Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Mol Oncol ; 15(5): 1376-1390, 2021 05.
Article in English | MEDLINE | ID: mdl-33274599

ABSTRACT

Previous studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain-metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants. In the first variant, ALDOC overexpression promoted cell viability, adhesion to and transmigration through a layer of brain endothelial cells, and amplified brain micrometastasis formation. The cross-talk between this MBM variant and microglia cells promoted the proliferation and migration of the latter cells. In sharp contrast, ALDOC overexpression in the second brain-metastasizing melanoma variant reduced or did not affect the same malignancy features. In the third melanoma variant, ALDOC overexpression augmented certain characteristics of malignancy and reduced others. The analysis of biological functions and disease pathways in the ALDOC overexpressing variants clearly indicated that ALDOC induced the expression of tumor progression promoting genes in the first variant and antitumor progression properties in the second variant. Overall, these results accentuate the complex microenvironment interactions between microglia cells and MBM, and the functional impact of intertumor heterogeneity. Since intertumor heterogeneity imposes a challenge in the planning of cancer treatment, we propose to employ the functional response of tumors with an identical histology, to a particular drug or the molecular signature of this response, as a predictive indicator of response/nonresponse to this drug.


Subject(s)
Brain Neoplasms/secondary , Fructose-Bisphosphate Aldolase/physiology , Melanoma/pathology , Tumor Microenvironment/physiology , Animals , Biological Variation, Population/genetics , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Fructose-Bisphosphate Aldolase/genetics , HEK293 Cells , Humans , Male , Melanoma/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Phenotype , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Microenvironment/genetics
2.
Cell Tissue Res ; 381(2): 273-284, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32418131

ABSTRACT

The anterior pituitary gland is composed of five types of hormone-producing cells and folliculo-stellate cells. Folliculo-stellate cells do not produce anterior pituitary hormones but they are thought to play important roles as stem cells, phagocytes, or supporting cells of hormone-producing cells in the anterior pituitary. S100ß protein has been used as a folliculo-stellate cell marker in some animals, including rats. However, since no reliable molecular marker for folliculo-stellate cells has been reported in mice, genetic approaches for the investigation of folliculo-stellate cells in mice are not yet available. Aldolase C/Zebrin II is a brain-type isozyme and is a fructose-1,6-bisphosphate aldolase. In the present study, we first used immunohistochemistry to verify that aldolase C was produced in the anterior pituitary of rats. Moreover, using transgenic rats expressing green fluorescent protein under the control of the S100ß gene promoter, we identified aldolase C-immunoreactive signals in folliculo-stellate cells and marginal cells located in the parenchyma of the anterior pituitary and around Rathke's cleft, respectively. We also identified aldolase C-expressing cells in the mouse pituitary using immunohistochemistry and in situ hybridization. Aldolase C was not produced in any pituitary hormone-producing cells, while aldolase C-immunopositive signal co-localized with E-cadherin- and SOX2-positive cells. Using post-embedding immunoelectron microscopy, aldolase C-immunoreactive products were observed in the cytoplasm of marginal cells and folliculo-stellate cells of the mouse pituitary. Taken together, aldolase C is a common folliculo-stellate cell marker in the anterior pituitary gland of rodents.


Subject(s)
Fructose-Bisphosphate Aldolase/physiology , Nerve Tissue Proteins/metabolism , Pituitary Gland, Anterior , Animals , Biomarkers/metabolism , Male , Mice , Mice, Inbred C57BL , Pituitary Gland, Anterior/cytology , Pituitary Gland, Anterior/metabolism , Rats , Rats, Transgenic
3.
Sheng Li Xue Bao ; 70(5): 511-520, 2018 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-30377690

ABSTRACT

Hypoxic exposure activates hypoxia inducible factors (HIFs) to up-regulate the expression of its target genes. These genes encode glucose metabolism related proteins, such as glucose transporters (GLUTs) and glycolysis related enzymes, including lactate dehydrogenase A (LDHA) and aldolase A (ALDA). Therefore, HIFs participate in oxygenolysis of glucose and play an important role in mediating hypoxia response and weight loss. Exercise training influences fatty acid metabolism, insulin sensitivity and body energy balance through activating peroxisome proliferator-activated receptors (PPARs), which plays an active role in losing weight. In addition, hypoxic exposure or exercise training can activate energy sensor 5'-AMP activated protein kinase (AMPK) in cells and promote oxidation of glucose and fatty acid and weight loss. It has been shown that hypoxic training exerts a better effects on controlling weight, compared with either hypoxic exposure or exercise training alone. This paper reviewed synergistic interactions among HIFs, PPARs and AMPK under hypoxic training and proposed possible mechanisms of hypoxic training-induced weight loss via AMPK-HIFs axis or AMPK-PPARs axis, thus providing theoretical guidance for application of hypoxic training in weight control.


