Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.445
Filter
1.
Front Immunol ; 15: 1365430, 2024.
Article in English | MEDLINE | ID: mdl-38840912

ABSTRACT

The presence of the blood group H2 antigen on the membrane of red blood cells determines blood type O in individuals and this H2 antigen serves as a precursor to the A and B antigens expressed in blood types A and B, respectively. However, the specific involvement of ABH antigens in skin diseases is unknown. Therefore, we aim to investigate the expression of ABH antigens in skin tissue of patients with atopic dermatitis (AD) and MC903-induced AD-like mice. We demonstrated that the expression of ABH antigen is primarily located in the granular and horny layers of the skin in healthy control individuals. However, in patients with AD, the expression of the ABH antigen was absent or diminished in these layers, while the H2 antigen expression increased in the spinous layers of the affected skin lesions. Then, we investigated the biological function of blood group H antigen mediated by fucosyltransferase 1 (Fut1) in the skin, utilizing an AD mouse model induced by MC903 in wild-type (WT) and Fut1-knockout mice. After the application of MC903, Fut1-deficient mice, with no H2 antigen expression on their skin, exhibited more severe clinical signs, increased ear swelling, and elevated serum IgE levels compared with those of WT mice. Additionally, the MC903-induced thickening of both the epidermis and dermis was more pronounced in Fut1-deficient mice than that in WT mice. Furthermore, Fut1-deficient mice showed a significantly higher production of interleukin-4 (IL-4) and IL-6 in skin lesions compared with that of their WT counterparts. The expression of chemokines, particularly Ccl2 and Ccl8, was notably higher in Fut1-deficient mice compared with those of WT mice. The infiltration of CD4+ T cells, eosinophils, and mast cells into the lesional skin was significantly elevated in Fut1-deficient mice compared with that in WT mice. These findings demonstrate the protective role of H2 antigen expression against AD-like inflammation and highlight its potential therapeutic impact on AD through the regulation of blood group antigens.


Subject(s)
Dermatitis, Atopic , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Mice, Knockout , Dermatitis, Atopic/immunology , Animals , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Mice , Humans , Female , Male , Disease Models, Animal , Cytokines/metabolism , Epidermis/immunology , Epidermis/pathology , Epidermis/metabolism , Adult , Mice, Inbred C57BL
2.
Biomolecules ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786002

ABSTRACT

The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy-Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy-Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy-Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai.


Subject(s)
Diarrhea , Animals , Swine/genetics , China , Diarrhea/genetics , Diarrhea/veterinary , Fucosyltransferases/genetics , Cation Transport Proteins/genetics , Breeding , Galactoside 2-alpha-L-fucosyltransferase , Mucin-4/genetics , Genotype
3.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651269

ABSTRACT

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


Subject(s)
CRISPR-Cas Systems , Cricetulus , Gene Editing , CHO Cells , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Antibodies, Monoclonal/genetics , Recombinant Proteins/genetics , Gene Knockout Techniques/methods , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Cricetinae , Genetic Engineering/methods
4.
J Agric Food Chem ; 72(18): 10469-10476, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38659344

ABSTRACT

Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.


Subject(s)
Bacterial Proteins , Escherichia coli , Fucosyltransferases , Guanosine Diphosphate Fucose , Metabolic Engineering , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Guanosine Diphosphate Fucose/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Helicobacter pylori/enzymology , Oligosaccharides/metabolism , Oligosaccharides/biosynthesis
5.
Food Funct ; 15(8): 4140-4153, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38445991

