Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Toxicol ; 35(12): 1438-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26081520

ABSTRACT

A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk.


Subject(s)
Fullerenes/pharmacokinetics , Lactation , Maternal Exposure , Maternal-Fetal Exchange , Milk/chemistry , Animals , Biomarkers/analysis , Carbon Radioisotopes , Feces/chemistry , Female , Fullerenes/administration & dosage , Fullerenes/urine , Gestational Age , Injections, Intravenous , Liver/metabolism , Lung/metabolism , Placenta/metabolism , Pregnancy , Rats, Sprague-Dawley , Tissue Distribution
2.
J Appl Toxicol ; 35(12): 1452-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25727383

ABSTRACT

A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.


Subject(s)
Cardiovascular Diseases/chemically induced , Fullerenes/pharmacokinetics , Oxidative Stress/drug effects , Administration, Intravenous , Animals , Biomarkers/analysis , Biotransformation , Carbon Radioisotopes , Cardiovascular Diseases/blood , Cardiovascular Diseases/immunology , Cardiovascular Diseases/urine , Female , Fullerenes/blood , Fullerenes/toxicity , Fullerenes/urine , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Metabolic Clearance Rate , Metabolomics , Mice, Inbred C57BL , Organ Specificity , Oxidative Stress/immunology , Rats, Sprague-Dawley , Species Specificity , Spleen/drug effects , Spleen/metabolism , Tissue Distribution
3.
Anal Bioanal Chem ; 399(4): 1631-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21153587

ABSTRACT

There is a growing concern about the human and environmental health effects of fullerenes (e.g., C(60)) due to their increasing application in research, medicine, and industry. Toxicological and pharmacokinetic research requires standard methods for extraction and detection of fullerenes from biological matrices such as urine. The present study validates the use of liquid-liquid extraction (LLE) and solid-phase extraction (SPE) methods in conjunction with liquid chromatography-mass spectrometry (LC-MS) for the quantitative determination of C(60) in human and synthetic urine as compared with ultrapure water. Glacial acetic acid, which is necessary to prevent emulsions during LLE, inhibited C(60) detection by LC-MS, but this could be mitigated with evaporation. Aqueous C(60) aggregates (nC(60)) were spiked at 180 µg/L into the components of a synthetic urine recipe to determine their individual impacts on extraction and detection. Urea, creatinine, and a complex protein (i.e., gelatin) were found to impair SPE, leading to a low recovery rate of 43 ± 4% for C(60) spiked into human urine. In contrast, C(60) was consistently recovered from synthetic matrices using LLE, and recovery in human urine was 80 ± 6%. These results suggest that LLE combined with LC-MS is suitable for studying the clearance of fullerenes from the body. LLE is a robust technique that holds promise for extracting C(60) from other complex biological matrices (e.g., blood, sweat, amniotic fluid) in toxicological studies, enabling a better understanding of the behavior of fullerenes in human and animal systems and facilitating a more comprehensive risk evaluation of fullerenes.


Subject(s)
Fullerenes/urine , Humans , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...