Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Free Radic Biol Med ; 220: 236-248, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704052

ABSTRACT

Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.


Subject(s)
Fullerenes , Hepatocytes , Liver Diseases, Alcoholic , Mice, Inbred BALB C , Oxidative Stress , Reactive Oxygen Species , Animals , Fullerenes/pharmacology , Fullerenes/chemistry , Fullerenes/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Oxidative Stress/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver/metabolism , Liver/pathology , Liver/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Humans , Oxidation-Reduction/drug effects , Ethanol/toxicity
2.
ACS Appl Mater Interfaces ; 16(5): 5536-5547, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38267397

ABSTRACT

Autoimmune hepatitis (AIH) is a severe immune-mediated inflammatory liver disease whose standard of care is immunosuppressive treatment with inevitable undesired outcomes. Macrophage is acknowledged to aggravate liver damage, providing a promising AIH therapeutic target. Accordingly, in this study, a kind of curdlan-decorated fullerene nanoparticle (Cur-F) is fabricated to alleviate immune-mediated hepatic injury for treating AIH via reducing macrophage infiltration in a concanavalin A (Con A)-induced AIH mouse model. After intravenous administration, Cur-F primarily distributes in liver tissues, efficiently eliminates the excessive reactive oxygen species, significantly attenuates oxidative stress, and subsequently suppresses the nuclear factor kappa-B-gene binding (NF-κB) signal pathway, resulting in the lowered production of pro-inflammatory cytokines and the balancing of the immune homeostasis with the prevention of macrophage infiltration in the liver. The regulation of hepatic inflammation contributes to inhibiting inflammatory cytokines-induced hepatocyte apoptosis, decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) contents and thus ameliorating immune-mediated hepatic injury. Notably, there is no detectable toxicity to the body. Our findings may open up novel avenues for AIH based on curdlan and fullerene materials.


Subject(s)
Fullerenes , Hepatitis, Autoimmune , beta-Glucans , Animals , Mice , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/metabolism , Fullerenes/pharmacology , Fullerenes/therapeutic use , Fullerenes/metabolism , Liver/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Concanavalin A , Macrophages/metabolism
3.
Photodiagnosis Photodyn Ther ; 45: 103926, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065228

ABSTRACT

AIM: Assessment of the impact of contemporary disinfection techniques Moringa Oleifera (M. Oleifera), NanoCare Plus Silver Gold® (Nanocare), and Fullerene (C60) on survival rates of S.Mutans and shear bond strength (SBS) of composite to the carious affected dentin (CAD) MATERIAL AND METHODS: Sixty mandibular molars having caries progression till the middle 1/3rd of the dentin were disinfected. The CAD surface of twenty samples was inoculated with S.mutans. Based on different disinfection regimens samples were arbitrarily assigned to four groups (n:15) Group 1: 2 % CHX, Group 2:NanoCare, Group 3:Fullerene (C60), and Group 4 (M. Oleifera. This was followed by calculating the survival rate of S.mutans. Ten samples from each group were then restored with composite restoration and thermocycled. Assessment of SBS and failure mode was performed using a universal testing machine and stereomicroscope at 40X magnification. Statistical significance among groups was assessed using analysis of variance (ANOVA) and Tukey's test at a significance level of p = 0.05 RESULTS: Group 2 samples treated with NanoCare exhibited the lowest survival rate (0.39 ± 0.02 CFU/ml) of S.Mutans. However, Group 1 (CHX) samples exhibited the highest survival count (0.51±0.10 CFU/ml). Furthermore, the highest composite to CAD bond was observed in Group 3 Fullerene(C60) (18.44±0.25 MPa) samples and the lowest SBS was observed in Group 1 (CHX) (12.48±1.69 MPa) CONCLUSION: Fullerene(C60) and Moringa Oleifera extract hold promise as potential substitutes for chlorhexidine (CHX) in clinical applications, offering the potential for improved S.Mutans elimination and enhanced bond strength to CAD surface.


