Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.880
Filter
1.
J Ethnopharmacol ; 336: 118727, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182700

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiocordyceps sinensis (O. sinensis) is a genus of Ascomycete fungus that is endemic to the alpine meadows of the Tibetan Plateau and adjoining Himalayas. It has been used traditionally as a tonic to improve respiratory health in ancient China as well as to promote vitality and longevity. Bioactive components found in O. sinensis such as adenosine, cordycepin, 3-deoxyadenosine, L-arginine and polysaccharides have gained increasing interest in recent years due to their antioxidative and other properties, which include anti-asthmatic, antiviral, immunomodulation and improvement of general health. AIM OF THE STUDY: This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans. MATERIALS AND METHODS: A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay. RESULTS: Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%. CONCLUSIONS: These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.


Subject(s)
Fruiting Bodies, Fungal , Muscle, Smooth , Rats, Sprague-Dawley , Animals , Male , Fruiting Bodies, Fungal/chemistry , Muscle, Smooth/drug effects , Muscle Relaxation/drug effects , Rats , Trachea/drug effects , Trachea/metabolism , Longevity/drug effects , Hypocreales
2.
Food Res Int ; 194: 114938, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232548

ABSTRACT

The aroma is critical in the reproductive biology of truffles and in their commercial quality. However, previous research has almost exclusively focused on characterizing ripe ascocarps. We characterized the volatilome of the highly-prized black truffle (Tuber melanosporum) ascocarps from July, in an early development stage, to March, in the late harvesting season, and investigated the relationships among aroma, ascocarp growth and morphogenetic development. The aroma profile was analyzed using a head space gas chromatography technique coupled with mass spectrometer. Seventy-one volatile compounds were identified and three development stages were clearly distinguished according to the volatile profile. In unripe ascocarps of July-September, the profile was dominated by methanethiol (19 %), 4-penten-2-ol (11 %) and acetone (11 %), the monthly mean weight of ascocarps ranged 2-20 g, and morphogenetic stages 4-6a were prevalent. In unripe ascocarps of October-December, the most abundant volatiles were 4-penten-2-ol (21 %), methanethiol (20 %) and ethanol (13 %), the monthly mean ascocarp weight ranged 28-43 g, and morphogenetic stages 6a, 6b-c were prevalent. In ripe ascocarps (December-March), the most abundant volatiles were 4-penten-2-ol (17 %), dimethyl sulfide (16 %) and ethanol (10 %), ascocarp weight did not increase significantly, and 6b-c was practically the sole morphogenetic stage. Thirty volatiles were associated to one of these three development stages. Amongst those with higher occurrence, 4-penten-2-ol, dimethyl sulfide, ethyl acetate, 2-pentanol and 2-butanone were associated to ripe truffles, whereas methanethiol, isobutyl isobutyrate, butanedione and 3-methylanisole were associated to unripe truffles.


Subject(s)
Ascomycota , Gas Chromatography-Mass Spectrometry , Odorants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Odorants/analysis , Ascomycota/growth & development , Ascomycota/metabolism , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/chemistry , Seasons
3.
Sci Rep ; 14(1): 21136, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256414

ABSTRACT

The identification and classification of various phenotypic features of Auricularia cornea fruit bodies are crucial for quality grading and breeding efforts. The phenotypic features of Auricularia cornea fruit bodies encompass size, number, shape, color, pigmentation, and damage. These phenotypic features are distributed across various views of the fruit bodies, making the task of achieving both rapid and accurate identification and classification challenging. This paper proposes a novel multi-view multi-label fast network that integrates two different views of the Auricularia cornea fruiting body, enabling rapid and precise identification and classification of six phenotypic features simultaneously. Initially, a multi-view feature extraction model based on partial convolution was constructed. This model incorporates channel attention mechanisms to achieve rapid phenotypic feature extraction of the Auricularia cornea fruiting body. Subsequently, an efficient multi-task classifier was designed, based on class-specific residual attention, to ensure accurate classification of phenotypic features. Finally, task weights were dynamically adjusted based on heteroscedastic uncertainty, reducing the training complexity of the multi-task classification. The proposed network achieved a classification accuracy of 94.66% and an inference speed of 11.9 ms on an image dataset of dried Auricularia cornea fruiting bodies with three views and six labels. The results demonstrate that the proposed network can efficiently and accurately identify and classify all phenotypic features of Auricularia cornea.