Subject(s)
AMP-Activated Protein Kinases/physiology , Hypoxia-Inducible Factor 1/physiology , Hypoxia , Peroxisome Proliferator-Activated Receptors/physiology , Weight Loss , Animals , Body Weight , Energy Metabolism , Fatty Acids , Fructose-Bisphosphate Aldolase/physiology , Glucose , Glucose Transport Proteins, Facilitative/physiology , Humans , Insulin Resistance , Isoenzymes/physiology , L-Lactate Dehydrogenase/physiology , Lactate Dehydrogenase 5 , Lipid Metabolism , Oxidation-Reduction , Up-Regulation
4.
Vet Res ; 49(1): 114, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30454073

ABSTRACT

Mycoplasma hyopneumoniae is an important respiratory pathogen that causes great economic losses to the pig industry worldwide. Although some putative virulence factors have been reported, pathogenesis remains poorly understood. Herein, we evaluated the relative abundance of proteins in virulent 168 (F107) and attenuated 168L (F380) M. hyopneumoniae strains to identify virulence-associated factors by two-dimensional electrophoresis (2-DE). Seven proteins were found to be ≥ 1.5-fold more abundant in 168, and protein-protein interaction network analysis revealed that all seven interact with putative virulence factors. Unexpectedly, six of these virulence-associated proteins are encoded by core rather than accessory genomic elements. The most differentially abundant of the seven, fructose-1,6-bisphosphate aldolase (FBA), was successfully cloned, expressed and purified. Flow cytometry demonstrated the surface localisation of FBA, recombinant FBA (rFBA) mediated adhesion to swine tracheal epithelial cells (STEC), and anti-rFBA sera decreased adherence to STEC. Surface plasmon resonance showed that rFBA bound to fibronectin with a moderately strong KD of 469 nM. The results demonstrate that core gene expression contributes to adhesion and virulence in M. hyopneumoniae, and FBA moonlights as an important adhesin, mediating binding to host cells via fibronectin.


Subject(s)
Bacterial Adhesion , Fructose-Bisphosphate Aldolase/physiology , Mycoplasma hyopneumoniae/enzymology , Animals , Bacterial Adhesion/physiology , Blotting, Western/veterinary , Electrophoresis, Gel, Two-Dimensional/veterinary , Flow Cytometry/veterinary , Fructose-Bisphosphate Aldolase/genetics , Genome, Bacterial/genetics , Mycoplasma hyopneumoniae/genetics , Mycoplasma hyopneumoniae/pathogenicity , Pneumonia of Swine, Mycoplasmal/microbiology , Proteomics , Respiratory Mucosa/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary , Swine/microbiology , Trachea/microbiology , Virulence
5.
Cell Metab ; 27(6): 1249-1262.e4, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29706565

ABSTRACT

Cancer metastasis accounts for the majority of cancer-related deaths and remains a clinical challenge. Metastatic cancer cells generally resemble cells of the primary cancer, but they may be influenced by the milieu of the organs they colonize. Here, we show that colorectal cancer cells undergo metabolic reprogramming after they metastasize and colonize the liver, a key metabolic organ. In particular, via GATA6, metastatic cells in the liver upregulate the enzyme aldolase B (ALDOB), which enhances fructose metabolism and provides fuel for major pathways of central carbon metabolism during tumor cell proliferation. Targeting ALDOB or reducing dietary fructose significantly reduces liver metastatic growth but has little effect on the primary tumor. Our findings suggest that metastatic cells can take advantage of reprogrammed metabolism in their new microenvironment, especially in a metabolically active organ such as the liver. Manipulation of involved pathways may affect the course of metastatic growth.


Subject(s)
Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Fructose-Bisphosphate Aldolase/physiology , Fructose/metabolism , Liver Neoplasms/secondary , Tumor Microenvironment , Animals , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Neoplasm Metastasis
6.
Microb Pathog ; 107: 293-303, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28396240

ABSTRACT

Adhesion is the first step for Candida species to form biofilms on medical devices implanted in the human host. Both the physicochemical nature of the biomaterial and cell wall proteins (CWP) of the pathogen play a determinant role in the process. While it is true that some CWP have been identified in vitro, little is known about the CWP of pathogenic species of Candida involved in adhesion. On this background, we considered it important to investigate the potential role of CWP of C. albicans, C. glabrata, C. krusei and C. parapsilosis in adhesion to different medical devices. Our results indicate that the four species strongly adher to polyvinyl chloride (PVC) devices, followed by polyurethane and finally by silicone. It was interesting to identify fructose-bisphosphate aldolase (Fba1) and enolase 1 (Eno1) as the CWP involved in adhesion of C. albicans, C. glabrata and C. krusei to PVC devices whereas phosphoglycerate kinase (Pgk) and Eno1 allow C. parapsilosis to adher to silicone-made implants. Results presented here suggest that these CWP participate in the initial event of adhesion and are probably followed by other proteins that covalently bind to the biomaterial thus providing conditions for biofilm formation and eventually the onset of infection.