Subject(s)
Fullerenes , Morinda , Photochemotherapy , Composite Resins/chemistry , Dentin , Ultraviolet Rays , Dental Caries Susceptibility , Fullerenes/pharmacology , Fullerenes/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Chlorhexidine/therapeutic use , Anti-Bacterial Agents/therapeutic use
4.
Sci Rep ; 13(1): 21045, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030752

ABSTRACT

The current prevalence of cancerous diseases necessitates the exploration of materials that can effectively treat these conditions while minimizing the occurrence of adverse side effects. This study aims to identify materials with the potential to inhibit the metastasis of cancerous diseases within the human body while concurrently serving as therapeutic agents for their treatment. A novel approach was employed to enhance the anti-cancer properties of electrospun cellulose fibers by incorporating fullerene nanoparticles (NPs) into cellulose acetate (CA) fibers, resulting in a composite material called Fullerene@CA. This development aimed at utilizing the anti-cancer properties of fullerenes for potential therapeutic applications. This process has been demonstrated in vitro against various types of cancer, and it was found that Fullerene@CA nanocomposite fibers displayed robust anticancer activity. Cancer cells (Caco-2, MDA-MB 231, and HepG-2 cells) were inhibited by 0.3 and 0.5 mg.g-1 fullerene doses by 58.62-62.87%, 47.86-56.43%, and 48.60-57.73%, respectively. The tested cancer cells shrink and lose their spindle shape due to morphological changes. The investigation of the prepared nanocomposite reveals its impact on various genes, such as BCL2, NF-KB, p53, Bax, and p21, highlighting the therapeutic compounds' effectiveness. The experimental results demonstrated that the incorporation of NPs into CA fibers resulted in a significant improvement in their anti-cancer efficacy. Therefore, it is suggested that these modified fibers could be utilized as a novel therapeutic approach for the treatment and prevention of cancer metastasis.


Subject(s)
Fullerenes , Nanocomposites , Neoplasms , Humans , Fullerenes/pharmacology , Fullerenes/therapeutic use , Caco-2 Cells , Cellulose
5.
Adv Healthc Mater ; 12(29): e2300819, 2023 11.
Article in English | MEDLINE | ID: mdl-37698231

ABSTRACT

Radiation-induced heart disease is a serious side effect of radiation therapy that can lead to severe consequences. However, effective and safe methods for their prevention and treatment are presently lacking. This study reports the crucial function of fullerenols in protecting cardiomyocytes from radiation injury. First, fullerenols are synthesized using a simple base-catalyzed method. Next, the as-prepared fullerenols are applied as an effective free radical scavenger and broad-spectrum antioxidant to protect against X-ray-induced cardiomyocyte injury. Their ability to reduce apoptosis via the mitochondrial signaling pathway at the cellular level is then verified. Finally, it is observed in animal models that fullerenols accumulate in the heart and alleviate myocardial damage induced by X-rays. This study represents a timely and essential analysis of the prevention and treatment of radiological myocardial injury, providing new insights into the applications of fullerenols for therapeutic strategies.


Subject(s)
Fullerenes , Radiation Injuries , Animals , Fullerenes/pharmacology , Fullerenes/therapeutic use , Antioxidants , Free Radical Scavengers , Myocytes, Cardiac
6.
ChemMedChem ; 18(20): e202300296, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37728195

ABSTRACT

Monoderivatives of fullerenes functionalized with hydrophilic groups make them water soluble, while preserving the hydrophobic fullerene cage. This class of molecules have intriguing biomedical applications, including drug delivery, photodynamic therapy (PDT), antiviral and antimicrobial activity and reactive oxygen species (ROS)-scavenging abilities. In this Concept we discuss the synthesis and biomedical applications of water-soluble fullerene monoderivatives and their biological behavior based on their structures.


