The Suppressor of cytokine signaling 2 (SOCS2) gene encodes a negative regulator of growth hormone (GH) signaling and bone growth and is known to be strongly expressed in the third digit of chicken forelimbs. These observations suggest that SOCS2 might regulate the morphology of the avian wing, however, the function of SOCS2 in avian limb development remains unknown. Here, we reexamined SOCS2 expression in successive developmental stages of chicken limb development by in situ hybridization (ISH) and describe extended expression from the posterior of the stypolod to the third digit of the forelimbs. We used the RCAS avian retrovirus to overexpress SOCS2 in the developing chicken limb buds, which resulted in reduced or malformed chicken wings while hindlimbs developed normally. Transcriptome sequencing (mRNA-Seq) revealed changes in expression of genes known to be associated with growth and development in forelimbs with overexpressed SOCS2. This study highlights a pivotal role for SOCS2 during the development of the wing in the chicken and provides new insight into molecular mechanisms regulating avian limb development.


Subject(s)
Avian Proteins , Chickens , Suppressor of Cytokine Signaling Proteins , Wings, Animal , Animals , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Chick Embryo , Wings, Animal/growth & development , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/growth & development , Chickens/genetics , Forelimb , Limb Buds/metabolism , Gene Expression Regulation, Developmental
13.
Vet Rec ; 194(10): e4043, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38575548

ABSTRACT

BACKGROUND: This study aimed to investigate the possible presence of maladaptive pain in the thoracic limbs of dogs with elbow osteoarthritis (OA) using an electronic von Frey aesthesiometer (eVFA). METHODS: Twenty-eight client- and staff-owned dogs (OA, n = 14; controls, n = 14) were enrolled in the study. Every dog underwent a full orthopaedic examination, and then five von Frey measurements were obtained from each carpal pad of each dog. A maximum test threshold of 400 g was set and approved by an ethics committee. RESULTS: eVFA thresholds were significantly lower (p < 0.001) in dogs with OA (median 248 g, range 128-369 g) than in control dogs (median 390 g, range 371-400 g). In the OA group, the sensory threshold was significantly lower (p = 0.048) in the more severely affected limb than the less severely affected limb. LIMITATION: The low maximum threshold required for ethical approval may influence the variability in the control group. CONCLUSIONS: Dogs with elbow OA had significantly lower sensory thresholds than control dogs, which is compatible with the presence of maladaptive pain, potentially due to central sensitisation. Further research is required to evaluate the potential use of the eVFA for monitoring clinical progression and treatment response in dogs with elbow OA.


Subject(s)
Dog Diseases , Osteoarthritis , Pain Measurement , Animals , Dogs , Osteoarthritis/veterinary , Dog Diseases/diagnosis , Male , Female , Pain Measurement/veterinary , Pain/veterinary , Forelimb , Case-Control Studies
14.
Am J Vet Res ; 85(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593824

ABSTRACT

OBJECTIVE: To evaluate if a difference in synovial amikacin concentrations exists in the radiocarpal joint (RCJ) following different durations of instillation of an IV regional limb perfusion (IVRLP) perfusate. ANIMALS: 7 healthy horses. METHODS: Horses received 2 IVRLPs with 2 g amikacin diluted to 60 mL with 0.9% NaCl via the cephalic vein in a crossover study design with a wash-out period between procedures. Instillation of the perfusate was administered over a 1-minute (technique 1) and 5-minute (technique 5) period. Concentrations of amikacin within the RCJ were measured at time (T) 5, 10, 15, 20, 25, and 30 minutes after instillation of the perfusate. Systemic concentrations of amikacin were measured at T0, 5, 10, 15, 20, 25, 29 minutes, and 1 minute after tourniquet removal (T31). Amikacin concentrations were determined by fluorescence polarization immunoassay. RESULTS: The median maximum concentration (CMAX) of amikacin within the RCJ for technique 1 was 338.4 µg/mL (range, 60 to 4,925 µg/mL), while the median CMAX for technique 5 was higher at 694.8 µg/mL (range, 169.2 to 3,410 µg/mL; P = .398). There was a higher amikacin blood concentration over time for technique 1 compared to technique 5 (P = .004). CLINICAL RELEVANCE: Administration of perfusate at different rates did not significantly affect synovial concentration of amikacin within the RCJ when performing IVRLP. However, increased systemic leakage was noted when the perfusate was administered over 1 minute, which might affect synovial concentrations in a larger group of horses.