Subject(s)
Phenotype , Basidiomycota/classification , Basidiomycota/physiology , Fruiting Bodies, Fungal , Image Processing, Computer-Assisted/methods , Algorithms , Neural Networks, Computer
4.
Int J Med Mushrooms ; 26(10): 41-54, 2024.
Article in English | MEDLINE | ID: mdl-39171630

ABSTRACT

The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.


Subject(s)
Gene Expression Profiling , Transcriptome , Gene Regulatory Networks , Gene Expression Regulation, Fungal , Cordyceps/genetics , Cordyceps/growth & development , Cordyceps/metabolism , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Hypocreales/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , East Asian People
5.
Int J Med Mushrooms ; 26(9): 17-31, 2024.
Article in English | MEDLINE | ID: mdl-39093399

ABSTRACT

Cellular damage resulting from elevated levels of free radicals can lead to persistent health issues. Pleurotus floridanus, an edible white oyster mushroom, is rich in ß-glucans with potent antioxidant and anti-inflammatory properties. In this research, we examined the ß-glucan content, total phenolic content, as well as antioxidant and anti-inflammatory potential of hot water extracts with varying particle sizes (< 75, 75-154, 154-300, and 300-600 µm) of both whole and sliced fruiting bodies of P. floridanus. The findings revealed that the в-glucan content increased as the particle size increased, although no significant differences were observed. Conversely, smaller particle sizes (< 75 µm) of whole and sliced fruiting bodies of P. floridanus exhibited higher phenolic content, 2,2-diphenyl-1-picryl-hy-drazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activity, and reducing ability compared with larger particle size (> 75 µm). Of the four samples (AW2, AW3, AS1, and AS2) with the highest antioxidant activity selected for anti-inflammatory assays, all demonstrated the ability to reduce nitric oxide and tumor necrosis factor-alpha levels, but did not enhance interleukin-10 expression in lipopolysaccharide-stimulated RAW264.7 cells. Interestingly, particle size < 75 to 300 µm did not appear to influence the anti-inflammatory activity, because no significant differences were observed among the particle sizes. Therefore, a particle size < 300 µm in a P. floridanus hot water extract could serve as a valuable source of antioxidant and anti-inflammatory compounds to counteract the harmful effects of free radicals.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Particle Size , Pleurotus , beta-Glucans , Antioxidants/pharmacology , Antioxidants/chemistry , Pleurotus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Mice , Animals , beta-Glucans/pharmacology , beta-Glucans/chemistry , RAW 264.7 Cells , Fruiting Bodies, Fungal/chemistry , Macrophages/drug effects , Phenols/pharmacology , Phenols/chemistry , Phenols/analysis , Tumor Necrosis Factor-alpha/metabolism
6.
Int J Med Mushrooms ; 26(9): 33-50, 2024.
Article in English | MEDLINE | ID: mdl-39093400

ABSTRACT

We investigated the chemical and medicinal properties of methanolic and acetonic extracts of Armillaria ostoyae and the presence of heavy metals in its dry basidiocarps. The chemical content of extracts was analyzed with the HPLC-DAD-MS/MS method. According to our results, the most abundant mineral was potassium; the most abundant organic acid was malic acid; the most abundant carbohydrate was fructose, and the most abundant polyphenol was chlorogenic acid. The antimicrobial potential was evaluated using the microdilution assay, and the results ranged from 0.62 to 20 mg/mL. Antioxidant potential was studied by DPPH [half-maximal inhibitory concentration (IC50) of the methanolic extract was 619.67 µg/mL and of the acetonic extract was 533.65 µg/mL] and reducing power assays (the results ranged from 0.025 to 0.078 µg/mL). Total phenolic content was presented as gallic acid equivalent (methanolic extract, 6.12 mg GAE/g; acetonic extract, 3.99 mg GAE/g). The antidiabetic potential was explored by applying the α-amylase (the results ranged from 39.62 to 44.33%) and α-glucosidase assays (the results were in the range of 0.27-2.51%). The neuroprotective activity was asserted by the acetylcholinesterase inhibition assay (the results were in the range of 3.06-6.09%). The cytotoxic potential was investigated using the microtetrazolium assay, and the IC50 values ranged from 221.96 to > 400 µg/mL. Heavy metal content of the dry basidiocarps was evaluated using the AAS method and iron was the most abundant metal. A. ostoyae is a conditionally edible mushroom, which was not studied thoroughly before, thus this research will provide valuable knowledge about this species.


