Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Front Public Health ; 12: 1381482, 2024.
Article in English | MEDLINE | ID: mdl-38784581

ABSTRACT

Background: Research based on observation has demonstrated a relationship between sleep traits and frailty; however, it remains uncertain if this correlation indicates causation. The purpose of this study was to look at the causal relationship that exists between frailty and sleep traits. Method: Using summaries from a genome-wide association study of self-reported sleep features and frailty index, we performed a bidirectional Mendelian randomization (MR) analysis. Examining the causal relationships between seven sleep-related traits and frailty was the goal. The major method used to calculate effect estimates was the inverse-variance weighted method, supplemented by the weighted median and MR-Egger approaches. The study investigated pleiotropy and heterogeneity using several methodologies, such as the MR-Egger intercept, the MR-PRESSO approach, and the Cochran's Q test. We took multivariate Mendelian randomization and genetic correlations between related traits to enhance the confidence of the results. Furthermore, we used MRlap to correct for any estimation bias due to sample overlap. Results: Insomnia, napping during the day, and sleep apnea syndrome exhibited a positive connection with the frailty index in forward MR analysis. Conversely, there is a negative link between getting up in the morning, snoring and sleep duration with the frailty index. During the reverse MR analysis, the frailty index exhibited a positive correlation with insomnia, napping during the day, and sleep apnea syndrome, while demonstrating a negative correlation with sleep duration. There was no direct correlation between snoring, chronotype, and frailty. In MVMR analyses, the causal effect of sleep characteristics on frailty indices remained consistent after adjusting for potential confounders including BMI, smoking, and triglycerides. Conclusion: The findings of our investigation yield novel evidence that substantiates the notion of a bidirectional causal connection between sleep traits and frailty. Through the optimization of sleep, it is potentially feasible to hinder, postpone, or even reverse the state of frailty, and we proposed relevant interventions.


Subject(s)
Causality , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Sleep , Humans , Frailty/genetics , Sleep/physiology , Sleep/genetics , Male , Female , Aged , Risk Factors , Middle Aged , Sleep Wake Disorders/genetics , Sleep Wake Disorders/epidemiology
2.
Age Ageing ; 53(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38752921

ABSTRACT

OBJECTIVE: To investigate longitudinal associations between variations in the co-expression-based brain insulin receptor polygenic risk score and frailty, as well as change in frailty across follow-up. METHODS: This longitudinal study included 1605 participants from the Helsinki Birth Cohort Study. Biologically informed expression-based polygenic risk scores for the insulin receptor gene network, which measure genetic variation in the function of the insulin receptor, were calculated for the hippocampal (hePRS-IR) and the mesocorticolimbic (mePRS-IR) regions. Frailty was assessed in at baseline in 2001-2004, 2011-2013 and 2017-2018 by applying a deficit accumulation-based frailty index. Analyses were carried out by applying linear mixed models and logistical regression models adjusted for adult socioeconomic status, birthweight, smoking and their interactions with age. RESULTS: The FI levels of women were 1.19%-points (95% CI 0.12-2.26, P = 0.029) higher than in men. Both categorical and continuous hePRS-IR in women were associated with higher FI levels than in men at baseline (P < 0.05). In women with high hePRS-IR, the rate of change was steeper with increasing age compared to those with low or moderate hePRS-IR (P < 0.05). No associations were detected between mePRS-IR and frailty at baseline, nor between mePRS-IR and the increase in mean FI levels per year in either sex (P > 0.43). CONCLUSIONS: Higher variation in the function of the insulin receptor gene network in the hippocampus is associated with increasing frailty in women. This could potentially offer novel targets for future drug development aimed at frailty and ageing.


Subject(s)
Frailty , Receptor, Insulin , Humans , Male , Female , Frailty/genetics , Frailty/diagnosis , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Aged , Longitudinal Studies , Middle Aged , Gene Regulatory Networks , Finland/epidemiology , Frail Elderly/statistics & numerical data , Age Factors , Risk Factors , Aged, 80 and over , Aging/genetics , Sex Factors , Hippocampus/metabolism , Multifactorial Inheritance , Geriatric Assessment/methods , Brain/metabolism , Antigens, CD
3.
Aging Clin Exp Res ; 36(1): 114, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775917