Subject(s)
Amikacin , Anti-Bacterial Agents , Cross-Over Studies , Animals , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Horses , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Male , Female , Synovial Fluid/chemistry , Perfusion/veterinary , Time Factors , Forelimb
15.
J Morphol ; 285(4): e21690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538209

ABSTRACT

The early period of ontogeny is key to understanding the patterns of body plan formation in birds. Most studies of avian development have focused on the development of individual avian characters, leaving their developmental integration understudied. We explored the dynamics and integration of relative percentage increments in body mass, lengths of head, skeletal elements of wing and leg, and primary flight feathers in the embryonic and postnatal development of the Rook (Corvus frugilegus). The relative percentage increments were calculated according to Brody's equation. Groups of similar growing traits (modules) were determined using hierarchical cluster analysis, and the degree of correlation between modules was estimated by PLS analysis. The embryonic and postnatal periods demonstrate significant consistency both in the dynamics of changes in relative percentage increments of studied traits as well as in the clustering of individual modules. The modules mainly include the body mass and head length, as well as the elements that form the fore- and hind limbs. Differences were revealed in the combination of modules into clusters in embryonic and postnatal periods. Hind limb elements clustered together with wing elements in the embryonic period but with body mass and the head in the postnatal period. The strongest modularity was noted for the leg in embryogenesis, and for the wing in postnatal development. The forelimb and especially the primary feathers had more distinctive growth patterns. We suggest the changes in the degree of integration between locomotor modules in ontogenesis are connected with the earlier functioning of the legs in the postnatal period and with the preparation of the wings for functioning after a chick leaves the nest.


Subject(s)
Crows , Animals , Wings, Animal , Chickens , Hindlimb , Forelimb
16.
PLoS One ; 19(3): e0299990, 2024.
Article in English | MEDLINE | ID: mdl-38451976

ABSTRACT

OBJECTIVES: To evaluate secondary intention wound healing in the horse's limbs when treated with the synthetic epidermis spray (Novacika®, Cohesive S.A.S, France) or with a standard bandaging technique. METHODS: Six Standardbred mares were included in the study. Four 2.5 x 2.5 cm full-thickness skin wounds were created on each thoracic limb. Two wounds were located on the dorsoproximal aspect of the cannon bone and the other two at the dorsoproximal aspect of the fetlock. Six hours after creation, wounds were randomly treated with synthetic epidermis spray or standard bandaging. The wounds were assessed every 4 days by gross visual assessment and using a 3D imaging camera. Analysis was performed with a 3D imaging application. RESULTS: Out of 46 wounds, 22 showed exuberant granulation tissue and were part of the standard bandaging group. Whether the wounds were treated with synthetic epidermis spray or standard bandaging, the time for healing was the same. CONCLUSION: The synthetic epidermis spray studied in this model has allowed healing without the production of exuberant granulation tissue but did not reduce the median wound healing time compared to a standard bandaging technique. The synthetic epidermis spray is potentially an interesting alternative for the management of secondary intention wound healing of superficial and non-infected distal limb wounds in adult horses on economical and practical aspects. However, all statistical inference (p-values especially) must be interpreted with caution, given the size of the sample.


Subject(s)
Intention , Skin Diseases , Animals , Female , Epidermis , Forelimb , Horses , Wound Healing
17.
Cell Rep ; 43(4): 113958, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38520691

ABSTRACT

The brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location. As mice learn to reach the target, they refine their variable joystick trajectories into controlled reaches, which depend on the sensorimotor cortex. We show that individual mice learned strategies biased to either direction- or endpoint-based movements. This endpoint/direction bias correlates with spatial directional variability with which the workspace was explored during training. Model-free reinforcement learning agents can generate both strategies with similar correlation between variability during training and learning bias. These results provide evidence that reinforcement of individual exploratory behavior during training biases the reaching strategies that mice learn.


Subject(s)
Forelimb , Animals , Forelimb/physiology , Mice , Exploratory Behavior/physiology , Mice, Inbred C57BL , Learning/physiology , Male , Movement , Reinforcement, Psychology , Female , Behavior, Animal
18.
Am J Vet Res ; 85(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38518402

ABSTRACT

OBJECTIVE: To describe the prevalence of elbow dysplasia (ED) in 13 dog breeds in France. ANIMALS: A total of 18,870 elbow radiographs taken from 2002 to 2022 were evaluated by 2 independent examiners. METHODS: For each breed, the incidence of each of the 4 International Elbow Working Group scoring classes was extracted from the database. Breeds were excluded if fewer than 150 radiographs had been read for that breed. RESULTS: This study included 17,861 records for 13 dog breeds: American Akita, Alaskan Malamute, Old German Shepherd (Altdeutscher Schäferhund), American Staffordshire Terrier, Australian Shepherd, Belgian Shepherd, White Swiss Shepherd, Bernese Mountain Dog, Cane Corso, Czechoslovakian Wolfdog, Rhodesian Ridgeback, Rottweiler, and Dogue de Bordeaux. The overall prevalence of ED was 11.4%, ranging from 1.1% in the Czechoslovakian Wolfdog to 32.2% in the Dogue de Bordeaux. The Dogue de Bordeaux, Rottweiler, Bernese Mountain Dog, and Cane Corso breeds were most commonly affected by ED. The prevalence of ED was significantly higher in male dogs than in female dogs (17.5% vs 10.5%, P < .05). Joint incongruity and fragmented coronoid process were the 2 most common primary ED lesions identified. The prevalence of ED among the dogs evaluated decreased over the timeframe of the study. CLINICAL RELEVANCE: The results of this study help to clarify the prevalence of ED in different breeds in France. These data should be interpreted with caution as this study included a small percentage of the total number of dogs born for each breed in France over the study period.


