Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 997
Filter
1.
Adv Appl Microbiol ; 127: 45-142, 2024.
Article in English | MEDLINE | ID: mdl-38763529

ABSTRACT

Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.


Subject(s)
Fungal Polysaccharides , Fungal Polysaccharides/chemistry , Humans , Animals , Agaricales/chemistry , Agaricales/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Immunologic Factors/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
2.
Adv Clin Exp Med ; 33(5): 533-542, 2024 May.
Article in English | MEDLINE | ID: mdl-38775333

ABSTRACT

BACKGROUND: Circulating cancer cells have characteristics of tumor self-targeting. Modified circulating tumor cells may serve as tumor-targeted cellular drugs. Tremella fuciformis-derived polysaccharide (TFP) is related to immune regulation and tumor inhibition, so could B16 cells reeducated by TFP be an effective anti-tumor drug? OBJECTIVES: To evaluate the intrinsic therapeutic potential of B16 cells exposed to TFP and clarify the therapeutic molecules or pathways altered by this process. MATERIAL AND METHODS: RNA-seq technology was used to study the effect of TFP-reeducated B16 cells on the immune and inflammatory system by placing the allograft subcutaneously in C57BL/6 mice. RESULTS: Tremella fuciformis-derived polysaccharide-reeducated B16 cells recruited leukocytes, neutrophils, dendritic cells (DCs), and mast cells into the subcutaneous region and promoted the infiltration of several cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and interleukin 1 (IL-1). Tumor necrosis factor alpha also activated Th17 lymphocytes to secrete interleukin 17 (IL-17) and interferon gamma (IFN-γ). The co-expression of IFN-γ and IL-17 was favorable for tumor immunity to shrink tumors. In short, TFP-reeducated B16 cells activated the innate and adaptive immune responses, especially Th17 cell differentiation and IFN-γ production, as well as the TNF-α signaling pathway, which re-regulated the inflammatory and immune systems. CONCLUSION: B16 cells subcutaneously exposed to TFP in mice induced an immune and inflammatory response to inhibit tumors. The study of the function of TFP-reeducated B16 cells to improve cancer immunotherapy may be of particular research interest. This approach could be an alternative and more efficient strategy to deliver cytokines and open up new possibilities for long-lasting, multi-level tumor control.


Subject(s)
Melanoma, Experimental , Mice, Inbred C57BL , Animals , Melanoma, Experimental/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Mice , Gene Expression Profiling/methods , Cytokines/metabolism , Basidiomycota/chemistry , Cell Line, Tumor , Polysaccharides/pharmacology , Fungal Polysaccharides/pharmacology , Inflammation/immunology
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731895

ABSTRACT

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Subject(s)
Agaricus , Cell Proliferation , Filaggrin Proteins , HaCaT Cells , Ultraviolet Rays , Agaricus/chemistry , Humans , Ultraviolet Rays/adverse effects , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Cytokines/metabolism
4.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38801084

ABSTRACT

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Insulin Resistance , Polysaccharides , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans , Diabetes Mellitus, Experimental/drug therapy , Mice , Hep G2 Cells , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Liver/drug effects , Liver/metabolism , Diet, High-Fat/adverse effects , Insulin/blood , Insulin/metabolism , Pancreas/drug effects , Pancreas/pathology , Agaricales/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Streptozocin
5.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792209

ABSTRACT

Ganoderma lucidum spore powder, valued for its nutritional and medicinal properties, contains polysaccharides crucial for its efficacy. However, the complex structural nature of these polysaccharides necessitates further investigation to fully realize their potential. This study aimed to investigate the effects of acid heat treatment on Ganoderma lucidum spore polysaccharides (GLSPs) to enhance their properties and application in antitumor activity. The GLSP was obtained via acid heat treatment, concentration, and centrifugal separation. This process led to a notable reduction in polysaccharide molecular weight, increasing water solubility and bioavailability. Analytical techniques including NMR spectroscopy and methylation analysis revealed a polysaccharide composition comprising four distinct monosaccharides, with molecular weights of 3291 Da (Mw) and 3216 Da (Mn). Six different linkage modes were identified, with a molar ratio of 1:5:2:3:4:3. In vivo experiments demonstrated the GLSP's significant inhibitory effect on the growth of four tumor models (sarcoma S180, Lewis lung cancer, liver cancer H22, and colon cancer C26) in mice, with no observed toxicity. These findings suggest the GLSP's potential as an antitumor therapeutic agent for clinical use.