Subject(s)
Candida/physiology , Cell Adhesion , Cell Wall/chemistry , Equipment and Supplies/microbiology , Membrane Proteins/isolation & purification , Membrane Proteins/physiology , Antifungal Agents/pharmacology , Biocompatible Materials/chemistry , Biofilms/growth & development , Candida/drug effects , Candida/enzymology , Candida/metabolism , Cell Adhesion/drug effects , Cell Wall/enzymology , Cell Wall/metabolism , Fructose-Bisphosphate Aldolase/isolation & purification , Fructose-Bisphosphate Aldolase/physiology , Fungal Proteins/physiology , Humans , Hydrogen Peroxide/pharmacology , Phosphoglycerate Kinase , Phosphopyruvate Hydratase/isolation & purification , Phosphopyruvate Hydratase/physiology , Polyurethanes/chemistry , Polyvinyl Chloride/chemistry , Silicones/chemistry
7.
Reproduction ; 147(5): 575-87, 2014 May.
Article in English | MEDLINE | ID: mdl-24478148

ABSTRACT

The aims of this study were (i) to characterize the global changes in the composition of the uterine luminal fluid (ULF) from pregnant heifers during pregnancy recognition (day 16) using nano-LC MS/MS; (ii) to describe quantitative changes in selected proteins in the ULF from days 10, 13, 16 and 19 by Isobaric tags for Relative and Absolute Quantification (iTRAQ) analysis; and (iii) to determine whether these proteins are of endometrial or conceptus origin, by examining the expression profiles of the associated transcripts by RNA sequencing. On day 16, 1652 peptides were identified in the ULF by nano-LC MS/MS. Of the most abundant proteins present, iTRAQ analysis revealed that RPB4, TIMP2 and GC had the same expression pattern as IFNT, while the abundance of IDH1, CST6 and GDI2 decreased on either day 16 or 19. ALDOA, CO3, GSN, HSP90A1, SERPINA31 and VCN proteins decreased on day 13 compared with day 10 but subsequently increased on day 16 (P<0.05). Purine nucleoside phosphorylase (PNP) and HSPA8 decreased on day 13, increased on day 16 and decreased and increased on day 19 (P<0.05). The abundance of CATD, CO3, CST6, GDA, GELS, IDHC, PNPH and TIMP2 mRNAs was greater (P<0.001) in the endometrium than in the conceptus. By contrast, the abundance of ACTB, ALDOA, ALDR, CAP1, CATB, CATG, GD1B, HSP7C, HSP90A, RET4 and TERA was greater (P<0.05) in the conceptus than in the endometrium. In conclusion, significant changes in the protein content of the ULF occur during the pre-implantation period of pregnancy reflecting the morphological changes that occur in the conceptus.


Subject(s)
Cattle/physiology , Embryonic Development/physiology , Pregnancy, Animal/physiology , Proteomics , Uterus/physiology , Animals , Endometrium/physiology , Female , Fructose-Bisphosphate Aldolase/physiology , Gene Expression Regulation, Developmental/physiology , Heat-Shock Proteins/physiology , Pregnancy , Pregnancy Proteins/physiology
8.
PLoS One ; 7(2): e31855, 2012.
Article in English | MEDLINE | ID: mdl-22384086

ABSTRACT

Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N(9)-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator.


Subject(s)
Carbon/metabolism , Fructose-Bisphosphate Aldolase/physiology , Oryza/microbiology , Xanthomonas/metabolism , Bacterial Proteins/genetics , Codon , Culture Media/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genes, Reporter , Genetic Complementation Test , Genetic Variation , Genome, Bacterial , Mutagenesis, Site-Directed , Mutation , Open Reading Frames , Plant Diseases/microbiology , Plasmids/metabolism , Polysaccharides/chemistry , Transcription Factors/genetics
9.
J Surg Res ; 170(1): e57-63, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21696757