Subject(s)
Dog Diseases , Forelimb , Radiography , Animals , Dogs , Dog Diseases/epidemiology , Dog Diseases/diagnostic imaging , Dog Diseases/genetics , Prevalence , France/epidemiology , Female , Male , Retrospective Studies , Radiography/veterinary , Forelimb/diagnostic imaging , Joint Diseases/veterinary , Joint Diseases/epidemiology , Joint Diseases/diagnostic imaging
19.
Vet Res Commun ; 48(3): 1935-1939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470524

ABSTRACT

In the present study we aimed to investigate superficial skin temperature of racehorses' distal limbs after training in a racetrack. Male and female Thoroughbred racehorses were investigated in summer, after light training, and in the winter, after light and intense training. Horses were exercised (Exercise group, EG) under trainers' protocol while others were maintained inside their stalls (Control group, CG). Thermographic images were obtained from the front (fetlock, cannon, and carpus) and hindlimbs (fetlock, cannon, and tarsus), before exercise and 45, 60, 120 and 180 min after exercising. Images were analyzed using the Flir Tools® program. Temperatures of different moments of each group were compared using Anova for repeated measures and each moment of EG versus CG using Student t test. Horses of the CG maintained steady temperature in the winter, but in summer temperature increased at M45 until M180 (P < 0,01). EG increased temperatures after exercises that remained higher than M0 even at 180 min post-exercise (P < 0,0001), for most of the regions in winter and summer. EG temperatures were higher than CG at most of the time points after exercise. There was positive correlation between all regions' temperature and the atmospheric temperature for the CG during the summer (P = 0,003, r2 = 0,9622), observed for the front fetlock and carpal regions for the EG (P = 0.035, r2 = 0,8166). This pilot study demonstrates that, after race exercising under natural conditions skin temperature might take more than 180 min to return to basal values.


Subject(s)
Physical Conditioning, Animal , Seasons , Skin Temperature , Animals , Horses/physiology , Physical Conditioning, Animal/physiology , Female , Male , Hindlimb/physiology , Forelimb/physiology , Thermography/veterinary
20.
J Vet Med Sci ; 86(5): 575-583, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38556325

ABSTRACT

Fractures occurring in the distal radius and ulna of toy breed dogs pose distinctive challenges for veterinary practitioners, requiring specialized treatment approaches primarily based on anatomical features. Finite Element Analysis (FEA) was applied to conduct numerical experiments to determine stress distribution across the bone. This methodology offers an alternative substitute for directly investigating these phenomena in living dog experiments, which could present ethical obstacles. A three-dimensional bone model of the metacarpal, carpal, radius, ulna, and humerus was reconstructed from Computed Tomography (CT) images of the toy poodle and dachshund forelimb. The model was designed to simulate the jumping and landing conditions from a vertical distance of 40 cm to the ground within a limited timeframe. The investigation revealed considerable variations in stress distribution patterns between the radius and ulna of toy poodles and dachshunds, indicating notably elevated stress levels in toy poodles compared to dachshunds. In static and dynamic stress analysis, toy poodles exhibit peak stress levels at the distal radius and ulna. The Von Mises stresses for toy poodles reach 90.07 MPa (static) and 1,090.75 MPa (dynamic) at the radius and 1,677.97 MPa (static) and 1,047.98 MPa (dynamic) at the ulna. Conversely, dachshunds demonstrate lower stress levels for 5.39 MPa (static) and 231.79 MPa (dynamic) at the radius and 390.56 MPa (static) and 513.28 MPa (dynamic) at the ulna. The findings offer valuable insights for modified treatment approaches in managing fractures in toy breed dogs, optimizing care and outcomes.


Subject(s)
Finite Element Analysis , Radius Fractures , Ulna Fractures , Animals , Dogs/physiology , Ulna Fractures/veterinary , Ulna Fractures/diagnostic imaging , Radius Fractures/veterinary , Biomechanical Phenomena , Forelimb/physiology , Tomography, X-Ray Computed/veterinary , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...