ABSTRACT

Milk glycans play key roles in shaping and maintaining a healthy infant gut microbiota. Core fucosylation catalyzed by fucosyltransferase (Fut8) is the major glycosylation pattern on human milk N-glycan, which was crucial for promoting the colonization and dominant growth of Bifidobacterium and Lactobacillus spp. in neonates. However, the influence of core-fucose in breast milk on the establishment of early-life immune tolerance remains poorly characterized. In this study, we found that the deficiency of core-fucose in the milk of maternal mice caused by Fut8 gene heterozygosity (Fut8+/-) resulted in poor immune tolerance towards the ovalbumin (OVA) challenge, accompanied by a reduced proportion of intestinal RORγt+ Treg cells and the abundance of Lactobacillus spp., especially L. reuteri and L. johnsonii, in their breast-fed neonates. The administration of the L. reuteri and L. johnsonii mixture to neonatal mice compromised the OVA-induced allergy and up-regulated the intestinal RORγt+ Treg cell proportions. However, Lactobacillus mixture supplementation did not alleviate allergic responses in RORγt+ Treg cell-deficient mice caused by Rorc gene heterozygosity (Rorc+/-) post OVA challenge, indicating that the intervention effects depend on the RORγt+ Treg cells. Interestingly, instead of L. reuteri and L. johnsonii, we found that the relative abundance of another Lactobacillus spp., L. murinus, in the gut of the offspring mice was significantly promoted by intervention, which showed enhancing effects on the proliferation of splenic and intestinal RORγt+ Treg cells in in vitro studies. The above results indicate that core fucosylation of breast milk N-glycans is beneficial for the establishment of RORγt+ Treg cell mediated early-life immune tolerance through the manipulation of symbiotic bacteria in mice.


Subject(s)
Gastrointestinal Microbiome , Immune Tolerance , Nuclear Receptor Subfamily 1, Group F, Member 3 , Polysaccharides , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Female , Polysaccharides/metabolism , Lactobacillus , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Milk, Human/immunology , Humans , Fucose/metabolism , Animals, Newborn , Mice, Inbred C57BL , Milk
6.
Cell Cycle ; 23(2): 218-231, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38466946

ABSTRACT

Cholangiocarcinoma (CCA) is a common gastrointestinal malignancy characterized by a poor prognosis. Considering its prevalence, exploring its underlying molecular biological mechanisms is of paramount clinical importance. In this study, bioinformatics techniques were utilized to analyze CCA sample data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The analysis revealed a notable upregulation in FUT4 expression in CCA samples. To further investigate the functional implications of FUT4, in vivo and in vitro experiments were conducted, which demonstrated that FUT4 overexpression significantly enhances the proliferative and migratory capabilities of tumor cells. Subsequent sequencing analysis unveiled a correlation between FUT4 and epithelial-mesenchymal transition (EMT). Indeed, the pioneering discovery of elevated FUT4 expression in CCA was highlighted in this study. Further investigations into the function of FUT4 in CCA provided initial insights into its role in driving cancer progression via EMT. These findings present promising avenues for the diagnosis and treatment of CCA.[Figure: see text].


Subject(s)
Bile Duct Neoplasms , Cell Movement , Cell Proliferation , Cholangiocarcinoma , Disease Progression , Epithelial-Mesenchymal Transition , Fucosyltransferases , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Humans , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/genetics , Cell Movement/genetics , Mice, Nude , Mice , Mice, Inbred BALB C , Up-Regulation/genetics , Male
7.
J Biotechnol ; 387: 49-57, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38556215

ABSTRACT

2'-Fucosyllactose (2'-FL), one of the major human milk oligosaccharides, was produced in several engineered microorganisms. However, the low solubility of α-1,2-fucosyltransferase (α1,2-FucT) often becomes a bottleneck to produce maximum amount of 2'-FL in the microorganisms. To overcome this solubility issue, the following studies were conducted to improve the soluble expression of α1,2-FucT. Initially, hydrophobic amino acids in the hydrophilic region of the 6 α-helices were mutated, adhering to the α-helix rule. Subsequently, gfp11 was fused to the C-terminal of futC gene encoding α1,2-FucT (FutC), enabling selection of high-fluorescence mutants through split-GFP. Each mutant library was screened via fluorescence activated cell sorting (FACS) to separate soluble mutants for high-throughput screening. As a result, L80C single mutant and A121D/P124A/L125R triple mutant were found, and a combined quadruple mutant was created. Furthermore, we combined mutations of conserved sequences (Q150H/C151R/Q239S) of FutC, which showed positive effects in the previous studies from our lab, with the above quadruple mutants (L80C/A121D/P124A/L125R). The resulting strain produced approximately 3.4-fold higher 2'-FL titer than that of the wild-type, suggesting that the conserved sequence mutations are an independent subset of the mutations that further improve the solubility of the target protein acquired by random mutagenesis using split-GFP.