Subject(s)
Fullerenes , Photochemotherapy , Fullerenes/pharmacology , Fullerenes/chemistry , Fullerenes/therapeutic use , Water/chemistry , Reactive Oxygen Species , Drug Delivery Systems
7.
Technol Cancer Res Treat ; 22: 15330338231201515, 2023.
Article in English | MEDLINE | ID: mdl-37724005

ABSTRACT

Fullerenes are carbon molecules that are found in nature in various forms. They are composed of hexagonal and pentagonal rings that create closed structures. Almost 4 decades ago, fullerenes were identified in the form of C60 and C70, and following the award of the Nobel Prize in Chemistry for this discovery in 1996, many laboratories started working on their water-soluble derivatives that could be used in different industries, including pharmaceutical industries. One of the first fullerene forms that was the focus of different research groups was fullerenol, C60(OH)n (n = 2-44). Both in-vitro and in-vivo studies have shown that polyhydroxylate fullerene derivatives can potentially be used as either antioxidative agents or cytostatics (depending on their co-administration, forms, and concentration/dose) in biological systems. The current review aimed to present a critical view of the potential applications and limitations of fullerenols in oncology, as understood from the past 2 decades of research.


Subject(s)
Fullerenes , Humans , Fullerenes/therapeutic use , Fullerenes/chemistry , Antioxidants
8.
Drug Discov Today ; 28(9): 103704, 2023 09.
Article in English | MEDLINE | ID: mdl-37453461

ABSTRACT

Fullerenes have numerous properties that fill the gap between small molecules and nanomaterials. Several types of chemical reaction allow their surface to be ornamented with functional groups designed to change them into 'ideal' nanodelivery systems. Improved stability, and bioavailability are important, but chemical modifications can render them practically soluble in water. 'Buckyball' fullerene scaffolds can interact with many biological targets and inhibit several proteins essential for tumorigeneses. Herein, we focus on the inhibitory properties of fullerene nanomaterials against essential proteins in cancer nanotechnology, as well as the use of dedicated proteins to improve the bioavailability of these promising nanomaterials.


Subject(s)
Fullerenes , Nanostructures , Neoplasms , Humans , Fullerenes/therapeutic use , Fullerenes/chemistry , Nanotechnology , Nanostructures/chemistry , Neoplasms/drug therapy , Carcinogenesis , Proteins
9.
Nanomedicine ; 53: 102698, 2023 09.
Article in English | MEDLINE | ID: mdl-37507062

ABSTRACT

The work aimed to investigate the biocompatibility and biological activity of the water-soluble fullerene adduct C60-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of neuroprotectors. It has been suggested that a putative mechanism of the protective action of the C60-Arg adduct is associated with its antioxidant properties, the ability to penetrate the blood-brain barrier, and release nitrogen monoxide as a result of the catabolism of L-arginine residues, which promote vascular relaxation. The action of the C60-Arg adduct was compared with the action of such an antioxidant as Edaravone, which is approved in Japan for the treatment of ischemic and haemorrhagic strokes.


Subject(s)
Fullerenes , Ischemic Stroke , Nanostructures , Stroke , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Fullerenes/pharmacology , Fullerenes/therapeutic use , Fullerenes/chemistry , Water , Stroke/drug therapy , Ischemia , Arginine/therapeutic use
10.
Nanomedicine (Lond) ; 18(6): 525-539, 2023 03.
Article in English | MEDLINE | ID: mdl-37194898

ABSTRACT

Aim: Here, we report the synthesis and evaluation of fullerene C60 nanoparticles' (FC60 NPs) therapeutic efficacy in animals with aluminum-induced oxidative stress. Materials & methods: Effects of FC60 NPs on the altered activity levels of neurobiochemical enzymes and oxidative parameters in brain and liver tissues have been evaluated. Aluminum was injected for 3 weeks and from the beginning of the third week, FC60 NPs were injected for 1 week. Results: Administration of FC60 NPs showed a significant improvement in the altered activity level of the selected markers. Conclusion: Results suggest synthesized FC60 NPs as a therapeutic option for the treatment of neurodegenerative diseases.