ABSTRACT

INTRODUCTION: Previous observational studies have found an increased risk of frailty in patients with stroke. However, evidence of a causal relationship between stroke and frailty is scarce. The aim of this study was to investigate the potential causal relationship between stroke and frailty index (FI). METHODS: Pooled data on stroke and debility were obtained from genome-wide association studies (GWAS).The MEGASTROKE Consortium provided data on stroke (N = 40,585), ischemic stroke (IS,N = 34,217), large-vessel atherosclerotic stroke (LAS,N = 4373), and cardioembolic stroke (CES,N = 7 193).Summary statistics for the FI were obtained from the most recent GWAS meta-analysis of UK BioBank participants and Swedish TwinGene participants of European ancestry (N = 175,226).Two-sample Mendelian randomization (MR) analyses were performed by inverse variance weighting (IVW), weighted median, MR-Egger regression, Simple mode, and Weighted mode, and heterogeneity and horizontal multiplicity of results were assessed using Cochran's Q test and MR-Egger regression intercept term test. RESULTS: The results of the current MR study showed a significant correlation between stroke gene prediction and FI (odds ratio 1.104, 95% confidence interval 1.064 - 1.144, P < 0.001). In terms of stroke subtypes, IS (odds ratio 1.081, 95% confidence interval 1.044 - 1.120, P < 0.001) and LAS (odds ratio 1.037, 95% confidence interval 1.012 - 1.062, P = 0.005). There was no causal relationship between gene-predicted CES and FI. Horizontal multidimensionality was not found in the intercept test for MR Egger regression (P > 0.05), nor in the heterogeneity test (P > 0.05). CONCLUSIONS: This study provides evidence for a causal relationship between stroke and FI and offers new insights into the genetic study of FI.


Subject(s)
Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke , Humans , Stroke/genetics , Stroke/epidemiology , Frailty/genetics , Aged , Female , Male
4.
PLoS One ; 19(5): e0304300, 2024.
Article in English | MEDLINE | ID: mdl-38781179

ABSTRACT

BACKGROUND: Numerous observational studies have reported an association between frailty and atherosclerosis. However, the causal relationship between frailty and the occurrence of atherosclerosis in different anatomical sites remains unclear. we conducted a bidirectional Mendelian randomization (MR) study to evaluate the causal relationship between the frailty index (FI), and both systemic atherosclerosis and lipids. METHODS: We obtained summary statistics from large-scale genome-wide association studies (GWAS) of various phenotypes, including frailty (n = 175,226), coronary atherosclerosis (n = 56,685), cerebral atherosclerosis (n = 150,765), peripheral arterial disease (PAD) (n = 361,194), atherosclerosis at other sites (n = 17,832), LDL-C (n = 201,678), HDL-C (n = 77,409), and triglycerides (n = 78,700). The primary MR analysis employed the inverse variance weighted (IVW) method. Furthermore, to assess reverse causality, we employed inverse MR and multivariate MR analysis. RESULTS: Genetically predicted FI showed positive associations with the risk of coronary atherosclerosis (OR = 1.47, 95% CI 1.12-1.93) and cerebral atherosclerosis (OR = 1.99, 95% CI 1.05-3.78), with no significant association (p >0.05) applied to peripheral arterial disease and atherosclerosis at other sites. Genetically predicted FI was positively associated with the risk of triglycerides (OR = 1.31, 95% CI 1.08-1.59), negatively associated with the risk of LDL-C (OR = 0.87, 95% CI 0.78-0.97), and showed no significant association with the risk of HDL-C (p >0.05). Furthermore, both reverse MR and multivariate MR analyses demonstrated a correlation between systemic atherosclerosis, lipids, and increased FI. CONCLUSION: Our study elucidated that genetically predicted FI is associated with the risk of coronary atherosclerosis and cerebral atherosclerosis by the MR analysis method, and they have a bidirectional causal relationship. Moreover, genetically predicted FI was causally associated with triglyceride and LDL-C levels. Further understanding of this association is crucial for optimizing medical practice and care models specifically tailored to frail populations.


Subject(s)
Atherosclerosis , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Atherosclerosis/genetics , Frailty/genetics , Risk Factors , Triglycerides/blood , Polymorphism, Single Nucleotide , Female , Coronary Artery Disease/genetics , Male , Cholesterol, LDL/blood , Aged , Cholesterol, HDL/blood
5.
Nat Commun ; 15(1): 4411, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782943

ABSTRACT

Cross-sectional studies have demonstrated strong associations between physical frailty and depression. However, the evidence from prospective studies is limited. Here, we analyze data of 352,277 participants from UK Biobank with 12.25-year follow-up. Compared with non-frail individuals, pre-frail and frail individuals have increased risk for incident depression independent of many putative confounds. Altogether, pre-frail and frail individuals account for 20.58% and 13.16% of depression cases by population attributable fraction analyses. Higher risks are observed in males and individuals younger than 65 years than their counterparts. Mendelian randomization analyses support a potential causal effect of frailty on depression. Associations are also observed between inflammatory markers, brain volumes, and incident depression. Moreover, these regional brain volumes and three inflammatory markers-C-reactive protein, neutrophils, and leukocytes-significantly mediate associations between frailty and depression. Given the scarcity of curative treatment for depression and the high disease burden, identifying potential modifiable risk factors of depression, such as frailty, is needed.