Subject(s)
Escherichia coli , Flow Cytometry , Fucosyltransferases , Green Fluorescent Proteins , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Solubility , Trisaccharides/metabolism , Galactoside 2-alpha-L-fucosyltransferase , Mutation , High-Throughput Screening Assays/methods , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
8.
Int J Biol Macromol ; 266(Pt 1): 130955, 2024 May.
Article in English | MEDLINE | ID: mdl-38499120

ABSTRACT

Lacto-N-fucopentaose V (LNFP V) is a typical human milk pentasaccharide. Multi-enzymatic in vitro synthesis of LNFP V from lactose was reported, however, microbial cell factory approach to LNFP V production has not been reported yet. In this study, the biosynthetic pathway of LNFP V was examined in Escherichia coli. The previously constructed E. coli efficiently producing lacto-N-tetraose was used as the starting strain. GDP-fucose pathway module and a regio-specific glycosyltransferase with α1,3-fucosylation activity were introduced to realize the efficient synthesis of LNFP V. The α1,3/4-fucosyltransferase from Bacteroides fragilis was selected as the best enzyme for in vivo biosynthesis of LNFP V from nine candidates, with the highest titer and the lowest by-product accumulation. A beneficial variant K128D was obtained to further enhance LNFP V titer using computer-assisted site-directed mutagenesis. The final strain EW10 could produce 25.68 g/L LNFP V by fed-batch cultivation, with the productivity of 0.56 g/L·h.


Subject(s)
Bacteroides fragilis , Fucosyltransferases , Bacteroides fragilis/enzymology , Bacteroides fragilis/genetics , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oligosaccharides/biosynthesis , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Humans , Mutagenesis, Site-Directed
9.
J Proteome Res ; 23(4): 1379-1398, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38507902

ABSTRACT

Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of N-glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their N-glycosylation profile and protein expression as an effect of the knockdown of the FUT8 gene that encodes FucT-8. Using label-free, semiquantitative mass spectrometry (MS) analysis, we found noticeable differences in N-glycosylation patterns in FUT8-knockdown cells, affecting core fucosylation and sialylation, the Hex/HexNAc ratio, and antennarity. Furthermore, stable isotopic labeling of amino acids in cell culture (SILAC)-based proteomic screening detected the alteration of species involved in protein folding, endoplasmic reticulum (ER) and Golgi post-translational stabilization, epithelial polarity, and cellular response to damage and therapy. This data is available via ProteomeXchange with identifier PXD050012. Overall, the results obtained merit further investigation to validate their feasibility as biomarkers of progression and malignization in CRC, as well as their potential usefulness in clinical practice.


Subject(s)
Colorectal Neoplasms , Fucosyltransferases , Humans , Colorectal Neoplasms/genetics , Fucose/metabolism , Fucosyltransferases/genetics , Mass Spectrometry , Polysaccharides/chemistry , Proteomics
10.
Nat Commun ; 15(1): 1148, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326303

ABSTRACT

Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.


Subject(s)
Melanoma , Neural Cell Adhesion Molecule L1 , Humans , Male , Female , Melanoma/metabolism , Androgens , Neural Cell Adhesion Molecule L1/metabolism , Lewis X Antigen/metabolism , Glycosylation , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Fucosyltransferases/genetics , Fucosyltransferases/metabolism
11.
Microb Cell Fact ; 23(1): 38, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303005