Subject(s)
Antineoplastic Agents , Reishi , Spores, Fungal , Animals , Reishi/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Cell Line, Tumor , Molecular Weight
6.
Int J Biol Macromol ; 269(Pt 2): 132143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729493

ABSTRACT

Natural polysaccharides interact with gut microbes to enhance human well-being. Grifola frondosa is a polysaccharides-rich edible and medicinal mushroom. The prebiotic potential of G. frondosa polysaccharides has been explored in recent years, however, the relationship between their various structural features and prebiotic activities is poorly understood. In this study, three homogenous polysaccharides GFP10, GFP21 and GFP22 having different molecular weights (Mw), monosaccharide compositions and glycosidic linkages were purified from G. frondosa, and their effects on intestinal microbial composition were compared. GFP10 was a fucomannogalactan with an Mw of 23.0 kDa, and it selectively inhibited Enterobacter, while GFP21 was a fucomannogalactoglucan with an Mw of 18.6 kDa, and it stimulated Catenibacterium. GFP22 was a 4.9 kDa mannoglucan that selectively inhibited Klebsiella and boosted Bifidobacterium, Catenibacterium and Phascolarctobacterium, and prominently promoted the production of short-chain fatty acids (SCFAs). The selective modulation of gut microbiota by polysaccharides was structure-dependent. A relatively lower Mw and a high proportion of glycosidic linkages like T-Glcp, 1,3-Glcp, 1,3,6-Glcp and 1,4-Glcp might be more easily utilized to produce SCFAs and beneficial for the proliferation of Catenibacterium and Phascolarctobacterium. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of G. frondosa polysaccharides.


Subject(s)
Gastrointestinal Microbiome , Grifola , Grifola/chemistry , Humans , Gastrointestinal Microbiome/drug effects , Structure-Activity Relationship , Molecular Weight , Prebiotics , Polysaccharides/chemistry , Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fatty Acids, Volatile/metabolism , Monosaccharides/analysis , Monosaccharides/chemistry , Bacteria/drug effects
7.
Int J Biol Macromol ; 270(Pt 2): 132370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763253

ABSTRACT

BACKGROUND: Polysaccharides from Grifola frondosa(GFP) have gained worldwide attention owing to their promising biological activities and potential health benefits. PURPOSE: This study aimed to investigate the effects of GFP on alleviation of osteoporosis in ovariectomized (OVX) mice and examine the underlying mechanism. METHOD: A mouse model of postmenopausal osteoporosis was established by OVX method, Forty eight C57BL/6 female mice were randomly divided into Normal group, OVX alone (Model group, n = 8), OVX + 10 mg/kg GFP (GFP-L group, n = 8), OVX + 20 mg/kg GFP (GFP-M group, n = 8), OVX + 40 mg/kg GFP (GFP-H group, n = 8), OVX + 10 mg/kg Estradiol valerate (Positive group, n = 8). RESULTS: The results showed that compared with Model group, the concentrations of interleukin (IL)-1ß, interleukin (IL)-6 and Tumor necrosis factor-α (TNF-α) were significantly reduced, the activity of superoxide dismutase (SOD) and glutathione (GSH) were significantly increased, the content of myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly reduced, and the proteins levels of PINK1, Parkin, Beclin-1 and LC3-II were significantly decreased in the GFP groups. CONCLUSION: This study demonstrates that GFP alleviates ovariectomy-induced osteoporosis via reduced secretion of inflammatory cytokines, improvement in the oxidative stress status in the body, and inhibition of the PINK1/Parkin signaling pathway.


Subject(s)
Grifola , Inflammation , Osteoporosis , Ovariectomy , Oxidative Stress , Protein Kinases , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Ovariectomy/adverse effects , Oxidative Stress/drug effects , Female , Mice , Signal Transduction/drug effects , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Osteoporosis/metabolism , Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Ubiquitin-Protein Ligases/metabolism , Grifola/chemistry , Mice, Inbred C57BL , Cytokines/metabolism , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Disease Models, Animal
8.
Int J Biol Macromol ; 270(Pt 2): 132029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704064

ABSTRACT

Cuproptosis affects osteosarcoma locally, and the exploitation of cuproptosis-related biomaterials for osteosarcoma treatment is still in its infancy. We designed and synthesized a novel injectable gel of Cu ion-coordinated Tremella fuciformis polysaccharide (TFP-Cu) for antiosteosarcoma therapy. This material has antitumor effects, the ability to stimulate immunity and promote bone formation, and a controlled Cu2+ release profile in smart response to tumor microenvironment stimulation. TFP-Cu can selectively inhibit the proliferation of K7M2 tumor cells by arresting the cell cycle and promoting cell apoptosis and cuproptosis. TFP-Cu also promoted the M1 polarization of RAW264.7 cells and regulated the immune microenvironment. These effects increased osteogenic gene and protein expression in MC3T3-E1 cells. TFP-Cu could significantly limit tumor growth in tumor-bearing mice by inducing tumor cell apoptosis and improving the activation of anti-CD8 T cell-mediated immune responses. Therefore, TFP-Cu could be a potential candidate for treating osteosarcoma and bioactive drug carrier for further cancer-related applications.