Subject(s)
Fullerenes , Animals , Fullerenes/pharmacology , Fullerenes/therapeutic use , Neuroprotection , Aluminum/pharmacology , Oxidative Stress , Cognition
11.
J Bioenerg Biomembr ; 55(2): 93-101, 2023 04.
Article in English | MEDLINE | ID: mdl-36884199

ABSTRACT

Pentaamino acid fullerene C60 derivative is a promising nanomaterial, which exhibited antihyperglycemic activity in high-fat diet and streptozotocin-induced diabetic rats. This study investigates the effect of pentaaminoacid C60 derivative (PFD) in rats with metabolic disorders. Rats were assigned to 3 groups (of 10 rats each) as follows: Group 1 (normal control), group 2 included the protamine-sulfate-treated rats (the untreated group of animals with the model metabolic disorder); group 3 (Protamine sulfate + PFD) included the protamine-sulfate-treated model rats that received an intraperitoneal injection of PFD. Metabolic disorder in rats was initiated by protamine sulfate (PS) administration. The PS + PFD group was injected intraperitoneally with PFD solution (3 mg/kg). Protamine sulfate induces biochemical changes (hyperglycemia, hypercholesterolemia, and hypertriglyceridemia) in the blood and morphological lesions in rat liver and pancreas. The potassium salt of fullerenylpenta-N-dihydroxytyrosine in protamine sulfate-induced rats normalized blood glucose level and the serum lipid profile and improved hepatic function markers. Treatment with PFD restored pancreas islets and liver structure of protamine sulfate-induced rats compared to the untreated group. PFD is a promising compound for further study as a drug against metabolic disorders.


Subject(s)
Diabetes Mellitus, Experimental , Fullerenes , Rats , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Fullerenes/pharmacology , Fullerenes/therapeutic use , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Protamines/pharmacology , Protamines/therapeutic use , Sulfates/therapeutic use
12.
Adv Healthc Mater ; 12(11): e2202161, 2023 04.
Article in English | MEDLINE | ID: mdl-36623263

ABSTRACT

Atherosclerosis accounts for major mortality of cardiac-cerebral vascular diseases worldwide. Pathologically, persistent inflammation dominates the progression of atherosclerosis, which can be accelerated by a high-fat diet (HFD), possibly through triggering local intestinal oxidative stress and ensuing gut barrier dysfunction. Current pharmacotherapy has been disappointing, ascribed to limited therapeutic efficacy and undesirable side effects. Hence it is compelling to explore novel efficient anti-atherosclerotic drugs with minimal toxicity. Herein, two fullerene-based therapies with exceptional antioxidant capacity, in the form of water-soluble injectable fullerene nanoparticles (IFNPs) and oral fullerene tablets (OFTs), are demonstrated to retard HFD-fueled atherosclerosis in ApoE-/- mice with favorable biosafety. Especially, OFTs afford robust anti-atherosclerotic therapeutic even against advanced plaques, besides stabilizing plaques with less lipid deposition and improved collagen expression. Specifically, it is identified that OFTs can ameliorate HFD-induced dysregulated intestinal redox homeostasis and restore gut barrier integrity, thereby restraining the translocation of luminal lipopolysaccharide (LPS) into the bloodstream. Furthermore, significantly reduced circulating LPS after OFTs treatment contributes to down-regulated LPS/TLR4/NF-κB signaling in aortic focal, which further mitigates local inflammation and disease development. Overall, this study confirms the universal anti-atherosclerotic effect of fullerenes and provides a novel therapeutic mechanism via modulating intestinal barrier to attenuate atherosclerosis.


Subject(s)
Atherosclerosis , Fullerenes , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Diet, High-Fat/adverse effects , Fullerenes/therapeutic use , Inflammation/drug therapy , Inflammation/pathology , Lipopolysaccharides/blood , Mice, Inbred C57BL , Treatment Outcome , Mice, Knockout, ApoE , Male
13.
J Mol Graph Model ; 120: 108403, 2023 05.
Article in English | MEDLINE | ID: mdl-36669273

