Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.536
Filter
1.
Food Res Int ; 188: 114502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823845

ABSTRACT

Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.


Subject(s)
Antioxidants , Fruit , Lycium , Plant Extracts , Lycium/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Humans , Permeability , Ultrasonic Waves , Phytochemicals/isolation & purification , Intestinal Mucosa/metabolism , Caco-2 Cells , Intestinal Absorption , Rutin/isolation & purification , Ultrasonics/methods , Intestinal Barrier Function
2.
Food Res Int ; 188: 114489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823872

ABSTRACT

Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.


Subject(s)
Fruit , Gastrointestinal Microbiome , Lipid Metabolism , Liver Diseases, Alcoholic , Oxidative Stress , Plant Extracts , Solanum nigrum , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Mice , Fruit/chemistry , Solanum nigrum/chemistry , Male , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Mice, Inbred C57BL , Inflammation , Liver/drug effects , Liver/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , PPAR alpha/metabolism , Antioxidants/pharmacology , Ethanol
3.
Food Res Int ; 188: 114512, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823883

ABSTRACT

Several studies have linked the intake of lycopene and/or tomato products with improved metabolic health under obesogenic regime. The aim was to evaluate the differential impact of supplementations with several tomato genotypes differing in carotenoid content and subjected to different irrigation levels on obesity-associated disorders in mice. In this study, 80 male C57BL/6JRj mice were assigned into 8 groups to receive: control diet, high fat diet, high fat diet supplemented at 5 % w/w with 4 tomato powders originating from different tomato genotypes cultivated under control irrigation: H1311, M82, IL6-2, IL12-4. Among the 4 genotypes, 2 were also cultivated under deficit irrigation, reducing the irrigation water supply by 50 % from anthesis to fruit harvest. In controlled irrigation treatment, all genotypes significantly improved fasting glycemia and three of them significantly lowered liver lipids content after 12 weeks of supplementation. In addition, IL6-2 genotype, rich in ß-carotene, significantly limited animal adiposity, body weight gain and improved glucose homeostasis as highlighted in glucose and insulin tolerance tests. No consistent beneficial or detrimental impact of deficit irrigation to tomato promoting health benefits was found. These findings imply that the choice of tomato genotype can significantly alter the composition of fruit carotenoids and phytochemicals, thereby influencing the anti-obesogenic effects of the fruit. In contrast, deficit irrigation appears to have an overall insignificant impact on enhancing the health benefits of tomato powder in this context, particularly when compared to the genotype-related variations in carotenoid content.


Subject(s)
Diet, High-Fat , Genotype , Mice, Inbred C57BL , Obesity , Solanum lycopersicum , Solanum lycopersicum/genetics , Animals , Male , Obesity/genetics , Obesity/metabolism , Mice , Carotenoids/metabolism , Fruit , Water , Agricultural Irrigation/methods , Blood Glucose/metabolism , Adiposity
4.
Carbohydr Polym ; 339: 122238, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823908

ABSTRACT

The study aimed to develop a novel, transparent and non-toxic coating with antimicrobial, antioxidant, and antifogging properties. The p-coumaric acid-grafted chitosan (CS-PCA) was synthesized via a carbodiimide coupling reaction and then characterized. The CS-PCA coatings were further prepared using the casting method. The CS-PCA coatings obtained exhibited excellent transparency, UV-light barrier ability, and antifogging properties, as confirmed by spectroscopy and antifogging tests. The CS-PCA coatings showed stronger antioxidant capacity and antimicrobial properties against Escherichia coli, Staphylococcus aureus and Botrytis cinerea compared to CS. The multifunctional coatings were further coated on the polyethylene cling film and their effectiveness was confirmed through a strawberry preservation test. The decay of the strawberries was reduced by CS-PCA coated film at room temperature.


Subject(s)
Antioxidants , Chitosan , Coumaric Acids , Escherichia coli , Food Packaging , Fragaria , Fruit , Propionates , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Fragaria/microbiology , Food Packaging/methods , Fruit/chemistry , Propionates/chemistry , Propionates/pharmacology , Botrytis/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
5.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823923

ABSTRACT

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Subject(s)
Camptothecin , Cellulose , Hydrogels , Molecular Imprinting , Solid Phase Extraction , Camptothecin/chemistry , Camptothecin/isolation & purification , Cellulose/chemistry , Adsorption , Molecular Imprinting/methods , Hydrogels/chemistry , Solid Phase Extraction/methods , Camptotheca/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Fruit/chemistry
6.
Narra J ; 4(1): e429, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798875

ABSTRACT

The incidence of antifungal resistance to Candida albicans infections has been growing over the past years; therefore, innovations are required to develop medicinal plants with antifungal properties such as durian fruit peels (Durio zibethinus Murray) that contain significant of bioactive compounds with antifungal properties. The aim of this study was to determine the antifungal activity of D. zibethinus fruit peel extract against C. albicans by analyzing the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A post-test only control group experiment was conducted from July to October 2020. D. zibethinus peel was collected from Simalungun Regency, Medan, Indonesia, and extracted by maceration technique using 70% ethanol to obtain D. zibethinus peel ethanol extract (DPEE). Samples of C. albicans were obtained from the Laboratory of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia. The diffusion method was used to determine the antifungal activity. Six groups with different concentrations of DPEE (6.25%, 12.5%, 25%, and 50%), ketoconazole (positive control) and dimethyl sulfoxide (negative control) were exposed to C. albicans in six replicates. Six lower concentrations (12.5%, 6.25%, 3.12%, 3%, 1.56%, and 0.78%) were divided to perform the liquid dilution method to obtain the MIC and affirmation test for MBC. The diameter of the inhibition zone was analyzed using one-way ANOVA and the Tukey post-hoc test for differences between concentrations. Our data indicated that the DPEE 6.25% had the largest inhibition zone (17.26±5.64 mm) and the inhibition zones were significant different among concentrations of DPEE (p<0.05). Furthermore, the DPEE had a MIC of 0.78% and MBC of 3.125% against C. albicans. This study highlights that the ethanol extract of D. zibethinus has potential antifungal activity against C. albicans. However, a further study is needed to determine its antifungal activities in more precise manner.


Subject(s)
Antifungal Agents , Candida albicans , Microbial Sensitivity Tests , Plant Extracts , Candida albicans/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Indonesia , Fruit/chemistry
7.
Proc Biol Sci ; 291(2023): 20240138, 2024 May.
Article in English | MEDLINE | ID: mdl-38808448

ABSTRACT

A leading hypothesis for the evolution of large brains in humans and other species is that a feedback loop exists whereby intelligent animals forage more efficiently, which results in increased energy intake that fuels the growth and maintenance of large brains. We test this hypothesis for the first time with high-resolution tracking data from four sympatric, frugivorous rainforest mammal species (42 individuals) and drone-based maps of their predominant feeding trees. We found no evidence that larger-brained primates had more efficient foraging paths than smaller brained procyonids. This refutes a key assumption of the fruit-diet hypothesis for brain evolution, suggesting that other factors such as temporal cognition, extractive foraging or sociality have been more important for brain evolution.


Subject(s)
Brain , Diet , Feeding Behavior , Animals , Brain/physiology , Diet/veterinary , Biological Evolution , Fruit , Rainforest , Primates/physiology
8.
Braz J Biol ; 84: e276874, 2024.
Article in English | MEDLINE | ID: mdl-38808783

ABSTRACT

Strawberry (Fragaria x ananassa Duch.) is a highly perishable fruit whose characteristics make it susceptible to developing microorganisms. Plant extracts have been studied as an alternative to pesticides to control spoilage microorganisms, responding to the expectation of the population seeking a healthier way of life. The fungus Botrytis cinerea is a facultative pathogen of vegetables, which can affect all stages of the development of several fruits, such as the strawberry, where it causes gray rot. Trichilia catigua (catuaba), Paullinia cupana (guarana), Stryphnodendron barbatiman (barbatimão), and Caesalpinia peltophoroides (sibipiruna) are planted in the Brazilian flora and have demonstrated pharmacological properties in their extracts. This work aimed to treat strawberries with a biodegradable film containing extracts of these species to evaluate strawberry conservation. There were notable distinctions in mass loss between the extract-treated and control samples. The pH, total acidity (TA), and soluble solids parameters exhibited consistently significant means across both sets of samples. Luminosity increased over the course of days in the color parameters, with the exception of strawberries coated with guarana. The red color showed greater intensity, except for those coated with barbatimão extract. Considering the results, it is possible to conclude that the coatings used can become an alternative to enhance the conservation of strawberries.


Subject(s)
Fragaria , Plant Extracts , Fragaria/chemistry , Fragaria/microbiology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Botrytis/drug effects , Paullinia/chemistry , Caesalpinia/chemistry , Fruit/chemistry
9.
Sci Rep ; 14(1): 12096, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802434

ABSTRACT

Biostimulants are heterogeneous products designed to support plant development and to improve the yield and quality of crops. Here, we focused on the effects of triacontanol, a promising biostimulant found in cuticle waxes, on tomato growth and productivity. We examined various phenological traits related to vegetative growth, flowering and fruit yield, the metabolic profile of fruits, and the response of triacontanol-treated plants to salt stress. Additionally, a proteomic analysis was conducted to clarify the molecular mechanisms underlying triacontanol action. Triacontanol application induced advanced and increased blooming without affecting plant growth. Biochemical analyses of fruits showed minimal changes in nutritional properties. The treatment also increased the germination rate of seeds by altering hormone homeostasis and reduced salt stress-induced damage. Proteomics analysis of leaves revealed that triacontanol increased the abundance of proteins related to development and abiotic stress, while down-regulating proteins involved in biotic stress resistance. The proteome of the fruits was not significantly affected by triacontanol, confirming that biostimulation did not alter the nutritional properties of fruits. Overall, our findings provide evidence of the effects of triacontanol on growth, development, and stress tolerance, shedding light on its mechanism of action and providing new insights into its potential in agricultural practices.


Subject(s)
Fatty Alcohols , Fruit , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Fatty Alcohols/pharmacology , Fruit/drug effects , Fruit/metabolism , Fruit/chemistry , Proteomics/methods , Phenotype , Plant Proteins/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Germination/drug effects , Salt Stress , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development
10.
Food Chem ; 452: 139606, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744127

ABSTRACT

In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.


Subject(s)
Bacteria , Digestion , Fermentation , Fruit , Passiflora , Passiflora/chemistry , Passiflora/metabolism , Fruit/chemistry , Fruit/metabolism , Bacteria/metabolism , Humans , Polysaccharides/metabolism , Polysaccharides/chemistry , Pectins/metabolism , Pectins/chemistry , Feces/microbiology , Feces/chemistry , Gastrointestinal Microbiome , Plant Extracts/chemistry , Plant Extracts/metabolism , Models, Biological
11.
J Chromatogr A ; 1727: 464970, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38744187

ABSTRACT

The extensive usage of neonicotinoid insecticides (NIs) has raised many concerns about their potential harm to environment and human health. Thus, it is of great importance to develop an efficient and reliable method to determine NIs in food samples. In this work, three Zr4+-based metal-organic frameworks functionalized with various numbers of hydroxyl groups were fabricated with a facile one-pot solvothermal method. Among them, dihydroxy modified UiO-66 (UiO-66-(OH)2) exhibited best adsorption performance towards five target NIs. Then, a sensitive and efficient method for detection of NIs from vegetable and fruit samples was established based on dispersive solid phase extraction (dSPE) with UiO-66-(OH)2 as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Key parameters affecting the dSPE procedure including amounts of adsorbent, adsorption time, eluent solvents and desorption time were investigated. Under the optimal conditions, rapid adsorption of NIs within five minutes was achieved due to the high affinity of UiO-66-(OH)2 towards NIs. The developed method exhibited high sensitivity with limits of detection (LODs) varied from 0.003 to 0.03 ng/mL and wide linearity range over 3-4 orders of magnitude from 0.01 to 500 ng/mL. Furthermore, the established method was applied for determining trace NIs from complex matrices with recoveries ranging from 74.6 to 99.6 % and 77.0-106.8 % for pear and tomato samples, respectively. The results indicate the potential of UiO-66-(OH)2 for efficient enrichment of trace NIs from complex matrices.