Subject(s)
Brain , Depression , Frailty , Inflammation , Mendelian Randomization Analysis , Humans , Male , Female , Depression/genetics , Frailty/genetics , Aged , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , Inflammation/genetics , Risk Factors , United Kingdom/epidemiology , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Cross-Sectional Studies , Prospective Studies , Adult , Biomarkers , Neutrophils
6.
Transl Psychiatry ; 14(1): 212, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802408

ABSTRACT

Physical frailty and genetic factors are both risk factors for increased dementia; nevertheless, the joint effect remains unclear. This study aimed to investigated the long-term relationship between physical frailty, genetic risk, and dementia incidence. A total of 274,194 participants from the UK Biobank were included. We applied Cox proportional hazards regression models to estimate the association between physical frailty and genetic and dementia risks. Among the participants (146,574 females [53.45%]; mean age, 57.24 years), 3,353 (1.22%) new-onset dementia events were recorded. Compared to non-frailty, the hazard ratio (HR) for dementia incidence in prefrailty and frailty was 1.396 (95% confidence interval [CI], 1.294-1.506, P < 0.001) and 2.304 (95% CI, 2.030-2.616, P < 0.001), respectively. Compared to non-frailty and low polygenic risk score (PRS), the HR for dementia risk was 3.908 (95% CI, 3.051-5.006, P < 0.001) for frailty and high PRS. Furthermore, among the participants, slow walking speed (HR, 1.817; 95% CI, 1.640-2.014, P < 0.001), low physical activity (HR, 1.719; 95% CI, 1.545-1.912, P < 0.001), exhaustion (HR, 1.670; 95% CI, 1.502-1.856, P < 0.001), low grip strength (HR, 1.606; 95% CI, 1.479-1.744, P < 0.001), and weight loss (HR, 1.464; 95% CI, 1.328-1.615, P < 0.001) were independently associated with dementia risk compared to non-frailty. Particularly, precise modulation for different dementia genetic risk populations can also be identified due to differences in dementia risk resulting from the constitutive pattern of frailty in different genetic risk populations. In conclusion, both physical frailty and high genetic risk are significantly associated with higher dementia risk. Early intervention to modify frailty is beneficial for achieving primary and precise prevention of dementia, especially in those at high genetic risk.


Subject(s)
Dementia , Frailty , Genetic Predisposition to Disease , Humans , Female , Male , Dementia/genetics , Dementia/epidemiology , Frailty/genetics , Frailty/epidemiology , Middle Aged , Prospective Studies , Incidence , Aged , Risk Factors , United Kingdom/epidemiology , Proportional Hazards Models
7.
J Affect Disord ; 358: 422-431, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38750800

ABSTRACT

BACKGROUND: Evidence links major depressive disorder (MDD) with aging, but it's unclear if MDD accelerates aging and what factors mediate this transition. METHODS: Two-sample Mendelian randomization (MR) analyses were applied to estimate the causal association between MDD and frailty index (FI), telomere length (TL), and appendicular lean mass (ALM) from available genome-wide association studies in populations of European ancestry. Furthermore, we conducted mediation MR analyses to assess the mediating effects of 31 lifestyle factors or diseases on the causal relationship between MDD and aging. RESULTS: MDD was significantly causally associated with increased FI (ßIVW = 0.23, 95 % CI = 0.18 to 0.28, p = 1.20 × 10-17), shorter TL (ßIVW = -0.04, 95 % CI = -0.07 to -0.01, p = 0.01), and decreased ALM (ßIVW = -0.07, 95 % CI = -0.11 to -0.03, p = 3.54 × 10-4). The mediation analysis through two-step MR revealed smoking initiation (9.09 %), hypertension (6.67 %) and heart failure (5.36 %) mediated the causal effect of MDD on FI. Additionally, alcohol use disorders and alcohol dependence on the causal relationship between MDD and TL were found to be 17.52 % and 17.13 % respectively. LIMITATIONS: Confounding, statistical power, and Euro-centric focus limit generalization. CONCLUSION: Overall, individuals with MDD may be at a higher risk of experiencing premature aging, and this risk is partially influenced by the pathways involving smoking, alcohol use, and cardiovascular health. It underscores the importance of early intervention and comprehensive health management in individuals with MDD to promote healthy aging and overall well-being.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Depressive Disorder, Major/genetics , Male , Female , Frailty/genetics , Aging, Premature/genetics , Aging/genetics , Middle Aged , Life Style , White People/genetics , White People/statistics & numerical data , Aged
8.
J Bone Miner Metab ; 42(3): 335-343, 2024 May.
Article in English | MEDLINE | ID: mdl-38801451