ABSTRACT

Finding and developing effective targeted drug delivery systems has emerged as an attractive approach for treating a wide range of diseases. In the present study, the potential of alkaline earth metal functionalized porphyrin-like porous C24N24 fullerenes for delivering 5-fluorouracil (5FU) anticancer drug is assessed using density functional theory calculations. The goal is to evaluate how the addition of alkaline earth metals to C24N24 enhances the adsorption capabilities of this system towards 5FU drug. The adsorption energies and charge transfers are determined in order to evaluate the strength of the interaction between the 5FU and fullerene surfaces. According to the results, adding alkaline earth metals increases the drug's adsorption energy on the C24N24 fullerene. In all cases, the drug molecule interacts with the metal atom through its CO group. Furthermore, the adsorption strength of the 5FU increases with metal atom size (Ca > Mg > Be), which is connected to the polarizability of these atoms. The adsorption energies of 5FU are shown to be highly sensitive on solvent effects and the acidity of the environment. The adsorption strength of 5FU decreases within the solvent (water), allowing it to be released more easily. The moderate adsorption energies and short desorption times of 5FU imply that it is reversibly adsorbed on the functionalized fullerenes.


Subject(s)
Antineoplastic Agents , Fullerenes , Porphyrins , Fullerenes/therapeutic use , Porosity , Antineoplastic Agents/therapeutic use , Fluorouracil , Metals , Metals, Alkaline Earth , Solvents
14.
J Mater Chem B ; 10(45): 9457-9465, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36346268

ABSTRACT

The development and progression of colorectal cancer (CRC) are highly dependent on the long-term inflammatory microenvironment with immune dysregulation in the colorectum. However, effective therapeutics are limited to targeting CRC. Here, we developed oral fullerene tablets (OFTs) that can act directly on the colorectal site by oral administration and reduce the inflammatory state at the tumor site for effective CRC therapy. In detail, OFTs scavenged reactive oxygen species (ROS), restrained the mutation of the wild-type P53, inhibited the activation of the inflammatory pathway nuclear factor-κB (NF-κB) and the signal transducer and activator of transcription 3 (STAT3) in the colorectum of CRC mice. Subsequently, OFTs could greatly reduce the infiltration of pro-inflammatory M1 macrophages and neutrophils at the tumor site, restoring the inflammatory microenvironment and immune homeostasis in the colorectal region, and ultimately achieving the inhibition of CRC. In addition, there were no significant toxic side effects of the long-term administration of OFTs. Our work provides an effective oral therapeutic strategy for CRC therapy by modulating the colorectal tumor inflammatory microenvironment and sheds light on the route for oral nano-materials in the clinical treatment of CRC.


Subject(s)
Colorectal Neoplasms , Fullerenes , Mice , Animals , Fullerenes/pharmacology , Fullerenes/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Signal Transduction , NF-kappa B/metabolism , Tablets , Tumor Microenvironment
15.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077042

ABSTRACT

Carbon nanomaterials have received increasing attention in drug-delivery applications because of their distinct properties and structures, including large surface areas, high conductivity, low solubility in aqueous media, unique chemical functionalities, and stability at the nano-scale size. Particularly, they have been used as nano-carriers and mediators for anticancer drugs such as Cisplatin, Camptothecin, and Doxorubicin. Cancer has become the most challenging disease because it requires sophisticated therapy, and it is classified as one of the top killers according to the World Health Organization records. The aim of the current work is to study and investigate the mechanism of combination between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives (CN-[OH]ß) as mediators, and anticancer agents for photodynamic therapy directly to destroy the infected cells without damaging the normal ones. Here, we obtain a bio-medical model to determine the efficiency of the usefulness of Doxorubicin (DOX) as an antitumor agent conjugated with SWCNTs with variant radii r and fullerene derivative (CN-[OH]ß). The two sub-models are obtained mathematically to evaluate the potential energy arising from the DOX-SWCNT and DOX-(CN-[OH]ß) interactions. DOX modelled as two-connected spheres, small and large, each interacting with different SWCNTs (variant radii r) and fullerene derivatives CN-[OH]ß, formed based on the number of carbon atoms (N) and the number of hydroxide molecules (OH) (ß), respectively. Based on our obtained results, we find that the most favorable carbon nanomaterial is the SWCNT (r = 15.27 Å), followed by fullerene derivatives CN-(OH)22, CN-(OH)20, and CN-(OH)24, with minimum energies of -38.27, -33.72, -32.95, and -29.11 kcal/mol.