Subject(s)
Insecticides , Limit of Detection , Metal-Organic Frameworks , Solid Phase Extraction , Tandem Mass Spectrometry , Vegetables , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Insecticides/analysis , Insecticides/isolation & purification , Insecticides/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Vegetables/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , Neonicotinoids/isolation & purification , Fruit/chemistry , Anabasine/analysis , Anabasine/chemistry , Food Contamination/analysis , Zirconium/chemistry , Phthalic Acids
12.
Clin Nutr ESPEN ; 61: 420-426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777464

ABSTRACT

BACKGROUND: Exclusion diets are common practices among individuals with Inflammatory Bowel Disease (IBD). Reports that certain foods trigger or worsen symptoms are recurrent but lack evidence. The aim of the study was to identify which foods were most frequently avoided by patients with Crohn's Disease (CD) and Ulcerative Colitis (UC) and whether the consumption of any food group was associated with disease activity. METHODS: Cross-sectional study with adult patients seen at an outpatient clinic in a tertiary public hospital. Dietary intake and eating habits were accessed through questionnaires administered via telephone interview. Disease activity and symptoms were assessed using the Harvey-Bradshaw Index (IHB) for CD and the Lichtiger Index (LI) for UC. Poisson regression with a robust variance estimator was used to estimate prevalence ratios. Analyzes were performed using SPSS - Statistical Package for the Social Sciences. RESULTS: The study included 145 patients. Of these, 69.7% avoided certain foods, with citrus fruits and raw vegetables among the most avoided (16.8% and 13.8%, respectively). Regular consumption of fruits (PR = 0.56; CI 95% 0.32-0.97; p = 0.042) and vegetables (PR = 0.56; CI 95% 0.32-0.98; p = 0.045) was associated with a 44% lower prevalence of the active phase of the disease, compared to those who do not consume these foods, adjusted for age, sex and type of disease. Other food items did not present significant associations in the adjusted model. CONCLUSIONS: Fruit and vegetable intake appears to have a protective role in the recurrence of IBD. Excluding foods is a common practice, even among patients in remission, and this should be combated as it can lead to nutritional losses. It is important to reinforce with patients the benefits of a varied and less restrictive diet.


Subject(s)
Diet , Feeding Behavior , Fruit , Inflammatory Bowel Diseases , Vegetables , Humans , Cross-Sectional Studies , Female , Male , Adult , Middle Aged , Prevalence , Inflammatory Bowel Diseases/epidemiology , Crohn Disease/epidemiology , Colitis, Ulcerative/epidemiology , Surveys and Questionnaires , Young Adult
13.
Physiol Plant ; 176(3): e14332, 2024.
Article in English | MEDLINE | ID: mdl-38710502

ABSTRACT

Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.


Subject(s)
Cytochrome P-450 Enzyme System , Fruit , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/enzymology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fruit/genetics , Fruit/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Cold-Shock Response/genetics , Gene Duplication , Chromosomes, Plant/genetics , Cold Temperature
14.
Physiol Plant ; 176(3): e14333, 2024.
Article in English | MEDLINE | ID: mdl-38710501

ABSTRACT

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Proanthocyanidins , Quercus , Proanthocyanidins/metabolism , Proanthocyanidins/biosynthesis , Quercus/genetics , Quercus/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/genetics , Fruit/metabolism
15.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710545

ABSTRACT

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Subject(s)
Cellulose , Food Packaging , Lignin , Lignin/analogs & derivatives , Nanocomposites , Nanofibers , Tensile Strength , Wood , Xylans , Food Packaging/methods , Lignin/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Wood/chemistry , Nanofibers/chemistry , Xylans/chemistry , Antioxidants/chemistry , Fruit/chemistry
16.
Anim Sci J ; 95(1): e13950, 2024.
Article in English | MEDLINE | ID: mdl-38712489

ABSTRACT

The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).


