Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.076
Filter
1.
Nat Commun ; 15(1): 4741, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834542

ABSTRACT

Canopy openings are increasing in Europe's forests, yet the contributions of anthropogenic and ecological agents of disturbance to this increase remain debated. Here we attribute the root cause of all stand-replacing canopy disturbances identified for Europe in the period 1986-2020 from Landsat data (417,000 km²), distinguishing between planned and unplanned canopy openings (i.e., disturbance by human land use versus by wind, bark beetles, and wildfire). We show that canopy openings by humans dominate the European forest disturbance regime, accounting for 82% of the area disturbed. Both planned and unplanned canopy openings increased in the early 21st century (+24% and +30% relative to the late 20th century). Their changes are linked, with simultaneous increases in planned and unplanned canopy openings on 68% of Europe's forest area. We conclude that an important direction for tackling disturbance change in policy and management is to break the link between planned and unplanned canopy openings in Europe's forests.


Subject(s)
Forests , Europe , Humans , Conservation of Natural Resources , Animals , Trees , Wildfires/statistics & numerical data , Wind , Coleoptera/physiology , Forestry
2.
An Acad Bras Cienc ; 96(2): e20230999, 2024.
Article in English | MEDLINE | ID: mdl-38775554

ABSTRACT

Soil organic matter is closely linked to the quality of Agroecosystems and directly influences the agricultural production and the environmental conditions. Understanding of soil organic matter dynamics in agroforestry systems requires studies with a temporal focus, since the changes in its chemical composition tend to follow a gradual behavior. The aim of this study was to investigate the dynamics of changes in stocks and chemical composition of soil organic matter under agroforestry, using systems in different stages of vegetation succession. The soil sampling was carried out from trenches, and litter fractions were also sampled. The samples were collected from different layers of the soil profile under the following conditions: Control; agroforestry with 1 year; agroforestry with 3 years; agroforestry with 7 years and Forest in natural regeneration. The following attributes/parameters were determined/calculated: i) C and N contents and stocks and C/N ratio; ii) C and N proportions in soil granulometric fractions and iii) kinetics of organic matter accumulation in soil with the time of systems evolution. The results showed: i) The C/N ratio tended to increase in depth but did not show a clear variation between the systems evaluated; ii) the adoption of successive agroforestry practices has the potential to increase the C and N stocks in soil; iii) the soil organic matter accumulation occurs gradually during the systems evolution and is mainly related to the particulate fraction (> 0.053 mm).


Subject(s)
Agriculture , Carbon , Forestry , Nitrogen , Soil , Soil/chemistry , Brazil , Agriculture/methods , Carbon/analysis , Nitrogen/analysis
4.
Environ Manage ; 73(6): 1121-1133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710805

ABSTRACT

Though the federal government impacts private forest management across the United States through legislation such as the Clean Water Act, state-level regulations applied to private forest landowners vary remarkably. Despite this diversity of policies, little is known about how variations in regulatory intensity (defined here as number of forestry regulations) correlate with state-level political and socioeconomic characteristics. In this study, we use a quantitative approach to explore the intensity of regulation on forest practices impacting private landowners across all 50 states. We quantified intensity by tabulating the number of regulated forest practices, then used a quasi-Poisson regression to estimate the relationship between regulatory intensity and state-level characteristics, including forestland ownership types, the economic importance of the forest industry, and measures of state environmentalism. Results indicated a positive association between regulatory intensity and the percent of private corporate land, environmental voting records of elected officials, and direct democracy. Foresters and landowners may learn from these relationships, consider how to influence different policies, and build or achieve greater levels of public trust. This study starts to help us explain why state-level forestry policies differ, not just how they differ.


Subject(s)
Conservation of Natural Resources , Forestry , Forests , Ownership , United States , Forestry/legislation & jurisprudence , Conservation of Natural Resources/legislation & jurisprudence , Private Sector , Government Regulation , Environmental Policy/legislation & jurisprudence
5.
Nature ; 629(8013): 830-836, 2024 May.
Article in English | MEDLINE | ID: mdl-38720068

ABSTRACT

Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.