Subject(s)
Apoptosis , Copper , Osteosarcoma , Tumor Microenvironment , Animals , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Mice , Tumor Microenvironment/drug effects , Copper/chemistry , Copper/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Basidiomycota/chemistry , RAW 264.7 Cells , Gels/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry
9.
Int J Biol Macromol ; 270(Pt 2): 132222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729468

ABSTRACT

Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 µg/mL) promoted NO production up to 30.66 µmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 µg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.


Subject(s)
Fungal Polysaccharides , Mice , Animals , RAW 264.7 Cells , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Nitric Oxide/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Phagocytosis/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Superoxide Dismutase/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Acid Phosphatase/metabolism
10.
Int J Biol Macromol ; 270(Pt 2): 132106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734335

ABSTRACT

Glucose transporter 4 (GLUT4) directly facilitates cellular uptake of glucose and plays a crucial role in mammalian adipose tissue glucose metabolism. In this work, we constructed a cytosensor for sensitive electrochemiluminescence (ECL) detection of GLUT4 in rat adipocytes (RA cells). A carbon nanotube sponge (CNTSP) was selected to fabricate a permeable electrode to overcome the steric hindrance of cells on the electrode. The expression of GLUT4 after treatment with Ganoderma lucidum polysaccharide (GLP) was assessed by analyzing the luminescence emitted from cell-surface ECL probes. Our preliminary results suggest that GLP promote the expression of GLUT4, thereby enhancing the uptake of the fluorescent glucose 2-NBDG. Treatment with GLP affected GLUT4 expression in RA cells in a dose-dependent manner. Additionally, the ECL cytosensor contributes to the development of ECL imaging of receptors on the cell surface for clinical drug evaluation.


Subject(s)
Adipocytes , Glucose Transporter Type 4 , Reishi , Animals , Glucose Transporter Type 4/metabolism , Rats , Reishi/chemistry , Adipocytes/drug effects , Adipocytes/metabolism , Luminescent Measurements/methods , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Nanotubes, Carbon/chemistry , Electrochemical Techniques
11.
Methods Mol Biol ; 2775: 239-255, 2024.
Article in English | MEDLINE | ID: mdl-38758322

ABSTRACT

One of the standard assays for the fungal pathogen Cryptococcus neoformans is the glucuronoxylomannan (GXM) ELISA. This assay utilizes monoclonal antibodies targeted against the critical virulence factor, the polysaccharide (PS) capsule. GXM ELISA is one of the most used assays in the field used for diagnosis of cryptococcal infection, quantification of PS content, and determination of binding specificity for antibodies. Here we present three variations of the GXM ELISA used by our group-indirect, capture, and competition ELISAs. We have also provided some history, perspective, and notes on these methods, which we hope will help the reader choose, and implement, the best assay for their research.While it has long been referred to as the GXM ELISA, we also suggest a name update to better reflect our updated understanding of the polysaccharide antigens targeted by this assay. The Cryptococcal PS ELISA is a more accurate description of this set of methodologies and the antigens they measure. Finally, we discuss the limitations of this assay and put forth future plans for expanding the antigens assayed by ELISA.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Enzyme-Linked Immunosorbent Assay , Polysaccharides , Enzyme-Linked Immunosorbent Assay/methods , Cryptococcus neoformans/immunology , Cryptococcosis/diagnosis , Cryptococcosis/microbiology , Cryptococcosis/immunology , Polysaccharides/analysis , Polysaccharides/immunology , Humans , Antigens, Fungal/immunology , Antigens, Fungal/analysis , Fungal Polysaccharides/immunology , Fungal Polysaccharides/analysis , Antibodies, Monoclonal/immunology , Antibodies, Fungal/immunology
12.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710561

ABSTRACT

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Subject(s)
Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
13.
Int J Biol Macromol ; 269(Pt 2): 132212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729495