Subject(s)
Antioxidants , Chemical Phenomena , Digestion , Fermentation , Melastomataceae , Plant Extracts , Rumen , Starch , Rumen/metabolism , Animals , Starch/metabolism , Antioxidants/metabolism , Melastomataceae/chemistry , Melastomataceae/metabolism , Rheology , Methane/metabolism , Fruit/chemistry , In Vitro Techniques , Phenols/metabolism , Phenols/analysis , Particle Size , Polyphenols/metabolism
17.
Rapid Commun Mass Spectrom ; 38(15): e9770, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38773864

ABSTRACT

RATIONALE: Chlorothalonil (CHT), a broad-spectrum fungicide, has been employed widely to control foliar diseases, whereas with a major metabolite of polar 4-hydroxychlorothalonil (CHT-4-OH), only an acceptable nonpolar CHT residue is allowed by most countries. This study involves the method development for CHT residue in vegetables/fruits using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a novel modified discharge-adaptor (DA) interface. METHODS: CHT residue was analyzed using LC-MS/MS with DA interface (LC-DA-MS/MS), developed in our previous works. A DA was placed on the electrospray tip to switch the ionization modes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to extract CHT residue of vegetables/fruits efficiently with less sample preparation time and analysis cost. RESULTS: CHT and CHT-4-OH spiked in four different vegetables/fruits were extracted using the modified QuEChERS method. After LC with isocratic elution, CHT and CHT-4-OH were separated within 3 min. Using LC-DA-MS/MS, the ion signals of CHT were improved two to three times, and the limit of quantification of 5 ng/g and linearity (r2 > 0.99) in the range of 5-200 ng/g were achieved using 10 g of vegetables/fruits. The precision and accuracy were within 15% each. The modified QuEChERS and LC-DA-MS/MS were applied to examine eight field-grown vegetables/fruits; 9.5 and 2588.9 ng/g of CHT were detected in two vegetables/fruits. CONCLUSION: LC-DA-MS/MS combined with modified QuEChERS was successfully applied to determine CHT residue <10 ng/g in vegetables/fruits and with satisfied validation results. The developed method could reduce both analysis cost and time, attributing to simplifications in modified QuEChERS, isocratic elution, and DA interface in LC-DA-MS/MS.


Subject(s)
Fruit , Fungicides, Industrial , Nitriles , Pesticide Residues , Tandem Mass Spectrometry , Vegetables , Tandem Mass Spectrometry/methods , Vegetables/chemistry , Nitriles/analysis , Nitriles/chemistry , Chromatography, Liquid/methods , Pesticide Residues/analysis , Fruit/chemistry , Fungicides, Industrial/analysis , Limit of Detection , Reproducibility of Results , Food Contamination/analysis
18.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731502

ABSTRACT

Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing.


Subject(s)
Metabolomics , Metabolomics/methods , Taste , Tandem Mass Spectrometry/methods , Metabolome , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Fruit/metabolism
19.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731535

ABSTRACT

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Subject(s)
Antioxidants , Fermentation , Fragaria , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Fragaria/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Odorants/analysis , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry , Color
20.
BMC Plant Biol ; 24(1): 418, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760720

ABSTRACT

BACKGROUND: Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS: RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION: This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.


Subject(s)
Abscisic Acid , Blueberry Plants , Cyclopentanes , Ethylenes , Fruit , Gene Expression Regulation, Plant , Oxylipins , Photosynthesis , Plant Growth Regulators , Ethylenes/metabolism , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Plant Growth Regulators/metabolism , Blueberry Plants/genetics , Blueberry Plants/growth & development , Blueberry Plants/metabolism , Blueberry Plants/physiology , Fruit/growth & development , Fruit/genetics , Fruit/drug effects , Oxylipins/metabolism , Down-Regulation , Organophosphorus Compounds/pharmacology , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...