ABSTRACT

INTRODUCTION: Patients with multiple sclerosis (MS) commonly present musculoskeletal disorders characterized by lower bone mineral density (BMD) and muscle weakness. However, the underlying etiology remains unclear. Our objective is to identify shared pleiotropic genetic effects and estimate the causal relationship between MS and musculoskeletal disorders. MATERIALS AND METHODS: We conducted linkage disequilibrium score regression (LDSR), colocalization, and Mendelian randomization (MR) analyses using summary statistics from recent large-scale genome-wide association studies (GWAS), encompassing MS, falls, fractures, and frailty. Additional MR analyses explored the causal relationship with musculoskeletal risk factors, such as BMD, lean mass, grip strength, and vitamin D. RESULTS: We observed a moderate genetic correlation between MS and falls (RG = 0.10, P-value = 0.01) but not between MS with fracture or frailty in the LDSR analyses. MR revealed MS had no causal association with fracture and frailty but a moderate association with falls (OR: 1.004, FDR q-value = 0.018). We further performed colocalization analyses using nine SNPs that exhibited significant associations with both MS and falls in MR. Two SNPs (rs7731626 on ANKRD55 and rs701006 on OS9 gene) showed higher posterior probability of colocalization (PP.H4 = 0.927), suggesting potential pleiotropic effects between MS and falls. The nine genes are associated with central nervous system development and inflammation signaling pathways. CONCLUSION: We found potential pleiotropic genetic effects between MS and falls. However, our analysis did not reveal a causal relationship between MS and increased risks of falls, fractures, or frailty. This suggests that the musculoskeletal disorders frequently reported in MS patients in clinical studies are more likely attributed to secondary factors associated with disease progression and treatment, rather than being directly caused by MS itself.


Subject(s)
Accidental Falls , Fractures, Bone , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Multiple Sclerosis , Polymorphism, Single Nucleotide , Humans , Multiple Sclerosis/genetics , Frailty/genetics , Fractures, Bone/genetics , Fractures, Bone/epidemiology , Polymorphism, Single Nucleotide/genetics , Risk Factors , Bone Density/genetics , Linkage Disequilibrium/genetics , Female
9.
Sci Rep ; 14(1): 12586, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822050

ABSTRACT

Frailty is a complex trait. Twin studies and high-powered Genome Wide Association Studies conducted in the UK Biobank have demonstrated a strong genetic basis of frailty. The present study utilized summary statistics from a Genome Wide Association Study on the Frailty Index to create and test the predictive power of frailty polygenic risk scores (PRS) in two independent samples - the Lothian Birth Cohort 1936 (LBC1936) and the English Longitudinal Study of Ageing (ELSA) aged 67-84 years. Multiple regression models were built to test the predictive power of frailty PRS at five time points. Frailty PRS significantly predicted frailty, measured via the FI, at all-time points in LBC1936 and ELSA, explaining 2.1% (ß = 0.15, 95%CI, 0.085-0.21) and 1.8% (ß = 0.14, 95%CI, 0.10-0.17) of the variance, respectively, at age ~ 68/ ~ 70 years (p < 0.001). This work demonstrates that frailty PRS can predict frailty in two independent cohorts, particularly at early ages (~ 68/ ~ 70). PRS have the potential to be valuable instruments for identifying those at risk for frailty and could be important for controlling for genetic confounders in epidemiological studies.


Subject(s)
Aging , Frailty , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Aged , Frailty/genetics , Longitudinal Studies , Aged, 80 and over , Female , Male , Multifactorial Inheritance/genetics , Aging/genetics , Birth Cohort , Risk Factors , England/epidemiology , Genetic Risk Score
10.
Nature ; 629(8010): 154-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38649488

ABSTRACT

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Subject(s)
Aging , Muscle, Skeletal , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Aging/genetics , Aging/pathology , Aging/physiology , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Disease Susceptibility , Epigenesis, Genetic , Frailty/genetics , Frailty/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Sarcopenia/genetics , Sarcopenia/pathology , Transcriptome
11.
J Affect Disord ; 356: 346-355, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38626809