Subject(s)
Antineoplastic Agents , Fullerenes , Nanotubes, Carbon , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Fullerenes/therapeutic use , Hydroxides , Nanotubes, Carbon/chemistry , Neoplasms/drug therapy , Pharmaceutical Preparations
16.
Adv Sci (Weinh) ; 9(29): e2201541, 2022 10.
Article in English | MEDLINE | ID: mdl-36031401

ABSTRACT

Malignant proliferation and metastasis are the hallmarks of cancer cells. Aminated [70]fullerene exhibits notable antineoplastic effects, promoting it a candidate for multi-targeted cancer drugs. It is an urgent need to reveal the structure-activity relationship for antineoplastic aminated fullerenes. Herein, three amphiphilic derivatives of [60]fullerene with clarified molecular structures are synthesized: TAPC-4, TAPC-3, and TCPC-4. TAPC-4 inhibits the proliferation of diverse tumor cells via G0/G1 cell cycle arrest, reverses the epithelial-mesenchymal transition, and abrogates the high mobility of tumor cells. TAPC-4 can be excreted from the organism and achieves an in vivo inhibition index of 75.5% in tumor proliferation and 87.5% in metastatic melanoma with a wide safety margin. Molecular dynamics simulations reveal that the amphiphilic molecular structure and the ending amino groups promote the targeting of TAPC-4 to heat shock protein Hsp90-beta, vimentin, and myosin heavy chain 9 (MYH9), probably resulting in the alteration of cyclin D1 translation, vimentin expression, and MYH9 location, respectively. This work initially emphasizes the dominant role of the amphiphilic structure and the terminal amino moieties in the antineoplastic effects of aminated fullerenes, providing fundamental support for their anti-tumor drug development.


Subject(s)
Antineoplastic Agents , Fullerenes , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cyclin D1 , Fullerenes/chemistry , Fullerenes/pharmacology , Fullerenes/therapeutic use , Heat-Shock Proteins , Myosin Heavy Chains , Vimentin
17.
Environ Sci Pollut Res Int ; 29(39): 58607-58627, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35790637

ABSTRACT

Cancer is a most common cause of mortality globally. Available medicines possess severe side effects owing to their non-specific targeting. Hence, there is a need of an alternative in the healthcare system that should have high efficacy with the least side effects, also having the ability to achieve site-specific targeting and be reproducible. This is possible with the help of fullerenes. Fullerenes are having the unique physicochemical and photosensitizer properties. This article discusses the synthesis, functionalization, mechanism, various properties, and applications of C60 fullerenes in the treatment of cancer. The review article also addresses the various factors influencing the activity of fullerenes including the environmental conditions, toxicity profile, and future prospective.


Subject(s)
Fullerenes , Neoplasms , Photochemotherapy , Fullerenes/chemistry , Fullerenes/therapeutic use , Humans , Neoplasms/drug therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use
18.
Pharmacol Rep ; 74(4): 684-695, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35790693

ABSTRACT

BACKGROUND: Apolipoprotein E (apoE) is an anti-atherosclerotic protein associated with almost all plasma lipoproteins. Fullerenol (Full-OH) contains the fullerene hydrophobic cage and several hydroxyl groups that could be derivatized to covalently bind various molecules. Herein, we aimed to produce fullerenol-based nanoparticles carrying apoE3 (Full-apoE) and test their anti-atherosclerotic effects. METHODS: Full-apoE nanoparticles were obtained from Full-OH activated to reactive cyanide ester fullerenol derivative that was further reacted with apoE protein. To test their effect, the nanoparticles were administered to apoE-deficient mice for 24 h or 3 weeks. ApoE part of the nanoparticles was determined by Western Blot and quantified by ELISA. Atherosclerotic plaque size was evaluated after Oil Red O staining and the gene expression was determined by Real-Time PCR. RESULTS: Full-apoE nanoparticles were detected mainly in the liver, and to a lesser extent in the kidney, lung, and brain. In the plasma of the Full-apoE-treated mice, apoE was found associated with very-low-density lipoproteins and high-density lipoproteins. Treatment for 3 weeks with Full-apoE nanoparticles decreased plasma cholesterol levels, increased the expression of apolipoprotein A-I, ABCA1 transporter, scavenger receptor-B1, and sortilin, and reduced the evolution of the atheromatous plaques in the atherosclerotic mice. CONCLUSIONS: In experimental atherosclerosis, the administration of Full-apoE nanoparticles limits the evolution of the atheromatous plaques by decreasing the plasma cholesterol level and increasing the expression of major proteins involved in lipid metabolism. Thus, they represent a novel promising strategy for atherosclerosis therapy.