ABSTRACT

BACKGROUND: The biosynthesis of human milk oligosaccharides (HMOs) using several microbial systems has garnered considerable interest for their value in pharmaceutics and food industries. 2'-Fucosyllactose (2'-FL), the most abundant oligosaccharide in HMOs, is usually produced using chemical synthesis with a complex and toxic process. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce 2'-FL, but the low stoichiometric yields (2'-FL/glucose or glycerol) are still far from meeting the requirements of industrial production. The sufficient carbon flux for 2'-FL biosynthesis is a major challenge. As such, it is of great significance for the construction of recombinant strains with a high stoichiometric yield. RESULTS: In the present study, we designed a 2'-FL biosynthesis pathway from fructose with a theoretical stoichiometric yield of 0.5 mol 2'-FL/mol fructose. The biosynthesis of 2'-FL involves five key enzymes: phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-D-mannose 4,6-dehydratase (Gmd), and GDP-L-fucose synthase (WcaG), and α-1,2-fucosyltransferase (FucT). Based on starting strain SG104, we constructed a series of metabolically engineered E. coli strains by deleting the key genes pfkA, pfkB and pgi, and replacing the original promoter of lacY. The co-expression systems for ManB, ManC, Gmd, WcaG, and FucT were optimized, and nine FucT enzymes were screened to improve the stoichiometric yields of 2'-FL. Furthermore, the gene gapA was regulated to further enhance 2'-FL production, and the highest stoichiometric yield (0.498 mol 2'-FL/mol fructose) was achieved by using recombinant strain RFL38 (SG104ΔpfkAΔpfkBΔpgi119-lacYΔwcaF::119-gmd-wcaG-manC-manB, 119-AGGAGGAGG-gapA, harboring plasmid P30). In the scaled-up reaction, 41.6 g/L (85.2 mM) 2'-FL was produced by a fed-batch bioconversion, corresponding to a stoichiometric yield of 0.482 mol 2'-FL/mol fructose and 0.986 mol 2'-FL/mol lactose. CONCLUSIONS: The biosynthesis of 2'-FL using recombinant E. coli from fructose was optimized by metabolic engineering strategies. This is the first time to realize the biological production of 2'-FL production from fructose with high stoichiometric yields. This study also provides an important reference to obtain a suitable distribution of carbon flux between 2'-FL synthesis and glycolysis.


Subject(s)
Escherichia coli , Fructose , Humans , Escherichia coli/metabolism , Fructose/metabolism , Trisaccharides , Oligosaccharides , Metabolic Engineering , Fucosyltransferases/genetics
12.
Curr Pharm Des ; 30(6): 440-447, 2024.
Article in English | MEDLINE | ID: mdl-38343056

ABSTRACT

BACKGROUND: It has been reported that inhibition of Fucosyltransferase4 (FUT4) to activate Forkhead box O1 (FOXO1) can lead to apoptosis of cancer cells, however, the mechanism in osteosarcoma is still unclear. OBJECTIVE: To explore the biological significance of the connection between FUT4 and FOXO1 in osteosarcoma growth. METHODS: In vitro tests were conducted using the human osteoblast cell line and the osteosarcoma cell lines. QRT-PCR assay as well as western blot assay were used to ascertain the relative expression levels of FUT4 and FOXO1 in the cells. By using the CCK-8 assay, colony assay, EDU assay, wound healing assay and Transwell assay, osteosarcoma cells' ability to proliferate, migrate and invade were examined in relation to si- FUT4. TUNEL test was used to evaluate Si-impact FUT4's on KHOS and U2OS apoptosis in osteosarcoma cells. Western blot assay was used to identify the expression of proliferative, migrating and apoptosis-related protein markers in osteosarcoma cells KHOS and U2OS and the expression of important proteins in the Wnt/ ß-catenin signaling pathway. RESULTS: In comparison with osteoblasts, osteosarcoma cells expressed more FUT4. The osteosarcoma cells' capacities to proliferate, invade, and migrate were markedly inhibited by the inhibition of FUT4 expression, which also increased osteosarcoma cell apoptosis. The Wnt/ß-catenin signaling pathway was blocked by upregulating FOXO1 expression, which was in turn inhibited by inhibiting FUT4 expression. CONCLUSION: Osteosarcoma cells express more FUT4. The Wnt/ß-catenin signaling pathway has a significant effect on osteosarcoma cell death, and inhibition of FUT4 expression may target FOXO1 activation to decrease osteosarcoma cells' ability to proliferate, invade, and migrate.


Subject(s)
Apoptosis , Cell Proliferation , Forkhead Box Protein O1 , Fucosyltransferases , Osteosarcoma , Humans , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Cell Movement , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/antagonists & inhibitors , Forkhead Box Protein O1/genetics , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Fucosyltransferases/antagonists & inhibitors , Gene Silencing , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Tumor Cells, Cultured
13.
ACS Infect Dis ; 10(4): 1116-1125, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38421807

ABSTRACT

The O-fucosylation of the thrombospondin type I repeat (TSR) domain is important for TSR-containing proteins' optimal folding and stability. However, the importance of Plasmodium O-fucosyltransferase 2 (POFut2) remains unclear due to two different reports. Here, we disrupted the POFut2 gene in Plasmodium berghei and demonstrated that POFut2 KO parasites develop normally in blood and mosquito stages but show reduced infectivity in mice. We found that the reduced infectivity of POFut2 KO sporozoites was due to a diminished level of TRAP that affected the parasite gliding motility and hepatocyte infectivity. Using all-atom MD simulation, we also hypothesize that O-fucosylation impacts the TSR domain's stability more than its heparin binding capacity.


Subject(s)
Fucosyltransferases , Plasmodium berghei , Animals , Mice , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Plasmodium berghei/genetics , Sporozoites , Protozoan Proteins/metabolism , Hepatocytes/parasitology
14.
Int J Biol Macromol ; 259(Pt 2): 129316, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218286

ABSTRACT

Helicobacter pylori HpfutC, a glycosyltransferase (GT) 11 family glycoprotein, has great potential for industrial 2'-fucosyllactose (2'-FL) production. However, its limited catalytic activity, low expression, and poor thermostability hinder practical applications. Herein, a semi-rationally designed site-saturation mutation was applied to engineer the catalytic activity and thermostability of HpfutC. The 6 single point mutants (K102T, R105C, D115S, Y251F, A255G and K282E) and 6 combined mutants (V1, V2, V3, V4, V5, and V6) with enhanced enzyme activity were obtained by mutant library screening and ordered recombination mutation. The optimal mutant V6, with an optimum temperature of 40 °C, was not a metal-dependent enzyme, yet the reaction was facilitated by Mn2+. Compared to wild-type HpfutC, mutant V6 exhibited a 2.3-fold increase in specific activity and a 2.18-fold increase in half-life at 40 °C, respectively. Kinetic parameters indicated that the Km values of mutant V6 were 34.5 % (lactose) and 25.0 % (GDP-L-fucose) lower than those of the wild enzyme, whereas the kcat/Km values were 1.20 and 1.25-fold higher than those of the wild enzyme. Further, 3D-structure analysis revealed that the highly rigid structure, formation of new hydrogen bonds, increased hydrophobic residues and redistribution of electrostatic charges on the surface may be responsible for the elevated enzyme activity and thermostability. The strategy adopted in this study is of great significance to the solution of the technical bottleneck of HpfutC and the industrial application of 2'-FL.


Subject(s)
Helicobacter pylori , Helicobacter pylori/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Mutation , Temperature , Enzyme Stability
15.
PLoS Pathog ; 20(1): e1011917, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227578

ABSTRACT

Chronic hepatitis B is a global health problem and current treatments only suppress hepatitis B virus (HBV) infection, highlighting the need for new curative treatments. Oxygen levels influence HBV replication and we previously reported that hypoxia inducible factors (HIFs) activate the basal core promoter (BCP). Here we show that the hypoxic-dependent increase in BCP-derived transcripts is dependent on N6-methyladenosine (m6A) modifications in the 5' stem loop that regulate RNA half-life. Application of a probe-enriched long-read sequencing method to accurately map the HBV transcriptome showed an increased abundance of pre-genomic RNA under hypoxic conditions. Mapping the transcription start sites of BCP-RNAs identified a role for hypoxia to regulate pre-genomic RNA splicing that is dependent on m6A modification. Bioinformatic analysis of published single cell RNA-seq of murine liver showed an increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen region. In vitro studies with a human hepatocyte derived HepG2-NTCP cell line showed increased ALKBH5 gene expression under hypoxic conditions and a concomitant reduction in m6A-modified HBV BCP-RNA and host RNAs. Silencing the demethylase reduced the level of BCP-RNAs and host gene (CA9, NDRG1, VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via reduced HIFα expression. In summary, our study highlights a previously unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional responses to low oxygen.


Subject(s)
Hepatitis B virus , Hepatitis B , Animals , Humans , Mice , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Fucosyltransferases/genetics , Hepatitis B/genetics , Hepatitis B virus/metabolism , Hypoxia , Oxygen , RNA , Transcriptome
16.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256141

ABSTRACT

FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.


Subject(s)
Carcinogenesis , Cell Transformation, Neoplastic , Fucosyltransferases , Humans , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Immunosuppression Therapy , Fucosyltransferases/genetics
17.
Cell Biol Int ; 48(5): 610-625, 2024 May.
Article in English | MEDLINE | ID: mdl-38263584

ABSTRACT

Fucosyltransferases (Fut) regulate the fucosylation process associated with tumorogenesis in different cancer types. Ascitic fluid (AF) from patients diagnosed with advanced stage of epithelial ovarian cancer (EOC) is considered as a dynamic tumor microenvironment associated with poor prognosis. Previous studies from our laboratory showed increased fucosylation in SKOV-3 and OVCAR-3, cancer-derived cell lines, when these cells were incubated with AFs derived from patients diagnosed with EOC. In the present work we studied three fucosyltransferases (Fut 2, Fut 4, and Fut 8) in SKOV-3, OVCAR-3 and CAOV-3 cell lines in combination with five different AFs from patients diagnosed with this disease, confirming that all tested AFs increased fucosylation. Then, we demonstrate that mRNAs of these three enzymes were overexpressed in the three cell lines under treatment with AFs. SKOV-3 showed the higher overexpression of Fut 2, Fut 4, and Fut 8 in comparison with the control condition. We further confirmed, in the SKOV-3 cell line, by endpoint PCR, WB, and confocal microscopy, that the three enzymes were overexpressed, being Fut 4 the most overexpressed enzyme compared to Fut 2 and Fut 8. These enzymes were concentrated in vesicular structures with a homogeneous distribution pattern throughout the cytoplasm. Moreover, we found that among the three enzymes, only Fut 4 was located inside the nuclei. The nuclear location of Fut 4 was confirmed for the three cell lines. These results allow to propose Fut 2, Fut 4, and Fut 8 as potential targets for EOC treatment or as diagnostic tools for this disease.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/metabolism , Carcinoma, Ovarian Epithelial , Ascitic Fluid/metabolism , Ascitic Fluid/pathology , Galactoside 2-alpha-L-fucosyltransferase , Apoptosis , Cell Line, Tumor , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Tumor Microenvironment
18.
J Biotechnol ; 379: 53-64, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38070779

ABSTRACT

The baculovirus-insect cell expression system allows addition of O-fucose to EGF-like domains of glycoproteins, following the action of the protein O-fucosyltransferase 1 named POFUT1. In this study, recombinant Spodoptera frugiperda POFUT1 from baculovirus-infected Sf9 cells was compared to recombinant Mus musculus POFUT1 produced by CHO cells. Contrary to recombinant murine POFUT1 carrying two hybrid and/or complex type N-glycans, Spodoptera frugiperda POFUT1 exhibited paucimannose N-glycans, at least on its highly evolutionary conserved across Metazoa NRT site. The abilities of both recombinant enzymes to add in vitro O -fucose to EGF-like domains of three different recombinant mammalian glycoproteins were then explored. In vitro POFUT1-mediated O-fucosylation experiments, followed by click chemistry and blot analyses, showed that Spodoptera frugiperda POFUT1 was able to add O-fucose to mouse NOTCH1 EGF-like 26 and WIF1 EGF-like 3 domains, similarly to the murine counterpart. As proved by mass spectrometry, full-length human WNT Inhibitor Factor 1 expressed by Sf9 cells was also modified with O-fucose. However, Spodoptera frugiperda POFUT1 was unable to modify the single EGF-like domain of mouse PAMR1 with O-fucose, contrary to murine POFUT1. Absence of orthologous proteins such as PAMR1 in insects may explain the enzyme's difficulty in adding O-fucose to a domain that it never encounters naturally.


Subject(s)
Fucosyltransferases , Recombinant Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spodoptera/enzymology , Spodoptera/genetics , Spodoptera/metabolism , Fucosyltransferases/chemistry , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Humans , Animals , Mice , CHO Cells , Cricetulus , Sf9 Cells , Glycosylation , Consensus Sequence , Fucose/metabolism , Protein Domains
19.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042483

ABSTRACT

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Subject(s)
Fucose , Inflammation , Lipopolysaccharides , Animals , Humans , Mice , Cytokine Receptor gp130 , Fucose/pharmacology , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-6/genetics , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases , RNA, Messenger
20.
Plant Cell ; 36(3): 497-509, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38124350

ABSTRACT

Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Repressor Proteins/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Fucose/metabolism , Seedlings/metabolism , Sugars/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...