Subject(s)
Antioxidants , Armillaria , Metals, Heavy , Antioxidants/pharmacology , Antioxidants/chemistry , Armillaria/chemistry , Fruiting Bodies, Fungal/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
7.
Nutrients ; 16(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39125432

ABSTRACT

Phallus atrovolvatus, a wild edible mushroom, has attracted increasing interest for consumption due to its unique taste and beneficial health benefits. This study determined the chemical components in the so-called fruiting body during the egg and mature stages and investigated its gut microbiota-modulating activities. The egg stage contained higher total carbohydrates, dietary fiber, glucans, ash, and fat, while the total protein content was lower than in the mature stage. Two consumption forms, including cooked mushrooms and a mushroom aqueous extract from both stages, were used in this study. An in vitro gut fermentation was performed for 24 h to assess gut microbiota regulation. All mushroom-supplemented fermentations increased short-chain fatty acid (SCFA) production compared to the blank control. Furthermore, all mushroom supplementations promoted the growth of Bifidobacterium and Streptococcus. Samples from the mature stage increased the relative abundance of Clostridium sensu stricto 1, while those from the egg stage increased the Bacteroides group. The inhibition of harmful bacteria, including Escherichia-Shigella, Klebsiella, and Veillonella, was only observed for the mature body. Our findings demonstrate that P. atrovolvatus exhibits potential benefits on gut health by promoting SCFA production and the growth of beneficial bacteria, with the mature stage demonstrating superior effects compared to the egg stage.


Subject(s)
Fermentation , Fruiting Bodies, Fungal , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Agaricales/chemistry , Bacteria/growth & development , Bacteria/metabolism , Dietary Fiber/pharmacology , Dietary Fiber/analysis , Humans
8.
J Nat Med ; 78(4): 919-928, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39127865

ABSTRACT

Basidiomycetes with a wide variety of skeletons of secondary metabolites can be expected to be the source of new interesting biological compounds. During our research on basidiomycetes, two new C-29 oxygenated oleanane-type triterpenes (1 and 2) and torulosacid (3), a muurolene type sesquiterpenoid with a five-membered ether ring along with nine known compounds (4-12), were isolated from the MeOH extract of the fruiting bodies of Fuscoporia torulosa. The structures of 1-3 were determined by NMR and HREIMS analysis. Further studies on the stereochemistry of 3 were conducted using X-ray crystallographic analysis and comparison of experimental and calculated ECD spectra. In the antimicrobial assay of isolates, 1, 7, and 9 showed growth inhibitory activity against methicillin-resistant Staphylococcus aureus and other gram-positive strains. Isolation of oleanane type triterpenes from fungi including basidiomycetes, is a unique report that could lead to further isolation of new compounds and the discovery of unique biosynthetic enzymes.


Subject(s)
Fruiting Bodies, Fungal , Microbial Sensitivity Tests , Sesquiterpenes , Fruiting Bodies, Fungal/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Molecular Structure , Basidiomycota/chemistry , Oleanolic Acid/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Crystallography, X-Ray , Methicillin-Resistant Staphylococcus aureus/drug effects
9.
BMC Genomics ; 25(1): 763, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107700