ABSTRACT

Polyphenols, polysaccharides, and proteins are essential nutrients and functional substances present in food, and when present together these components often interact with each other to influence their structure and function. Proteins and polysaccharides are also excellent carrier materials for polyphenols. In this context, this study investigated the non-covalent interactions between taxifolin (TAX), Lentinus edodes mycelia polysaccharide (LMP), and ß-casein (ß-CN). ß-CN and LMP spontaneously formed nanocomplexes by hydrogen bonds and van der Waals forces. The quenching constant and binding constant were (1.94 ± 0.02) × 1013 L mol-1 s-1 and (3.22 ± 0.17) × 105 L mol-1 at 298 K, respectively. The altered conformation of ß-CN, resulting from the binding to LMP, affected the interaction with TAX. LMP significantly enhanced the binding affinity of TAX and ß-CN, but did not change the static quenching binding mode. The binding constant for ß-CN-TAX was (3.96 ± 0.09) × 1013 L mol-1, and that for the interaction between TAX and ß-CN-LMP was (32.06 ± 0.05) × 1013 L mol-1. In summary, ß-CN-LMP nanocomplexes have great potential as a nanocarrier for polyphenols, and this study provides a theoretical foundation for the rational design of non-covalent complexes involving LMP and ß-CN, both in binary and ternary configurations.


Subject(s)
Caseins , Quercetin , Shiitake Mushrooms , Caseins/chemistry , Quercetin/chemistry , Quercetin/analogs & derivatives , Shiitake Mushrooms/chemistry , Hydrogen Bonding , Fungal Polysaccharides/chemistry , Protein Binding
14.
Mol Nutr Food Res ; 68(9): e2300759, 2024 May.
Article in English | MEDLINE | ID: mdl-38651284

ABSTRACT

SCOPE: Tolypocladium sinense is a fungus isolated from Cordyceps. Cordyceps has some medicinal value and is also a daily health care product. This study explores the preventive effects of T. sinense mycelium polysaccharide (TSMP) on high-fat diet-induced obesity and chronic inflammation in mice. METHODS AND RESULTS: Here, the study establishes an obese mouse model induced by high-fat diet. In this study, the mice are administered TSMP daily basis to evaluate its effect on alleviating obesity. The results show that TSMP can significantly inhibit obesity and alleviate dyslipidemia by regulating the expression of lipid metabolism-related genes such as liver kinase B1 (LKB1), phosphorylated AMP-activated protein kinase (pAMPK), peroxisome proliferator activated receptor α (PPARα), fatty acid synthase (FAS), and hydroxymethylglutaryl-CoA reductase (HMGCR) in the liver. TSMP can increase the protein expression of zona occludens-1 (ZO-1), Occludin, and Claudin-1 in the colon, improve the intestinal barrier dysfunction, and reduce the level of serum LPS, thereby reducing the inflammatory response. 16S rDNA sequencing shows that TSMP alters the intestinal microbiota by increasing the relative abundance of Akkermansia, Lactobacillus, and Prevotellaceae_NK3B31_group, while decreasing the relative abundance of Faecalibaculum. CONCLUSION: The findings show that TSMP can inhibit obesity and alleviates obesity-related lipid metabolism disorders, inflammatory responses, and oxidative stress by modulating the gut microbiota and improving intestinal barrier.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Inflammation , Mice, Inbred C57BL , Mycelium , Obesity , Diet, High-Fat/adverse effects , Animals , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Male , Mycelium/chemistry , Inflammation/drug therapy , Lipid Metabolism Disorders/drug therapy , Mice , Lipid Metabolism/drug effects , Polysaccharides/pharmacology , Hypocreales , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Fungal Polysaccharides/pharmacology , Liver/drug effects , Liver/metabolism
15.
Int J Biol Macromol ; 267(Pt 2): 131320, 2024 May.
Article in English | MEDLINE | ID: mdl-38569989

ABSTRACT

Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-ß-d-Manp-(1→, →6)-ß-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Fungal Polysaccharides , Zebrafish , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/isolation & purification , Humans , Coriolaceae/chemistry , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Mice , Angiogenesis
16.
Int J Biol Macromol ; 267(Pt 1): 131385, 2024 May.
Article in English | MEDLINE | ID: mdl-38582477

ABSTRACT

In this study, we extracted the polysaccharides from C. militaris fruiting bodies (CFIPs), mycelial intracellular polysaccharides (CMIPs), and fermentation broth extracellular polysaccharides (CFEPs) to investigate their physicochemical properties, antioxidant capacities, and effects on oxazolone-induced zebrafish ulcerative colitis (UC). Our results revealed differences in monosaccharide composition and surface structure among CFIPs, CMIPs, and CFEPs. The molar ratios of glucose to mannose in CFIPs, glucose to xylose in CMIPs, and xylose to glucose in CFEPs were 7.57: 1.6, 7.26: 1.81, and 5.44: 2.98 respectively. Moreover, CFEPs exhibited significantly (p < 0.05) higher chemical antioxidant capacity compared to CMIPs and CFIPs. Surprisingly, CFEP treatment didn't show a significant effect in protecting against H2O2-induced oxidative damage in RAW 264.7 cells. After 3 d of treatment, the levels of ROS, MDA, and MPO in the CFIPs group exhibited a significant (p < 0.05) reduction by 37.82 %, 68.15 %, and 22.77 % respectively. Additionally, the ACP and AKP increased by 60.33 % and 96.99 %. Additionally, C. militaris polysaccharides (CMPs) were found to effectively improve UC by activating the MyD88/NF-κB signaling pathway in vivo. These findings confirm the distinct physicochemical properties of these three types of CMP and their potential for development into antioxidant-rich anti-inflammatory health foods.