Subject(s)
Atherosclerosis , Fullerenes , Plaque, Atherosclerotic , Animals , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Cholesterol , Fullerenes/pharmacology , Fullerenes/therapeutic use , Mice , Mice, Knockout , Plaque, Atherosclerotic/drug therapy
19.
J Nanobiotechnology ; 20(1): 348, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35909130

ABSTRACT

Fullerenol, a functional and water-soluble fullerene derivative, plays an important role in antioxidant, antitumor and antivirus, implying its enormous potential in biomedical applications. However, the in vivo performance of fullerenol remains largely unclear. We aimed to investigate the effect of fullerenol (i.p., 5 mg/kg) on the impaired hippocampus in a rat model of lead exposure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a kind of newly developed soft-ionization mass spectrometry technology. In the present study, an innovative strategy for biological distribution analysis using MALDI-TOF-MS confirmed that fullerenol could across the blood-brain barrier and accumulate in the brain. Results from behavioral tests showed that a low dose of fullerenol could improve the impaired learning and memory induced by lead. Furthermore, electrophysiology examinations indicated that this potential repair effect of fullerenol was mainly due to the long-term changes in hippocampal synaptic plasticity, with enhancement lasting for more than 2-3 h. In addition, morphological observations and biochemistry analyses manifested that the long-term change in synaptic efficacy was accompanied by some structural alteration in synaptic connection. Our study demonstrates the therapeutic feature of fullerenol will be beneficial to the discovery and development as a new drug and lays a solid foundation for further biomedical applications of nanomedicines.


Subject(s)
Fullerenes , Animals , Fullerenes/chemistry , Fullerenes/pharmacology , Fullerenes/therapeutic use , Hippocampus , Neuronal Plasticity , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
20.
Eur J Med Chem ; 238: 114481, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35665690

ABSTRACT

Metallofullerenols (MFs) are functionalized endohedral fullerenes connecting at least three levels of organization of matter: atomic, molecular, and supramolecular, resulting in their unique activity at the nanoscale. Biomedical applications of MFs started from gadolinium-containing contrasting agents, but today their potential medical applications go far beyond diagnostics and magnetic resonance imaging. In many cases, preclinical studies have shown a great therapeutic value of MFs, and here we provide an overview of interactions of MFs with high-energy radiation and with reactive oxygen species generated during radiation as a ground for potential applications in modern therapy of cancer patients. We also present the current knowledge on interactions of MFs with proteins and with other components of cells and tissues. Due to their antioxidant properties, as well as their ability to regulate the expression of genes involved in apoptosis, angiogenesis, and stimulation of the immune response, MFs can contribute to inhibition of tumor growth and protection of normal cells. MFs with enclosed gadolinium act as inhibitors of tumor growth in targeted therapy along with imaging techniques, but we hope that the data gathered in this review will help to accelerate further progress in the implementation of MFs, also the ones containing rare earth metals other than gadolinium, in a broad range of bioapplications covering not only diagnostics and bioimaging but also radiation therapy and cancer treatment by not-cytotoxic agents.


Subject(s)
Fullerenes , Neoplasms , Contrast Media/therapeutic use , Fullerenes/pharmacology , Fullerenes/therapeutic use , Gadolinium/therapeutic use , Humans , Magnetic Resonance Imaging/methods , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...