ABSTRACT

Edible fungi cultivation serves as an efficient biological approach to transforming agroforestry byproducts, particularly Korshinsk peashrub (KP) branches into valuable mushroom (Lentinus edodes) products. Despite the widespread use of KP, the molecular mechanisms underlying its regulation of mushroom development remain largely unknown. In this study, we conducted a combined analysis of transcriptome and metabolism of mushroom fruiting bodies cultivated on KP substrates compared to those on apple wood sawdust (AWS) substrate. Our aim was to identify key metabolic pathways and genes that respond to the effects of KP substrates on mushrooms. The results revealed that KP induced at least a 1.5-fold increase in protein and fat content relative to AWS, with 15% increase in polysaccharide and total sugar content in mushroom fruiting bodies. There are 1196 differentially expressed genes (DEGs) between mushrooms treated with KP relative to AWS. Bioinformatic analysis show significant enrichments in amino acid metabolic process, oxidase activity, malic enzyme activity and carbon metabolism among the 698 up-regulated DEGs induced by KP against AWS. Additionally, pathways associated with organic acid transport and methane metabolism were significantly enriched among the 498 down-regulated DEGs. Metabolomic analysis identified 439 differentially abundant metabolites (DAMs) in mushrooms treated with KP compared to AWS. Consistent with the transcriptome data, KEGG analysis on metabolomic dataset suggested significant enrichments in carbon metabolism, alanine, aspartate and glutamate metabolism among the up-regulated DAMs by KP. In particular, some DAMs were enhanced by 1.5-fold, including D-glutamine, L-glutamate, glucose and pyruvate in mushroom samples treated with KP relative to AWS. Targeted metabolomic analysis confirmed the contents of DAMs related to glutamate metabolism and energy metabolism. In conclusion, our findings suggest that reprogrammed carbon metabolism and oxidoreductase pathways act critical roles in the enhanced response of mushroom to KP substrates.


Subject(s)
Carbon , Transcriptome , Carbon/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Metabolic Networks and Pathways , Gene Expression Profiling , Gene Expression Regulation, Fungal , Agaricales/genetics , Agaricales/metabolism , Shiitake Mushrooms/metabolism , Shiitake Mushrooms/genetics , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
10.
Sci Rep ; 14(1): 18908, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143118

ABSTRACT

Propagule dispersal is a crucial aspect of the survival and reproduction of sessile organisms, such as plants and fungi. As such, the colours of fleshy fruits serve as a visual cue for animal dispersers. However, little is known about how, or whether, specific traits of fungal fruiting bodies, such as colour or shape, attract animal dispersers, and additionally the identities of fungal dispersers are poorly understood. Globally, most truffle-like fungi are dull-coloured, subterranean, and likely have scents that are attractive to mammalian dispersers. In Aotearoa-New Zealand, however, brightly coloured truffle-like fungi that emerge from the forest floor have seemingly proliferated. This proliferation has prompted the hypothesis that they are adapted to dispersal by a bird-dominated fauna. In our study, we used the literature and citizen science data (GBIF) to explore whether colourful species occur at a higher proportion of the total truffle-like fungi flora in Aotearoa-New Zealand than elsewhere in the world. In addition, we tested for a relationship between biotic factors (avian frugivory and forest cover) and abiotic factors (precipitation, radiation, and temperature) and the prevalence of brightly coloured truffle-like fungi across the world. The most colourful truffle-like fungi are in three defined regions: Australia, South and Central America and the Caribbean, and Aotearoa-NZ. Potential dispersers and the environment both relate to the distribution of truffle-like fungi: we found that increasing levels of frugivory were associated with higher proportions of colourful truffle-like fungi. This finding provides new insights into drivers of certain fungal traits, and their interactions between birds and fungi. Unique ecosystems, such as Aotearoa-NZ's bird-dominated biota, provide fascinating opportunities to explore how plants and fungi interact with the sensory systems of animals.


Subject(s)
Birds , New Zealand , Animals , Birds/physiology , Birds/microbiology , Fungi/physiology , Color , Ascomycota/physiology , Adaptation, Physiological , Fruiting Bodies, Fungal/physiology
11.
Folia Microbiol (Praha) ; 69(5): 1137-1144, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160370

ABSTRACT

Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.