ABSTRACT

BACKGROUND: The association between frailty and psychiatric disorders has been reported in observational studies. However, it is unclear whether frailty facilitates the appearance of psychiatric disorders or vice versa. Therefore, we conducted a bidirectional Mendelian randomization (MR) study to evaluate the causality. METHODS: Independent genetic variants associated with frailty index (FI) and psychiatric disorders were obtained from large genome-wide association studies (GWAS). The inverse variance weighted method was utilized as the primary method to estimate causal effects, followed by various sensitivity analyses. Multivariable analyses were performed to further adjust for potential confounders. RESULTS: The present MR study revealed that genetically predicted FI was significantly and positively associated with the risk of major depressive disorder (MDD) (odds ratio [OR] 1.79, 95 % confidence interval [CI] 1.48-2.15, P = 1.06 × 10-9), anxiety disorder (OR 1.61, 95 % CI 1.19-2.18, P = 0.002) and neuroticism (OR 1.38, 95 % CI 1.18-1.61, P = 3.73 × 10-5). In the reverse MR test, genetic liability to MDD (beta 0.232, 95 % CI 0.189-0.274, P = 1.00 × 10-26) and neuroticism (beta 0.128, 95 % CI 0.081-0.175, P = 8.61 × 10-8) were significantly associated with higher FI. Multivariable analyses results supported the causal association between FI and MDD and neuroticism. LIMITATIONS: Restriction to European populations, and sample selection bias. CONCLUSIONS: Our study suggested a bidirectional causal association between frailty and MDD neuroticism, and a positive correlation of genetically predicted frailty on the risk of anxiety disorder. Developing a deeper understanding of these associations is essential to effectively manage frailty and optimize mental health in older adults.


Subject(s)
Anxiety Disorders , Depressive Disorder, Major , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Neuroticism , Humans , Frailty/genetics , Frailty/epidemiology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Anxiety Disorders/genetics , Anxiety Disorders/epidemiology , Mental Disorders/genetics , Mental Disorders/epidemiology , Male , Aged , Female , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide
12.
Arch Gerontol Geriatr ; 123: 105435, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38583266

ABSTRACT

BACKGROUND: Recent research reported that frailty was prevalent among adults with chronic kidney disease (CKD) in clinical trials, and monocytes illustrated a similar difference in these two diseases compared to the normal. However, the scientific evidence for a causal relationship between these two diseases was lacking, with further exploration into whether monocytes co-regulate them. METHODS: We aimed to integrate large-scale Mendelian randomization (MR) and single-cell transcriptome analysis to determine whether there was a causal relationship between frailty and CKD (Bidirectional two-sample Mendelian determined the causal direction), whether monocytes impacted them, and whether the two diseases shared genetic variation sites. Based on 441 Genome-wide association study datasets, this study utilized five MR methods, multiple sensitivity analysis, and corresponding single-cell transcriptome datasets as proof. RESULTS: The association between frailty and CKD was significantly causal, and frailty increased the risk of CKD in patients (OR (95 %CI): 3.5597 (1.8369-6.8982), p = 0.000168909). The exposure monocyte can increase the risk of frailty and CKD in patients, especially with high expression of HLA genes in these cells. The existing two-sample MR results cannot reject the hypothesis that monocytes increase the risk of CKD by inducing frailty. rs9275271' 1mb genetic location above and below had been proven to be an effective genetic space for both frailty and CKD. CONCLUSION: We conducted the largest MR to date on frailty, monocyte, and CKD, and found a significant causal association between frailty and CKD, with the single-cell analysis confirmed. The exposure monocytes increased the risk of frailty and CKD, particularly with high expression of HLA genes in these cells. We identified a potential common genetic variant space, rs9275271, associated with frailty and CKD, providing insights into the genetic basis of these conditions.


Subject(s)
Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Monocytes , Renal Insufficiency, Chronic , Single-Cell Analysis , Humans , Monocytes/metabolism , Renal Insufficiency, Chronic/genetics , Frailty/genetics , Single-Cell Analysis/methods , Aged , Male , Female
13.
Fisioterapia (Madr., Ed. impr.) ; 46(2): 58-67, mar.-abr2024. tab, graf
Article in Spanish | IBECS | ID: ibc-231436

ABSTRACT

Introducción: A nivel mundial el envejecimiento de la población ha sido un tema de interés a investigar, debido a la carga de morbimortalidad y los costos en salud que ocasiona. Así, resulta relevante indagar sobre aquellos aspectos que hacen más vulnerables a los adultos mayores. Objetivo: Comparar la condición física y clínica según la fragilidad en adultos mayores de Cali, Colombia. Materiales y métodos: Estudio descriptivo transversal en adultos mayores de la ciudad de Cali, Colombia. El estudio tuvo aval ético institucional y todos los adultos mayores aceptaron participar firmando el consentimiento informado. Se usó la batería corta de desempeño físico (SPPB), y se compararon variables sociodemográficas, físicas y clínicas. y por nivel de fragilidad en vigoroso, prefrágil y frágil. Resultados: Se vincularon 470 adultos mayores con una edad promedio de 71,15±7,50 años, y en su mayoría del género femenino. Se presentaron diferencias estadísticamente significativas con un valor de p≤0,05 en la edad, estado socioeconómico, comuna, enfermedad, índice de masa corporal, actividad física, desempeño físico y riesgo de caídas; presentando mayor compromiso el grupo de fragilidad. Conclusión: El grupo de adultos mayores clasificados como frágiles presentaban menor condición física y clínica comparado con los grupos pre-frágiles y vigorosos. (AU)


Introduction: Worldwide, the aging of the population has been a topic of interest to investigate, due to the burden of morbidity and mortality and the health costs it causes. Thus, it is relevant to investigate those aspects that make older adults more vulnerable. Objective: To compare the physical and clinical condition according to frailty in older adults from Cali, Colombia. Materials and methods: Cross-sectional descriptive study in older adults from the city of Cali, Colombia. The study had institutional ethical endorsement and all the older adults agreed to participate by signing the informed consent. The short physical performance battery (SPPB) was used, and sociodemographic, physical and clinical variables and by level of frailty were compared in vigorous, pre-frail and frail. Results: Four hundred and seventy older adults with an average age of 71.15±7.50 years and mostly female were enrolled. There were statistically significant differences, P≤0.05 in age, socioeconomic status, commune, disease, body mass index, physical activity, physical performance, and risk of falls. The fragility group presented greater compromise. Conclusion: The group of older adults classified as frail had a lower physical and clinical condition compared to the pre-frail and vigorous groups. (AU)


Subject(s)
Humans , Aged , Frailty/ethnology , Frailty/genetics , Risk , Aging/ethnology , Morbidity , Exercise , Colombia , Epidemiology, Descriptive , Cross-Sectional Studies
15.
Front Endocrinol (Lausanne) ; 15: 1293146, 2024.
Article in English | MEDLINE | ID: mdl-38505750

ABSTRACT

Introduction: Circulating cytokines were considered to play a critical role in the initiation and propagation of sarcopenia and frailty from observational studies. This study aimed to find the casual association between circulating cytokines and sarcopenia and frailty from a genetic perspective by two-sample Mendelian randomization (MR) analysis. Methods: Data for 41 circulating cytokines were extracted from the genome-wide association study dataset of 8,293 European participants. Inverse-variance weighted (IVW) method, MR-Egger, and weighted median method were applied to assess the relationship of circulating cytokines with the risk of aging-related syndromes and frailty. Furthermore, MR-Egger regression was used to indicate the directional pleiotropy, and Cochran's Q test was used to verify the potential heterogeneity. The "leave-one-out" method was applied to visualize whether there was a causal relationship affected by only one anomalous single-nucleotide polymorphisms. Results: Genetic predisposition to increasing levels of interleukin-10 (IL-10), IL-12, and vascular endothelial growth factor (VEGF) was associated with the higher risk of low hand grip strength according to the IVW method [R = 1.05, 95% CI = 1.01-1.10, P = 0.028, false discovery rate (FDR)-adjusted P = 1.000; OR = 1.03, 95% CI = 1.00-1.07, P = 0.042, FDR-adjusted P = 0.784; OR = 1.02, 95% CI = 1.00-1.05, P = 0.038, FDR-adjusted P = 0.567]. Furthermore, genetically determined higher macrophage colony-stimulating factors (M-CSFs) were associated with a lower presence of appendicular lean mass (OR = 1.01, 95% CI = 1.00-1.02, P = 0.003, FDR-adjusted P = 0.103). Monokine induced by interferon-γ (MIG) and tumor necrosis factor-beta (TNF-ß) were associated with a higher risk of frailty (OR = 1.03, 95% CI = 1.01-1.05, P < 0.0001, FDR-adjusted P = 0.012; OR = 1.01, 95% CI = 1.00-1.03, P = 0.013, FDR-adjusted P = 0.259). In this study, we did not find heterogeneity and horizontal pleiotropy between the circulating cytokines and the risk of frailty and sarcopenia. Conclusion: Genetic predisposition to assess IL-10, IL-12, and VEGF levels was associated with a higher risk of low hand grip strength and M-CSF with the presence of appendicular lean mass. The high levels of TNF-ß and MIG were associated with a higher risk of frailty. More studies will be required to explore the molecular biological mechanisms underlying the action of inflammatory factors.


Subject(s)
Frailty , Sarcopenia , Humans , Cytokines/genetics , Interleukin-10 , Vascular Endothelial Growth Factor A , Lymphotoxin-alpha , Sarcopenia/genetics , Frailty/genetics , Geroscience , Genome-Wide Association Study , Hand Strength , Interleukin-12 , Interferon-gamma , Genetic Predisposition to Disease
16.
Arch Gerontol Geriatr ; 122: 105348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38460264

ABSTRACT

BACKGROUND: Previous observational studies have suggested the association between rheumatoid arthritis (RA) and frailty. However, it remains obscure whether this association is causal. This study aims to investigate the causal association of RA with frailty and the mediation effect of inflammatory cytokines using Mendelian randomization (MR) design. METHODS: Summary-level data for RA (N = 58,284), frailty index (FI) (N = 175,226), Fried frailty score (FFS) (N = 386,565), and 41 inflammatory cytokines (N = 8,293) were obtained from recent genome-wide association studies. Univariable and multivariable MR analyses were conducted to investigate and verify the causal association of RA with frailty. The potential mediation effects of inflammatory cytokines were estimated using two-step MR. RESULTS: Univariable inverse variance weighted MR analysis suggested that genetically determined RA was associated with increased FI (beta=0.021; 95 % CI: 0.012, 0.03; p = 2.2 × 10-6) and FFS (beta=0.011; 95 %CI: 0.007, 0.015; p = 8.811 × 10-8). The consistent results were observed in multivariable MR analysis after adjustment for asthma, smoking, BMI, physical activity, telomere length, and depression. Mediation analysis showed evidence of an indirect effect of RA on FI through monokine induced by interferon-gamma (MIG) with a mediated proportion of 9.8 % (95 %CI: 4.76 %, 19.05 %), on FFS via MIG and stromal cell-derived factor-1 alpha with a mediated proportion of 9.6 % (95 %CI: 0 %, 18.18 %) and 8.44 % (95 %CI: 0 %, 18.18 %), respectively. CONCLUSION: This study provided credible evidence that genetically predicted RA was associated with a higher risk of frailty. Additionally, inflammatory cytokines were involved in the mechanism of RA-induced frailty.


Subject(s)
Arthritis, Rheumatoid , Cytokines , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/complications , Frailty/genetics , Cytokines/blood , Cytokines/genetics , Aged , Male , Female , Mediation Analysis , Middle Aged , Polymorphism, Single Nucleotide
17.
Adv Biol (Weinh) ; 8(5): e2400052, 2024 May.
Article in English | MEDLINE | ID: mdl-38532244

ABSTRACT

This research conducted a two-sample univariate and multivariate Mendelian Randomization (MR) analysis to explore the causal link between different types of leisure sedentary behavior (LSB) and frailty. Independent instrumental variables significantly associated with sedentary behaviors (p < 5 × 10-8) are obtained from a genome-wide association study (GWAS) of 422,218 individuals, and Frailty Index (FI) are derived from the latest GWAS dataset of 175,226 individuals. MR analysis is conducted using inverse variance weighting, MR-Egger, weighted median, simple mode, and weighted mode, supplemented by MRAPSS. Univariate MR revealed that sedentary behaviors such as watching television increased the risk of frailty (OR, 1.271; 95% CI: 1.202-1.345; p = 6.952 × 10-17), as sedentary driving behaviors are done (OR, 1.436; 95% CI: 1.026-2.011; p = 0.035). Further validation through APSS, taking into account cryptic relatedness, stratification, and sample overlap, maintained the association between television viewing and increased frailty risk (OR, 1.394; 95% CI: 1.266-1.534; p = 1.143 × 10-11), while the association with driving dissipated. In multivariate inverse variance weighted (IVW) analysis, after adjusting for C-reactive protein (CRP) levels, television Sedentary behavior (SB) inversely affected frailty (OR, 0.782; 95% CI: 0.724-0.845; p = 4.820 × 10-10). This study indicates that televisio SB significantly increases the risk of frailty, suggesting potential biological heterogeneity behind specific sedentary activities. This process may interact with inflammation, influencing the development of frailty.


Subject(s)
Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Sedentary Behavior , Humans , Frailty/genetics , Frailty/epidemiology , Male , Female , Risk Factors , Aged , Middle Aged , Life Style
18.
BMC Geriatr ; 24(1): 222, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439017

ABSTRACT

BACKGROUND: This study aimed to investigate the association of high-sensitivity C-reactive protein (hs-CRP) with incident frailty as well as its effects on pre-frailty progression and regression among middle-aged and older adults. METHODS: Based on the frailty index (FI) calculated with 41 items, 6890 eligible participants without frailty at baseline from China Health and Retirement Longitudinal Study (CHARLS) were categorized into health, pre-frailty, and frailty groups. Logistic regression models were used to estimate the longitudinal association between baseline hs-CRP and incident frailty. Furthermore, a series of genetic approaches were conducted to confirm the causal relationship between CRP and frailty, including Linkage disequilibrium score regression (LDSC), pleiotropic analysis, and Mendelian randomization (MR). Finally, we evaluated the association of hs-CRP with pre-frailty progression and regression. RESULTS: The risk of developing frailty was 1.18 times (95% CI: 1.03-1.34) higher in participants with high levels of hs-CRP at baseline than low levels of hs-CRP participants during the 3-year follow-up. MR analysis suggested that genetically determined hs-CRP was potentially positively associated with the risk of frailty (OR: 1.06, 95% CI: 1.03-1.08). Among 5241 participants with pre-frailty at baseline, we found pre-frailty participants with high levels of hs-CRP exhibit increased odds of progression to frailty (OR: 1.39, 95% CI: 1.09-1.79) and decreased odds of regression to health (OR: 0.84, 95% CI: 0.72-0.98) when compared with participants with low levels of hs-CRP. CONCLUSIONS: Our results suggest that reducing systemic inflammation is significant for developing strategies for frailty prevention and pre-frailty reversion in the middle-aged and elderly population.


Subject(s)
C-Reactive Protein , Frailty , Aged , Humans , Middle Aged , Longitudinal Studies , C-Reactive Protein/genetics , Frailty/diagnosis , Frailty/epidemiology , Frailty/genetics , Cohort Studies , Inflammation
19.
J Hum Hypertens ; 38(4): 329-335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361027

ABSTRACT

Observational studies have indicated that high blood pressure (BP) may be a risk factor to frailty. However, the causal association between BP and frailty remains not well determined. The purpose of this bi-directional two-sample Mendelian randomization (MR) study was to investigate the causal relationship between BP and frailty. Independent single nucleotide polymorphisms (SNPs) strongly (P < 5E-08) associated with systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were selected as instrumental variables. Two different published genome-wide association studies (GWAS) on BP from the CHARGE (n = 810,865) and ICBP (n = 757,601) consortia were included. Summary-level data on frailty index (FI) were obtained from the latest GWAS based on UK Biobank and Swedish TwinGene cohorts (n = 175,226). Inverse variance weighted (IVW) approach with other sensitivity analyses were used to calculate the causal estimate. Using the CHARGE dataset, genetic predisposition to increased SBP (ß = 0.135, 95% CI = 0.093 to 0.176, P = 1.73E-10), DBP (ß = 0.145, 95% CI = 0.104 to 0.186, P = 3.14E-12), and PP (ß = 0.114, 95% CI = 0.070 to 0.157, p = 2.87E-07) contributed to a higher FI, which was validated in the ICBP dataset. There was no significant causal effect of FI on SBP, DBP, and PP. Similar results were obtained from different MR methods, indicating good stability. There was potential heterogeneity detected by Cochran's Q test, but no horizontal pleiotropy was observed in MR-Egger intercept test (P > 0.05). These findings evinced that higher BP and PP were causally associated with an increased risk of frailty, suggesting that controlling hypertension could reduce the risk of frailty.


Subject(s)
Frailty , Hypertension , Humans , Blood Pressure/genetics , Frailty/diagnosis , Frailty/epidemiology , Frailty/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypertension/diagnosis , Hypertension/epidemiology , Hypertension/genetics
20.
Climacteric ; 27(3): 314-320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38318796

ABSTRACT

OBJECTIVE: The prevalence of frailty has been related to menopause. Our main objective was to investigate whether single nucleotide polymorphisms (SNPs) of the estrogen receptor (ER) ERα and ERß genes were related to the frailty phenotype in a population of community-dwelling postmenopausal women. METHODS: A cross-sectional study was performed in which we selected five SNPs, three in the ERα gene and two in the ERß. Linear regression was used to estimate the percentage of phenotypic variance after adjusting for confounding variables. RESULTS: A total of 470 women (mean ± standard deviation age 63.83 ± 8.16 years) were included, of whom 137 women were frail. The SNP rs3798577 of the ERα gene was the only variant associated with frailty, but this significance faded in the multivariant analysis. Body mass index (p = 0.012), number of comorbidities (0 vs. ≥2, p = 0.002) and two reproductive variables, number of miscarriages (none vs. ≥2, p = 0.036) and of childbirths (one vs. ≥3, p = 0.008), were independently related to frailty. CONCLUSION: The five SNPs of the ERα and ERß genes tested were not correlated with frailty. Other SNPs of the ER warrant analysis to clarify whether variance in the gene response affects frailty status.


Subject(s)
Estrogen Receptor alpha , Estrogen Receptor beta , Frailty , Phenotype , Polymorphism, Single Nucleotide , Postmenopause , Humans , Female , Postmenopause/genetics , Middle Aged , Frailty/genetics , Cross-Sectional Studies , Aged , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Alleles , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL
...