Subject(s)
Antioxidants , Colitis, Ulcerative , Cordyceps , Zebrafish , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , RAW 264.7 Cells , Cordyceps/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Monosaccharides/analysis , Reactive Oxygen Species/metabolism , Hydrogen Peroxide
17.
Int J Biol Macromol ; 267(Pt 1): 131467, 2024 May.
Article in English | MEDLINE | ID: mdl-38599436

ABSTRACT

In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.


Subject(s)
Flammulina , Flammulina/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
18.
Int J Biol Macromol ; 268(Pt 2): 131891, 2024 May.
Article in English | MEDLINE | ID: mdl-38677687

ABSTRACT

In this study, one water soluble polysaccharide (IOP1-1) with a weight average molecular weight of 6886 Da was obtained from the black crystal region of Inonotus obliquus by hot water extraction, DEAE-52 cellulose extraction and Sephadex-100 column chromatography purification. Structural analysis indicated that IOP1-1 was a glucan with a main chain composed of α-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 4)-ß-Glcp-(1 â†’ 4)-ß-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 6)-ß-Glcp-(1 â†’ 4)-α-Glcp-(1 â†’ 3)-ß-Glcp-(1→. The CCK-8 assay results showed that IOP1-1 inhibited AsPC-1 and SW1990 pancreatic cancer cell proliferation in a concentration-dependent manner. Flow cytometric analysis revealed that IOP1-1 induced cell cycle arrest in AsPC-1 and SW1990 cells. Hoechst 33342 staining and Annexin V-FITC/PI double staining analysis showed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 cells. Furthermore, western blot analysis confirmed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 pancreatic cancer cells through three pathways: the mitochondrial pathway, the death receptor pathway, and endoplasmic reticulum stress. According to these research data, IOP1-1 may be utilized as an adjuvant treatment to anticancer medications, opening up new application prospects and opportunities.


Subject(s)
Apoptosis , Cell Proliferation , Inonotus , Pancreatic Neoplasms , Humans , Apoptosis/drug effects , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Proliferation/drug effects , Inonotus/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
19.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Article in English | MEDLINE | ID: mdl-38582470

ABSTRACT

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Subject(s)
Caspase 1 , Gasdermins , Glycation End Products, Advanced , Human Umbilical Vein Endothelial Cells , MicroRNAs , Mycelium , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Shiitake Mushrooms , Signal Transduction , TOR Serine-Threonine Kinases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Caspase 1/metabolism , Shiitake Mushrooms/chemistry , Glycation End Products, Advanced/metabolism , Signal Transduction/drug effects , Mycelium/chemistry , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Cell Survival/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry
20.
Int J Biol Macromol ; 268(Pt 1): 131644, 2024 May.
Article in English | MEDLINE | ID: mdl-38642691

ABSTRACT

Diabetes is a chronic metabolic disorder. Diabetes complications can affect many organs and systems in the body. Ganoderma lucidum (G. lucidum) contains various compounds that have been studied for their potential antidiabetic effects, including polysaccharides, triterpenoids (ganoderic acids, ganoderol B), proteoglycans, and G. lucidum extracts. G. lucidum polysaccharides (GLPs) and triterpenoids have been shown to act through distinct mechanisms, such as improving glucose metabolism, modulating the mitogen-activated protein kinase (MAPK) system, inhibiting the nuclear factor-kappa B (NF-κB) pathway, and protecting the pancreatic beta cells. While GLPs exhibit a significant role in controlling diabetic nephropathy and other associated complications. This review states the G. lucidum antidiabetic mechanisms of action and potential biologically active compounds that contribute to diabetes management and associated complications. To make G. lucidum an appropriate replacement for the treatment of diabetes with fewer side effects, more study is required to completely comprehend the number of physiologically active compounds present in it as well as the underlying cellular mechanisms that influence their effects on diabetes.


Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Polysaccharides , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Humans , Reishi/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...