Subject(s)
Bacteria , Fruiting Bodies, Fungal , Phylogeny , RNA, Ribosomal, 16S , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Fruiting Bodies, Fungal/growth & development , Soil Microbiology , DNA, Bacterial/genetics , Microbiota , Biodiversity , Sequence Analysis, DNA
12.
Mycologia ; 116(5): 792-820, 2024.
Article in English | MEDLINE | ID: mdl-39121366

ABSTRACT

Pseudohydnum, commonly known as cat's tongue mushrooms, is a monophyletic assemblage within Auriculariales, which encompasses species with gelatinous basidiomata, spathulate, flabellate, or shell-shaped pileus, hydnoid hymenophore, globose to ellipsoidal basidiospores, and longitudinally cruciate-septate basidia. According to the available literature, 16 species have been described in Pseudohydnum, mostly represented in temperate-boreal forests of the Northern Hemisphere. However, the limited morphological, molecular, and ecological information, especially from the Southern Hemisphere ecosystems, does not presently allow a reliable assessment of its taxonomic boundaries nor provide a complete picture of the species diversity in the genus. In an ongoing effort to examine specimens collected in dense and mixed ombrophilous forest fragments (Atlantic Rainforest domain) from Southeastern and Southern Brazil, additional taxa assigned to Pseudohydnum were identified. Four new species are recognized based mostly on characters of the pileus surface, stipe, hymenium, and basidiospores. Molecular phylogenetic analyses based on nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), partial nuc rDNA 28S, and partial RNA polymerase II largest subunit (RPB1) sequences supported the description of these new taxa. Here, we propose Pseudohydnum brasiliense, P. brunneovelutinum, P. cupulisnymphae, and P. viridimontanum as new species. Morphological descriptions, line drawings, habitat photos, and comparisons with closely related taxa are provided. A dichotomous key for identification of currently known Southern Hemisphere Pseudohydnum species is presented.


Subject(s)
Agaricales , DNA, Fungal , DNA, Ribosomal Spacer , Phylogeny , Spores, Fungal , DNA, Fungal/genetics , Brazil , DNA, Ribosomal Spacer/genetics , Spores, Fungal/cytology , Spores, Fungal/classification , Agaricales/classification , Agaricales/genetics , Agaricales/isolation & purification , Agaricales/cytology , Sequence Analysis, DNA , DNA, Ribosomal/genetics , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/cytology , Basidiomycota/isolation & purification , RNA, Ribosomal, 28S/genetics , Fruiting Bodies, Fungal/cytology , Forests
13.
Int J Med Mushrooms ; 26(8): 59-73, 2024.
Article in English | MEDLINE | ID: mdl-38967211

ABSTRACT

Cordyceps militaris, a medicinal fungus rich in cordycepin, shows promise in treating diseases such as cancer, respiratory issues, and COVID-19. This study examines the impact of different Taiwanese rice varieties on its solid-state fermentation, focusing on optimizing cordycepin production. The results indicated that the cordycepin yield was indeed affected by the type of rice used. In terms of the fruiting bodies, germ rice resulted in the highest yield (13.1 ± 0.36 mg/g), followed by brown rice (11.9 ± 0.26 mg/g). In the rice culture medium (RCM), brown rice led to the highest yield (4.77 ± 0.06 mg/g). Using gas chromatography-mass spectrometry and untargeted metabolomics, the study identifies four key volatile components linked to cordycepin, providing insights into developing functional rice porridge products. These findings are significant for advancing cordycepin mass production and offering dietary options for older individuals.


Subject(s)
Cordyceps , Deoxyadenosines , Fermentation , Gas Chromatography-Mass Spectrometry , Metabolomics , Oryza , Deoxyadenosines/analysis , Deoxyadenosines/metabolism , Oryza/chemistry , Oryza/microbiology , Cordyceps/metabolism , Cordyceps/chemistry , Cordyceps/growth & development , Culture Media/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Taiwan
14.
J Agric Food Chem ; 72(32): 18271-18282, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39074379

ABSTRACT

Flammulina velutipes (enokitake) is widely recognized for its nutritional and medicinal properties. Understanding the biochemical processes, such as lipid metabolism during fruiting body formation, is essential for enhancing mushroom cultivation and utilization. This study aimed at elucidating the dynamic lipidomic changes during seven growth stages of F. velutipes using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Our results revealed significant increases in ceramides along with the growth and a sharp decline in phosphatidylinositols from mycelial to primordial stages. Fatty acid esters of hydroxy fatty acids, recently discovered for their bioactivities, showed high intensities in the mycelial and primordial stages but decreased rapidly thereafter. These findings provide profound insights into the lipid profiles associated with mushroom morphology and development. This lipidomics study establishes a foundational understanding for future research in agricultural and food chemistry applications, potentially improving industrial production and quality control of F. velutipes.