Subject(s)
Biodiversity , Climate Change , Communicable Diseases , Environmental Pollution , Introduced Species , Animals , Humans , Anthropogenic Effects , Climate Change/statistics & numerical data , Communicable Diseases/epidemiology , Communicable Diseases/etiology , Conservation of Natural Resources/trends , Datasets as Topic , Environmental Pollution/adverse effects , Forestry , Forests , Introduced Species/statistics & numerical data , Plant Diseases/etiology , Risk Assessment , Urbanization
6.
Environ Manage ; 73(6): 1134-1149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38730130

ABSTRACT

With limited national financing for conservation, there is an increasing interest in using biodiversity offset funds to strengthen protected area management. Offsetting measures can potentially be used in the restoration of degraded protected areas. However, there are concerns related to the uncertainty of restoration outcomes and time-lags before the expected benefits can be observed. Using a case of the Gangu Central Forest Reserve in central Uganda, we contribute empirical findings showing the potential and limitations of biodiversity offsetting by means of the restoration of a degraded forest reserve. We use forest cover change analysis and community surveys to determine forest changes after eight years of offset implementation, and forest inventories to analyse the current forest structure and composition to ascertain taxonomic diversity recovery. The results revealed that biodiversity offsetting led to a 21% increase in Tropical High Forest cover, and enhanced restoration of forest species composition and diversity. However, attaining permanence of the restoration benefits requires the regulation of community forest resource access and use. Strengthening forest management capacity to monitor the offset sites and compensating impacted communities for foregone forest resource benefits are crucial for the successful implementation of biodiversity offsets.


Subject(s)
Biodiversity , Conservation of Natural Resources , Forests , Uganda , Conservation of Natural Resources/methods , Forestry/methods
8.
Environ Monit Assess ; 196(6): 571, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777936

ABSTRACT

This study was conducted to determine the changes in carbon stocks of oriental beech (Fagus orientalis) according to stand development stage in the Marmara Region of Türkiye. For this purpose, sample plots were taken from a total of 32 areas encompassing four stand development stages (young, middle age, mature and overmature stand). The diameter at breast height and height of all trees in the sample plots were measured, and only three dominant trees's ages per plot were determined. Aboveground carbon stock was calculated using equations developed for beech forests, while the coefficients in the Agriculture, Forestry and Other Land Use guide were used to determine belowground carbon stocks. A soil pit was dug in each plot and soil samples were taken at different depths (0-10, 10-30, 30-60, 60-100 cm). In addition, litters were sampled from four different 25 × 25 cm sections in each plot, and then the physical and chemical properties of the soil and litters were analysed. The variations in carbon stocks in above- and below-ground tree mass, litter and soil, and in ecosystem carbon stocks according to development stage were examined by analysis of variance and Duncan test, and the relationships between the carbon stocks were investigated by correlation analysis. Aboveground (AG) and belowground (BG) tree, soil and ecosystem carbon stocks showed significant differences between the four stand development stages (P < 0.05), but not the litter carbon stocks (P > 0.05). AG and BG tree and ecosystem carbon stocks increased with progressive stand development stages, while the soil carbon stock was the highest at the young stage. These findings will contribute to the preparation of forest management plans and the national greenhouse gas inventory.


Subject(s)
Carbon , Environmental Monitoring , Fagus , Forests , Soil , Fagus/growth & development , Carbon/analysis , Soil/chemistry , Turkey , Trees , Forestry , Ecosystem
10.
Curr Biol ; 34(9): R452-R472, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714177