ABSTRACT

BACKGROUND: Hepatic aldolase (ALD) A mRNA transcription and ALD B S-nitrosylation have been confirmed in endotoxemic rats and mice, respectively. In the present study we investigated whether the skeletal muscle ALD A shared potential for S-nitrosylation to act as a hypoxia-related signaling mechanism in lipopolysaccharide (LPS) challenged rats. MATERIALS AND METHODS: Male Sprague Dawley rats were treated (i.p.) as follows, control group (n = 6) with 0.9% NaCl, tested group (n = 6) with a single dose of 2 mg/kg LPS. Protein S-nitrosylation was determined by biotin switch and dot blotting analysis. ALD A, hypoxia-inducible factor 1α and vascular endothelial growth factor were determined by western blotting. ALD A catalytic activity treated with S-nitrosoglutathione (GSNO), an exogenous NO-donor, was examined in vitro. RESULTS: There were several S-nitrosylated proteins under basal conditions. ALD A was over-expressed in a hypoxia-related way in the skeletal muscle of LPS challenged rats. Importantly, treatment of ALD A with GSNO at concentration 50 µmol/L ∼ 1000 µmol/L that inhibited catalytic activity, increased the number of S-nitrosylated bands and led to hyper-nitrosylation of basally S-nitrosylated proteins of ALD A. Quantization of enzyme S-nitrosothiol showed that a maximal of four cysteines per subunit was modified by S-nitrosylation in the presence of GSNO. CONCLUSIONS: These findings suggested that S-nitrosylation of ALD A might serve as a novel mechanism for controlling ALD A activity at the post-translational level in endotoxemic rats.


Subject(s)
Endotoxemia/enzymology , Fructose-Bisphosphate Aldolase/physiology , Muscle, Skeletal/enzymology , S-Nitrosoglutathione/pharmacology , Animals , Fructose-Bisphosphate Aldolase/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Lipopolysaccharides/toxicity , Male , Protein Processing, Post-Translational , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/analysis
10.
Protist ; 162(3): 482-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21377422

ABSTRACT

Glycosomes are peroxisome-related organelles containing glycolytic enzymes that have been found only in kinetoplastids. We show here that a glycolytic enzyme is compartmentalized in diplonemids, the sister group of kinetoplastids. We found that, similar to kinetoplastid aldolases, the fructose 1,6-bisphosphate aldolase of Diplonema papillatum possesses a type 2-peroxisomal targeting signal. Western blotting showed that this aldolase was present predominantly in the membrane/organellar fraction. Immunofluorescence analysis showed that this aldolase had a scattered distribution in the cytosol, suggesting its compartmentalization. In contrast, orotidine-5'-monophosphate decarboxylase, a non-glycolytic glycosomal enzyme in kinetoplastids, was shown to be a cytosolic enzyme in D. papillatum. Since euglenoids, the earliest diverging branch of Euglenozoa, do not possess glycolytic compartments, these findings suggest that the routing of glycolytic enzymes into peroxisomes may have occurred in a common ancestor of diplonemids and kinetoplastids, followed by diversification of these newly established organelles in each of these euglenozoan lineages.


Subject(s)
Euglenozoa/physiology , Fructose-Bisphosphate Aldolase/physiology , Orotate Phosphoribosyltransferase/physiology , Amino Acid Sequence , Animals , Cell Compartmentation , Consensus Sequence , Euglenozoa/enzymology , Euglenozoa/ultrastructure , Evolution, Molecular , Female , Fluorescent Antibody Technique , Fructose-Bisphosphate Aldolase/genetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Orotate Phosphoribosyltransferase/genetics , Peroxisomes/enzymology , Peroxisomes/physiology , Peroxisomes/ultrastructure , Phylogeny , Protein Sorting Signals/physiology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/physiology , Sequence Alignment
11.
J Anim Sci ; 89(5): 1330-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21036929

ABSTRACT

Sperm mobility is defined as sperm movement against resistance at body temperature. Although all mobile sperm are motile, not all motile sperm are mobile. Sperm mobility is a primary determinant of male fertility in the chicken. Previous work explained phenotypic variation at the level of the sperm cell and the mitochondrion. The present work was conducted to determine if phenotypic variation could be explained at the level of the proteome using semen donors from lines of chickens selected for low or high sperm mobility. We began by testing the hypothesis that premature mitochondrial failure, and hence sperm immobility, arose from Ca(2+) overloading. The hypothesis was rejected because staining with a cell permeant Ca(2+)-specific dye was not enhanced in the case of low mobility sperm. The likelihood that sperm require little energy before ejaculation and the realization that the mitochondrial permeability transition can be induced by oxidative stress arising from inadequate NADH led to the hypothesis that glycolytic enzymes might differ between lines. This possibility was confirmed by 2-dimensional electrophoresis for aldolase and phosphoglycerate kinase 1. This outcome warranted evaluation of the whole cell proteome by differential detergent fractionation and mass spectrometry. Bioinformatics evaluation of proteins with different expression levels confirmed the likelihood that ATP metabolism and glycolysis differ between lines. This experimental outcome corroborated differences observed between lines in previous work, which include mitochondrial ultrastructure, sperm cell oxygen consumption, and straight line velocity. Although glycolytic proteins were more abundant within highly mobile sperm, quantitative PCR of representative testis RNA, which included mRNA for phosphoglycerate kinase 1, found no difference between lines. In summary, we propose a proteome-based model for sperm mobility phenotype in which a genetic predisposition puts sperm cells at risk of premature mitochondrial failure as they pass through the excurrent ducts of the testis. In other words, we attribute mitochondrial failure to sperm cell and reproductive tract attributes that interact to affect sperm in a stochastic manner before ejaculation. In conclusion, our work provides a starting point for understanding chicken semen quality in terms of gene networks.


Subject(s)
Chickens/physiology , Fertility/physiology , Mitochondria/physiology , Sperm Motility/physiology , Spermatozoa/physiology , Aniline Compounds/chemistry , Animals , Electrophoresis, Gel, Two-Dimensional/veterinary , Flow Cytometry/veterinary , Fluorescent Dyes/chemistry , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/physiology , Male , Mass Spectrometry/veterinary , Mitochondria/ultrastructure , Phenotype , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/physiology , Proteomics/methods , RNA/chemistry , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sperm Motility/genetics , Spermatozoa/enzymology , Spermatozoa/ultrastructure , Xanthenes/chemistry
12.
J Hepatol ; 53(5): 896-902, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20800309

ABSTRACT

BACKGROUND & AIMS: TNF was the first cytokine employed for cancer therapy, but its use was limited due to its insufficient selectivity towards malignant cells. Fructose induces transient hepatic ATP depletion in humans and rodents due to the liver-specific fructose metabolism via fructokinase, while other cells e.g. Muscle cells metabolize fructose via hexokinase. Under ATP depleted conditions hepatocytes are protected against TNF-induced apoptosis. Our aim was to identify metabolic differences between normal and malignant liver cells that can be exploited for selective immunotherapy. METHODS: We analyzed the expression and activities of enzymes involved in fructose metabolism in primary hepatocytes and hepatoma cell lines. Furthermore, we studied the influence of hexokinase II (HKII) on fructose-mediated ATP depletion and cytoprotection in murine hepatocytes. RESULTS: Primary mouse, rat and human hepatocytes depleted of ATP by fructose were fully protected against TNF-induced cytotoxicity. By contrast, hepatic tumor cell lines showed increased HKII expression, lack of fructose-mediated ATP depletion and, therefore, remained susceptible to TNF/ActD-induced apoptosis. Inhibition of hexokinases restored fructose-induced ATP depletion in hepg2 cells. Finally, hypoxia-inducible factor1 (HIF1)-mediated up-regulation of HKII prevented fructose-induced ATP depletion and overexpression of HKII inhibited fructose-mediated cytoprotection against TNF-induced apoptosis in primary murine hepatocytes. CONCLUSION: Increased expression of HKII in malignant cells of hepatic origin shifts the fructose metabolism from liver- to muscle-type, thereby preventing ATP depletion and subsequent cytoprotection of the target cells. Therefore, healthy liver cells are transiently protected from TNF-mediated cell death by fructose-induced ATP depletion, while malignant cells can be selectively eliminated through TNF-induced apoptosis.


Subject(s)
Adenosine Triphosphate/metabolism , Fructose/pharmacology , Hepatocytes/drug effects , Liver Neoplasms/pathology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Apoptosis/drug effects , Cells, Cultured , Cytoprotection , Fructokinases/physiology , Fructose-Bisphosphate Aldolase/physiology , Hexokinase/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Mice , Rats
13.
J Dermatol Sci ; 58(2): 123-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20362419

ABSTRACT

BACKGROUND: No previous report has investigated the involvement of glycolytic enzymes in keratinocyte migration. Fructose-1,6-bisphosphate aldolase A (ALDOA) is a glycolytic enzyme bound to the cytoskeleton by certain growth factors, which are known to enhance keratinocyte migration. We postulated that ALDOA is involved in keratinocyte migration. OBJECTIVE: To investigate the possible role of ALDOA in keratinocyte migration. METHODS: The localization of endogenous ALDOA and the actin cytoskeleton was observed by laser scanning confocal microscopy in HaCaT cells. The effects of ALDOA on lamellipodia formation and migration were evaluated using ALDOA siRNA-transfected cells. In addition, the involvement of epidermal growth factor (EGF) in ALDOA-induced events was investigated. RESULTS: Strong ALDOA expression was observed along the ruffling membrane and lamellipodia, and it was colocalized with the actin cytoskeleton in lamellipodia. In a scratch wound assay, the wound recovery area was significantly decreased on transfection with ALDOA siRNA. The rate of lamellipodia-forming cells also decreased. On stimulation with EGF, the wound recovery area and ALDOA and its mRNA levels increased. On the other hand, ALDOA siRNA transfection suppressed EGF-enhanced migration. CONCLUSION: We concluded that ALDOA is involved in keratinocyte migration following the induction of lamellipodia formation, and ALDOA-related migration is enhanced by EGF.


Subject(s)
Fructose-Bisphosphate Aldolase/physiology , Pseudopodia/metabolism , Actins/metabolism , Cell Line, Tumor , Cell Movement , Cytoskeleton/metabolism , Epidermal Growth Factor/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Humans , Keratinocytes/metabolism , Microscopy, Confocal/methods , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Transfection , Wound Healing
14.
Fungal Genet Biol ; 47(3): 254-67, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20026236

ABSTRACT

In Aspergillus nidulans the fbaA1013 mutation results in reduced or total loss of growth on glycolytic and gluconeogenic carbon sources, respectively. It also negatively affects growth on several amino acids (including L-proline, L-glutamate or L-aspartate) that the fungus can use as nitrogen source on glycolytic carbon sources. Complementation of the fbaA1013 mutation using an A. nidulans genomic library resulted in cloning of the fbaA gene, which encodes a putative fructose 1,6-biphosphate aldolase (FBA), an enzyme involved in both glycolysis and gluconeogenesis. The fbaA1013 mutation is a chromosome rearrangement in the 5' regulatory region of the fbaA gene resulting in reduced or total loss of transcription in response to glycolytic and gluconeogenic carbon sources respectively. The fbaA gene is essential for growth. A functional FbaA protein is necessary for plasma membrane localization of the AgtA acidic amino acid (L-glutamate/L-aspartate) transporter, as the fbaA1013 mutation results in targeting to and presumably subsequent degradation of AgtA in the vacuole. Our results support a novel role of the FbaA protein that is, involvement in the regulation of amino acids transporters.


Subject(s)
Amino Acid Transport Systems/metabolism , Aspergillus nidulans/enzymology , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/physiology , Fungal Proteins/genetics , Fungal Proteins/physiology , Amino Acid Sequence , Amino Acid Transport Systems/genetics , Amino Acids/genetics , Amino Acids/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Carbon/metabolism , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genetic Complementation Test , Genome, Fungal , Gluconeogenesis/genetics , Glutamic Acid/genetics , Glutamic Acid/metabolism , Glycolysis/genetics , Molecular Sequence Data , Mutation , Nitrogen/metabolism , Proline/genetics , Proline/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
15.
Neuroscience ; 157(1): 57-69, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18824220

ABSTRACT

The cerebellum is organized into parasagittal zones with respect to the topography of climbing fiber (CF) afferents and the expression of molecular markers such as zebrin II. Zebrin is expressed by a subset of Purkinje cells that are distributed as a parasagittal array of immunopositive and immunonegative stripes. Several studies in rodents suggest that, in general, CFs to the zebrin negative stripes convey somatosensory information, whereas CFs to the zebrin positive stripes convey information from visual and other sensory systems. The pigeon flocculus consists of four pairs of zebrin+/- stripes (P4 +/- through P7 +/-), however the CF input consists entirely of visual inputs. Thus, because the correspondence of zebrin expression and CF information must be different from that proposed for rodents, we investigated this relationship in the pigeon flocculus. Floccular Purkinje cells respond to patterns of optic flow resulting from self-rotation about one of two axes: either the vertical axis (zones 0 and 2), or a horizontal axis (zones 1 and 3). Visual CF afferents projecting to the flocculus arise from the medial column of the inferior olive (mcIO). Zones 0 and 2 receive input from the caudal mcIO, whereas zones 1 and 3 receive input from the rostral mcIO. We injected a fluorescent anterograde tracer into the rostral and/or caudal mcIO and visualized zebrin expression. There was a strict concordance between CF organization and zebrin labeling: caudal mcIO injections resulted in CFs in zebrin bands P4 +/- and P6 +/-, whereas rostral mcIO injections resulted in CFs in zebrin bands P5 +/- and P7 +/-. Thus, zebrin stripes P4 +/- and P6 +/- correspond to the vertical axis zones 0 and 2, whereas P5 +/- and P7 +/- correspond to the horizontal axis zones 1 and 3. This is the first explicit demonstration that a series of zebrin stripes corresponds with functional zones in the cerebellum.


Subject(s)
Cerebellar Nuclei/physiology , Nerve Fibers/physiology , Nerve Fibers/ultrastructure , Nerve Tissue Proteins/biosynthesis , Animals , Biotin/analogs & derivatives , Cerebellar Nuclei/cytology , Columbidae , Dextrans , Extracellular Space/physiology , Fructose-Bisphosphate Aldolase/physiology , Green Fluorescent Proteins , Image Processing, Computer-Assisted , Immunohistochemistry , Luminescent Agents , Purkinje Cells/physiology , Terminology as Topic , Vestibular Nuclei/physiology , Visual Pathways/physiology
16.
Biochem Biophys Res Commun ; 369(3): 948-52, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18328256

ABSTRACT

To find novel proteins involved in radio-resistance of human cells, we searched for nuclear proteins, whose expression levels alter after X-ray irradiation in HeLa cells, using agarose fluorescent two-dimensional differential gel electrophoresis following mass spectrometry. We identified 6 proteins, whose levels were increased in nuclei 24h after irradiation at 5Gy, including aldolase A. Nuclear aldolase A levels increased twofold after the irradiation, however, total aldolase A levels did not change. When the expression of aldolase A was suppressed by its specific siRNA, sensitization of the suppressed cells to X-ray-induced cell death was observed. In addition, UV(r)-1 cells with higher aldolase A expression exhibited lower sensitivity to X-ray-induced cell death than the parental RSa cells with lower aldolase A expression. These results suggest that aldolase A may play a role in the radio-response of human cells, probably in nuclei, in addition to its glycolytic role in the cytosol.


Subject(s)
Fructose-Bisphosphate Aldolase/physiology , Radiation Tolerance , X-Rays , Cell Nucleus/enzymology , Cell Nucleus/radiation effects , Fructose-Bisphosphate Aldolase/antagonists & inhibitors , Fructose-Bisphosphate Aldolase/genetics , HeLa Cells , Humans , Proteomics , RNA, Small Interfering/pharmacology , Radiation Tolerance/drug effects , Radiation Tolerance/genetics
17.
J Biol Chem ; 283(16): 10415-24, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18310071

ABSTRACT

The iolABCDEFGHIJ operon of Bacillus subtilis is responsible for myo-inositol catabolism involving multiple and stepwise reactions. Previous studies demonstrated that IolG and IolE are the enzymes for the first and second reactions, namely dehydrogenation of myo-inositol to give 2-keto-myo-inositol and the subsequent dehydration to 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione. In the present studies the third reaction was shown to be the hydrolysis of 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione catalyzed by IolD to yield 5-deoxy-d-glucuronic acid. The fourth reaction was the isomerization of 5-deoxy-D-glucuronic acid by IolB to produce 2-deoxy-5-keto-D-gluconic acid. Next, in the fifth reaction 2-deoxy-5-keto-D-gluconic acid was phosphorylated by IolC kinase to yield 2-deoxy-5-keto-D-gluconic acid 6-phosphate. IolR is known as the repressor controlling transcription of the iol operon. In this reaction 2-deoxy-5-keto-D-gluconic acid 6-phosphate appeared to be the intermediate acting as inducer by antagonizing DNA binding of IolR. Finally, IolJ turned out to be the specific aldolase for the sixth reaction, the cleavage of 2-deoxy-5-keto-D-gluconic acid 6-phosphate into dihydroxyacetone phosphate and malonic semialdehyde. The former is a known glycolytic intermediate, and the latter was previously shown to be converted to acetyl-CoA and CO(2) by a reaction catalyzed by IolA. The net result of the inositol catabolic pathway in B. subtilis is, thus, the conversion of myo-inositol to an equimolar mixture of dihydroxyacetone phosphate, acetyl-CoA, and CO(2).


Subject(s)
Bacillus subtilis/metabolism , Gene Expression Regulation, Bacterial , Inositol/metabolism , Aldehyde-Lyases/metabolism , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/physiology , Catalysis , DNA/metabolism , DNA-Binding Proteins/metabolism , Dihydroxyacetone Phosphate/metabolism , Fructose-Bisphosphate Aldolase/physiology , Gluconates/metabolism , Glucuronic Acid/metabolism , Hydrolases/physiology , Hydrolysis , Models, Biological , Models, Chemical , Phosphotransferases/physiology , Protein Binding , Repressor Proteins/metabolism
18.
Biosci Biotechnol Biochem ; 71(7): 1607-15, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17617727

ABSTRACT

Arthrobacter simplex AKU 626 was found to synthesize 4-hydroxyisoleucine from acetaldehyde, alpha-ketobutyrate, and L-glutamate in the presence of Escherichia coli harboring the branched chain amino acid transaminase gene (ilvE) from E. coli K12 substrain MG1655. By using resting cells of A. simplex AKU 626 and E. coli BL21(DE3)/pET-15b-ilvE, 3.2 mM 4-hydroxyisoleucine was produced from 250 mM acetaldehyde, 75 mM alpha-ketobutyrate, and 100 mM L-glutamate with a molar yield to alpha-ketobutyrate of 4.3% in 50 mM Tris-HCl buffer (pH 7.5) containing 2 mM MnCl(2) x 4H(2)O at 28 degrees C for 2 h. An aldolase that catalyzes the aldol condensation of acetaldehyde and alpha-ketobutyrate was purified from A. simplex AKU 626. Mn(2+) and pyridoxal 5'-monophosphate were effective in stabilizing the enzyme. The native and subunit molecular masses of the purified aldolase were about 180 and 32 kDa respectively. The N-terminal amino acid sequence of the purified enzyme showed no significant homology to known aldolases.


Subject(s)
Arthrobacter/enzymology , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/physiology , Isoleucine/analogs & derivatives , Transaminases/physiology , Escherichia coli/enzymology , Isoleucine/biosynthesis
19.
Eukaryot Cell ; 5(8): 1371-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16896220

ABSTRACT

The central metabolic enzyme fructose-1,6-bisphosphate aldolase (Fba1p) catalyzes a reversible reaction required for both glycolysis and gluconeogenesis. Fba1p is a potential antifungal target because it is essential in yeast and because fungal and human aldolases differ significantly. To test the validity of Fba1p as an antifungal target, we have examined the effects of depleting this enzyme in the major fungal pathogen Candida albicans. Using a methionine/cysteine-conditional mutant (MET3-FBA1/fba1), we have shown that Fba1p is required for the growth of C. albicans. However, Fba1p must be depleted to below 5% of wild-type levels before growth is blocked. Furthermore, Fba1p depletion exerts static rather than cidal effects upon C. albicans. Fba1p is a relatively abundant and stable protein in C. albicans, and hence, Fba1p levels decay relatively slowly following MET3-FBA1 shutoff. Taken together, our observations can account for our observation that the virulence of MET3-FBA1/fba1 cells is only partially attenuated in the mouse model of systemic candidiasis. We conclude that an antifungal drug directed against Fba1p would have to be potent to be effective.


Subject(s)
Antifungal Agents/therapeutic use , Candida albicans/enzymology , Candida albicans/growth & development , Candidiasis/drug therapy , Drug Design , Fructose-Bisphosphate Aldolase/physiology , Animals , Base Sequence , Candida albicans/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Fructose-Bisphosphate Aldolase/drug effects , Fructose-Bisphosphate Aldolase/genetics , Methionine/pharmacology , Mice , Microbial Sensitivity Tests , Molecular Sequence Data
20.
Am J Physiol Renal Physiol ; 291(1): F218-24, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16478974

ABSTRACT

To identify novel gene targets of vasopressin regulation in the renal medulla, we performed a cDNA microarray study on the inner medullary tissue of mice following a 48-h water restriction protocol. In this study, 4,625 genes of the possible approximately 12,000 genes on the array were included in the analysis, and of these 157 transcripts were increased and 63 transcripts were decreased by 1.5-fold or more. Quantitative, real-time PCR measurements confirmed the increases seen for 12 selected transcripts, and the decreases were confirmed for 7 transcripts. In addition, we measured transcript abundance for many renal collecting duct proteins that were not represented on the array; aquaporin-2 (AQP2), AQP3, Pax-8, and alpha- and beta-Na-K-ATPase subunits were all significantly increased in abundance; the beta- and gamma-subunits of ENaC and the vasopressin type 1A receptor were significantly decreased. To correlate changes in mRNA expression with changes in protein expression, we carried out quantitative immunoblotting. For most of the genes examined, changes in mRNA abundances were not associated with concomitant protein abundance changes; however, AQP2 transcript abundance and protein abundance did correlate. Surprisingly, aldolase B transcript abundance was increased but protein abundance was decreased following 48 h of water restriction. Several transcripts identified by microarray were novel with respect to their expression in mouse renal medullary tissues. The steroid hormone enzyme 3beta-hydroxysteroid dehydrogenase 4 (3betaHSD4) was identified as a novel target of vasopressin regulation, and via dual labeling immunofluorescence we colocalized the expression of this protein to AQP2-expressing collecting ducts of the kidney. These studies have identified several transcripts whose abundances are regulated in mouse inner medulla in response to an increase in endogenous vasopressin levels and could play roles in the regulation of salt and water excretion.


Subject(s)
3-Hydroxysteroid Dehydrogenases/analysis , 3-Hydroxysteroid Dehydrogenases/genetics , Gene Expression Regulation, Enzymologic/physiology , Kidney Medulla/chemistry , Kidney Tubules, Collecting/chemistry , Water Deprivation/physiology , Animals , Aquaporin 2/analysis , Aquaporin 2/genetics , Aquaporin 2/physiology , Aquaporin 3/analysis , Aquaporin 3/genetics , Aquaporin 3/physiology , DNA, Complementary/analysis , Epithelial Sodium Channels , Fructose-Bisphosphate Aldolase/analysis , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/physiology , Kidney Medulla/physiology , Kidney Tubules, Collecting/physiology , Mice , Mice, Inbred ICR , Oligonucleotide Array Sequence Analysis , PAX8 Transcription Factor , Paired Box Transcription Factors/analysis , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/physiology , RNA, Messenger/analysis , Receptors, Vasopressin/analysis , Receptors, Vasopressin/genetics , Receptors, Vasopressin/physiology , Reverse Transcriptase Polymerase Chain Reaction , Sodium Channels/analysis , Sodium Channels/genetics , Sodium Channels/physiology , Sodium-Potassium-Exchanging ATPase/analysis , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/physiology , Vasopressins/blood , Vasopressins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...