Subject(s)
Flammulina , Fruiting Bodies, Fungal , Lipidomics , Mass Spectrometry , Flammulina/chemistry , Flammulina/growth & development , Flammulina/metabolism , Chromatography, High Pressure Liquid , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Lipidomics/methods , Mass Spectrometry/methods , Lipids/chemistry , Lipid Metabolism
15.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958759

ABSTRACT

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Subject(s)
Cordyceps , Cordyceps/metabolism , Cordyceps/genetics , Cordyceps/growth & development , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Adenosine/metabolism , Polysaccharides/metabolism , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/genetics
16.
Sci Rep ; 14(1): 16135, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997416

ABSTRACT

While the succession of terrestrial plant communities is well studied, less is known about succession on dead wood, especially how it is affected by environmental factors. While temperate forests face increasing canopy mortality, which causes considerable changes in microclimates, it remains unclear how canopy openness affects fungal succession. Here, we used a large real-world experiment to study the effect of closed and opened canopy on treatment-based alpha and beta fungal fruiting diversity. We found increasing diversity in early and decreasing diversity at later stages of succession under both canopies, with a stronger decrease under open canopies. However, the slopes of the diversity versus time relationships did not differ significantly between canopy treatments. The community dissimilarity remained mainly stable between canopies at ca. 25% of species exclusively associated with either canopy treatment. Species exclusive in either canopy treatment showed very low number of occupied objects compared to species occurring in both treatments. Our study showed that canopy loss subtly affected fungal fruiting succession on dead wood, suggesting that most species in the local species pool are specialized or can tolerate variable conditions. Our study indicates that the fruiting of the fungal community on dead wood is resilient against the predicted increase in canopy loss in temperate forests.


Subject(s)
Biodiversity , Forests , Fungi , Wood , Wood/microbiology , Trees/microbiology , Fruiting Bodies, Fungal/growth & development
17.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960372

ABSTRACT

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Subject(s)
Basidiomycota , Fruiting Bodies, Fungal , Fungal Proteins , Phylogeny , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/enzymology , Basidiomycota/genetics , Basidiomycota/enzymology , Basidiomycota/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Agaricales/genetics , Agaricales/enzymology , Agaricales/growth & development , Agaricales/metabolism , Gene Expression Regulation, Fungal , Spores, Fungal/growth & development , Spores, Fungal/genetics , Spores, Fungal/enzymology
18.
BMC Res Notes ; 17(1): 204, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049055

ABSTRACT

OBJECTIVE: In 2004, after consuming angel-wing mushrooms, Pleurocybella porrigens, 59 incidents of food poisoning were reported in Japan. Consequently, 17 individuals died of acute encephalopathy. In 2023, we proved that a lectin, pleurocybelline, and pleurocybellaziridine from this mushroom caused damage to the brains of mice. Although we reported genomic and transcriptomic data of P. porrigens in 2013, the assembly quality of the transcriptomic data was inadequate for accurate functional annotation. Thus, we obtained detailed transcriptomic data on the fruiting bodies and mycelia of this mushroom using Illumina NovaSeq 6000. RESULTS: De novo assembly data indicated that the N50 lengths for the fruiting bodies and mycelia were improved compared with those previously reported. The differential expression analysis between the fruiting bodies and the mycelia revealed that 1,937 and 1,555 genes were significantly up-regulated in the fruiting bodies and the mycelia, respectively. The biological functions of P. porrigens transcripts, including PA biosynthetic pathways, were investigated using BLAST search, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The obtained results revealed L-valine, a predicted precursor of PA, is biosynthesized in the fruiting bodies and mycelia. Furthermore, real-time RT-PCR was performed to evaluate the accuracy of the results of differential expression analysis.