ABSTRACT

Forest restoration is being scaled up globally, carrying major expectations of environmental and societal benefits. Current discussions on ensuring the effectiveness of forest restoration are predominantly focused on the land under restoration per se. But this focus neglects the critical issue that land use and its drivers at larger spatial scales have strong implications for forest restoration outcomes, through the influence of landscape context and, importantly, potential off-site impacts of forest restoration that must be accounted for in measuring its effectiveness. To ensure intended restoration outcomes, it is crucial to integrate forest restoration into land-use planning at spatial scales large enough to account for - and address - these larger-scale influences, including the protection of existing native ecosystems. In this review, we highlight this thus-far neglected issue in conceptualizing forest restoration for the delivery of multiple desirable benefits regarding biodiversity and ecosystem services. We first make the case for the need to integrate forest restoration into large-scale land-use planning, by reviewing current evidence on the landscape-level influences and off-site impacts pertaining to forest restoration. We then discuss how science can guide the integration of forest restoration into large-scale land-use planning, by laying out key features of methodological frameworks required, reviewing the extent to which existing frameworks carry these features, and identifying methodological innovations needed to bridge the potential shortfall. Finally, we critically review the status of existing methods and data to identify future research efforts needed to advance these methodological innovations and, more broadly, the effective integration of forest restoration design into large-scale land-use planning.


Subject(s)
Conservation of Natural Resources , Forests , Conservation of Natural Resources/methods , Forestry/methods , Biodiversity , Ecosystem , Environmental Restoration and Remediation/methods
11.
Ambio ; 53(7): 970-983, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696060

ABSTRACT

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Subject(s)
Conservation of Natural Resources , European Union , Forestry , Soil , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Forestry/legislation & jurisprudence , Forestry/methods , Soil/chemistry , Forests , Carbon Sequestration , Environmental Restoration and Remediation/methods , Climate Change , Ecosystem , Wetlands
12.
J Environ Manage ; 360: 121141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781874

ABSTRACT

Harvesting of plantation conifers on peatlands is carried out as part of restoration and forestry operations. In particular, in the UK and Ireland, conifer plantations on drained ombrotrophic blanket and raised bogs are increasingly being removed (by harvesting), along with blocking of drainage ditches to help raise water tables to reinitiate and restore bog vegetation and function. However, both tree harvesting and peatland restoration operations can have significant impacts on water quality at local and catchment scales. Previous research has suggested that leaching from leftover decomposing brash (tree tops and branches, including wood and needles) is the primary cause, while other work has suggested that release from rewetted peat also contributes to water quality changes. This research investigates the relative importance of peat rewetting, needles and branches on water quality using mesocosm experiments, to help elucidate the mechanisms behind water quality changes following restoration and harvesting operations. Peat and brash were collected from a drained afforested blanket bog in the Flow Country, Scotland. Short-term mesocosm experiments were conducted by incubating peat, peat + needles and peat + needles + branches with rainwater in quadruplicate. Brash from Sitka spruce (Picea sitchensis) and lodgepole pine (Pinus contorta) was investigated separately, while we also conducted experiments with fresh and aged (∼18 months) brash. Peat, needles and branches all significantly impacted water quality in the order of branches > needles > peat, while concentrations of DOC, PO43-, NH4+, K and Mn were most impacted. Water quality impacts of spruce brash appeared generally greater than pine, while fresh brash had larger effects than aged brash. In our mesocosms, relative contributions to water quality changes were estimated by elemental yields. On average, peat contributed 25.4% (range 0.6-72.3%), while needles and brash contributed 19.7% (range 3.0-37.0%) and 54.9% (range 22.1-70.2%) to yields, respectively. We further estimate that 267 kg C ha-1 (255.8 kg as DOC, 10.7 kg as DIC), 27.4 kg K ha-1, 5.8 kg P ha-1 (as PO43-) and 0.5 kg N ha-1 (as NH4+) could be released from brash, over nine days.


Subject(s)
Soil , Tracheophyta , Trees , Water Quality , Wetlands , Forestry , Pinus
13.
Front Public Health ; 12: 1369948, 2024.
Article in English | MEDLINE | ID: mdl-38584924

ABSTRACT

Introduction: Forestry provides a wide range of employment opportunities worldwide and is seen as one of the high-risk industries in terms of occupational accidents. Objectives: The submitted study analyzed the injury rate in the Military Forests and Estates of the Slovak Republic (62.6 thousand ha) between 2013 and 2022. Methods: The data analyses included regression and correlation analyses, χ2 tests to analyze the relationships between studied variables, and incidence rates. Results: During the observed period, employees suffered 26 occupational accidents, of which 19.2% were light, 57.7% were registered, 23.1% were severe, and 0% were fatal. For every 1 million m3 of harvested timber, 7.7 accidents occurred. The incidence rate during the observed period was 672.1/100,000 employees. The highest proportion of accidents was in the age group 51-60 years and in employees with the lowest length of work experience <5 years. Regarding time, the highest proportion of occupational accidents occurred between 8:01 and 10:00 AM (53.8%) and day-wise on Thursdays (46.2%). The highest proportion of accidents occurred among forest workers (65.3%) during pruning and silviculture activities (42.3%). The most common injury site was forest stands (65.3%). Superficial injuries (34.6%) were the most common, mainly affecting the lower limbs (50%). The most frequent material agents causing the accidents were work and transport areas as sources of worker fall (38.5%), and the most frequent reason for an accident to occur was the lack of personal requirements for proper work performance (92.4%), whereas only (3.8%) of accidents occurred due to the use of forbidden or hazardous working procedures. Conclusion: The presented study identified the most vulnerable worker groups and provided an overview of the overall injury rate at the state forest company in Slovakia. The documentation can be incorporated into the safety strategies of forest enterprises.


Subject(s)
Accidents, Occupational , Forestry , Humans , Middle Aged , Incidence , Industry , Slovakia/epidemiology
14.
Sci Rep ; 14(1): 9209, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649723

ABSTRACT

Deforestation in the tropics remains a significant global challenge linked to carbon emissions and biodiversity loss. Agriculture, forestry, wildfires, and urbanization have been repeatedly identified as main drivers of tropical deforestation. Understanding the underlying mechanisms behind these direct causes is crucial to navigate the multiple tradeoffs between competing forest uses, such as food and biomass production (SDG 2), climate action (SDG 13), and life on land (SDG 15). This paper develops and implements a global-scale empirical approach to quantify two key factors affecting land use decisions at tropical forest frontiers: agricultural commodity prices and national governance. It relies on data covering the period 2004-2015 from multiple public sources, aggregated to countries and agro-ecological zones. Our analysis confirms the persistent influence of commodity prices on agricultural land expansion, especially in forest-abundant regions. Economic and environmental governance quality co-determines processes of expansion and contraction of agricultural land in the tropics, yet at much smaller magnitudes than other drivers. We derive land supply elasticities for direct use in standard economic impact assessment models and demonstrate that our results make a difference in a Computable General Equilibrium framework.


Subject(s)
Agriculture , Conservation of Natural Resources , Tropical Climate , Agriculture/economics , Conservation of Natural Resources/economics , Forests , Forestry/economics , Commerce/economics , Biodiversity , Urbanization
15.
Sci Total Environ ; 927: 172350, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608907

ABSTRACT

Extensive deforestation has been a major reason for the loss of forest connectivity, impeding species range shifts under current climate change. Over the past decades, the Chinese government launched a series of afforestation and reforestation projects to increase forest cover, yet whether the new forests can compensate for the loss of connectivity due to deforestation-and where future tree planting would be most effective-remains largely unknown. Here, we evaluate changes in climate connectivity across China's forests between 2015 and 2019. We find that China's large-scale tree planting alleviated the negative impacts of forest loss on climate connectivity, improving the extent and probability of climate connectivity by 0-0.2 °C and 0-0.03, respectively. The improvements were particularly obvious for species with short dispersal distances (i.e., 3 km and 10 km). Nevertheless, only ~55 % of the trees planted in this period could serve as stepping stones for species movement. This indicates that focusing solely on the quantitative target of forest coverage without considering the connectivity of forests may miss opportunities in tree planting to facilitate climate-induced range shifts. More attention should be paid to the spatial arrangement of tree plantations and their potential as stepping stones. We then identify priority areas for future tree planting to create effective stepping stones. Our study highlights the potential of large-scale tree planting to facilitate range shifts. Future tree-planting efforts should incorporate the need for species range shifts to achieve more biodiversity conservation benefits under climate change.


Subject(s)
Climate Change , Conservation of Natural Resources , Forests , Trees , China , Conservation of Natural Resources/methods , Trees/growth & development , Forestry/methods
16.
Sci Total Environ ; 927: 172076, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575021

ABSTRACT

Forests play a crucial role in mitigating climate change through carbon storage and sequestration, though environmental change drivers and management scenarios are likely to influence these contributions across multiple spatial and temporal scales. In this study, we employed three tree growth models-the Richard, Hossfeld, and Korf models-that account for the biological characteristics of trees, alongside national forest inventory (NFI) datasets from 1994 to 2018, to evaluate the carbon sink potential of existing forests and afforested regions in China from 2020 to 2100, assuming multiple afforestation and forest management scenarios. Our results indicate that the Richard, Hossfeld, and Korf models provided a good fit for 26 types of vegetation biomass in both natural and planted Chinese forests. These models estimate that in 2020, carbon stocks in existing Chinese forests are 7.62 ± 0.05 Pg C, equivalent to an average of 44.32 ± 0.32 Mg C/ ha. Our predictions then indicate this total forest carbon stock is expected to increase to 15.51 ± 0.99 Pg C (or 72.26 ± 4.6 Mg C/ha) in 2060, and further to 19.59 ± 1.36 Pg C (or 91.31 ± 6.33 Mg C/ha) in 2100. We also show that plantation management measures, namely tree species replacement, would increase carbon sinks to 0.09 Pg C/ year (contributing 38.9 %) in 2030 and 0.06 Pg C/ year (contributing 32.4 %) in 2060. Afforestation using tree species with strong carbon sink capacity in existing plantations would further significantly increase carbon sinks from 0.02 Pg C/year (contributing 10.3 %) in 2030 to 0.06 Pg C/year (contributing 28.2 %) in 2060. Our results quantify the role plantation management plays in providing a strong increase in forest carbon sequestration at national scales, pointing to afforestation with native tree species with high carbon sequestration as key in achieving China's 2060 carbon neutrality target.


Subject(s)
Carbon Sequestration , Climate Change , Forests , Trees , China , Forestry/methods , Carbon/analysis , Conservation of Natural Resources/methods , Environmental Monitoring , Biomass
17.
Sci Total Environ ; 927: 172241, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582119

ABSTRACT

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered until now. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit a high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.


Subject(s)
Carbon Sequestration , Carbon , Cryptomeria , Forestry , Forests , Trees , Japan , Carbon/analysis , Larix/growth & development , Pinus/growth & development , Chamaecyparis , Environmental Monitoring
19.
Sci Data ; 11(1): 344, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582756

ABSTRACT

The research of plant seeds has always been a focus of agricultural and forestry research, and seed identification is an indispensable part of it. With the continuous application of artificial intelligence technology in the field of agriculture, seed identification through computer vision can effectively promote the development of agricultural and forestry wisdom. Data is the foundation of computer vision, but there is a lack of suitable datasets in the agricultural field. In this paper, a seed dataset named LZUPSD is established. A device based on mobile phones and macro lenses was established to acquire images. The dataset contains 4496 images of 88 different seeds. This dataset can not only be used as data for training deep learning models in the computer field, but also provide important data support for agricultural and forestry research. As an important resource in this field, this dataset plays a positive role in modernizing agriculture and forestry.


Subject(s)
Artificial Intelligence , Seeds , Agriculture , Forestry
20.
Science ; 384(6694): 372, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662844

ABSTRACT

Some worry the findings will stall efforts to halt logging-the root cause of caribou population declines.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Reindeer , Wolves , Animals , Forestry , Population Dynamics , Canada
SELECTION OF CITATIONS
SEARCH DETAIL
...