Subject(s)
Fruiting Bodies, Fungal , Mycelium , Fruiting Bodies, Fungal/genetics , Mycelium/genetics , Mice , Animals , Agaricales/genetics , Agaricales/metabolism , RNA-Seq/methods , Brain Diseases/genetics , Brain Diseases/metabolism , Transcriptome/genetics , Gene Expression Regulation, Fungal/drug effects , Mushroom Poisoning
19.
PeerJ ; 12: e17648, 2024.
Article in English | MEDLINE | ID: mdl-39006009

ABSTRACT

The rapid degeneration of Cordyceps militaris strains during subculture represents a bottleneck problem that affects production stability. This study explored the mechanism underlying this degeneration in three production and three wild-type strains of Cordyceps militaris, isolating single-conidium strains from each. The effects of subculturing on fructification in both original and single mating-type strains were compared. Changes in the ratio of the two mating types were analyzed in both original and degenerated strains. Based on these findings, the two mating strains were paired in different ratios to determine their effects on fruiting. The resulting five strains were heterokaryotic strains with both MAT1-1 and MAT1-2 mating-type genes. Strain jb-2 was a single mating type (MAT1-1) mutant strain that produced stable fruiting bodies but failed to produce ascospores. It was found that the loss of or imbalance in mating types was the main reason for the rapid degeneration of fruiting traits during subculture and that this occurred randomly in the MAT1-1 and MAT1-2 types. The strains differed significantly in their stability during subculture. Fruiting was stable in the single mating-type Jb-2 strain, and the eleventh-generation fruited normally. There were differences in yield between the production and wild strains after inoculation with spawn containing different proportions of mating types. The production strain was more stable when inoculated with strains with mating-type ratios of 1:9 to 9:1 without affecting the yield. However, the yield of the wild-type strain xf-1 was positively correlated with the proportion of the MAT1-2 type, while the other two strains showed no correlations. Subculturing single mating-type mycelia separately and mixing them before production effectively mitigated degeneration during subculture. For Cordyceps militaris breeding, selecting strains containing both mating types, which are insensitive to the proportion of mating-type genes, enhanced stability in subculture and reduced the risk of mating-type loss. Direct breeding of specific single-mating type strains to induce fruiting is thus an effective breeding strategy.


Subject(s)
Cordyceps , Genes, Mating Type, Fungal , Cordyceps/genetics , Genes, Mating Type, Fungal/genetics , Fruiting Bodies, Fungal
20.
Mycologia ; 116(5): 821-834, 2024.
Article in English | MEDLINE | ID: mdl-38953774

ABSTRACT

Two new Psilocybe species (Hymenogastraceae), P. ingeli and P. maluti, are described from southern Africa. Morphology and phylogeny were used to separate the two novel fungi from their closest relatives in the genus. Psilocybe ingeli was found fruiting on bovine manure-enriched grasslands in the Kwa-Zulu Natal Province of South Africa and differs from its closest relative P. keralensis and others in the internal transcribed spacer ITS1-5.8S-ITS2, partial 28S nuc rDNA, and translation elongation factor 1-alpha regions, distribution, and having larger basidiospores. Similarly, P. maluti was collected from the Free State Province of South Africa and observed in the Kingdom of Lesotho, growing on bovine manure. A secotioid pileus, geographic distribution, and differences in the same DNA regions distinguish P. maluti from its closest relative P. chuxiongensis. Furthermore, the spore dispersal and traditional, spiritualistic use of P. maluti are discussed here.


Subject(s)
DNA, Fungal , DNA, Ribosomal Spacer , Phylogeny , Psilocybe , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Animals , South Africa , Psilocybe/genetics , Cattle , Sequence Analysis, DNA , DNA, Ribosomal/genetics , Spores, Fungal , Africa, Southern , Manure/microbiology , RNA, Ribosomal, 28S/genetics , Peptide Elongation Factor 1/genetics , Fruiting Bodies, Fungal , RNA, Ribosomal, 5.8S/genetics , Agaricales/classification , Agaricales/genetics , Agaricales/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL