Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.660
Filter
1.
Sci Rep ; 14(1): 10544, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719860

ABSTRACT

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Subject(s)
Acetolactate Synthase , Acetyl-CoA Carboxylase , Echinochloa , Herbicide Resistance , Herbicides , Soil Microbiology , Italy/epidemiology , Herbicides/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/genetics , Echinochloa/drug effects , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Plant Weeds/drug effects , Microbiota/drug effects , Biodiversity , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Soil/chemistry , Fungi/drug effects , Fungi/isolation & purification , Fungi/genetics
2.
Sci Rep ; 14(1): 10294, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704448

ABSTRACT

The Himalayas provide unique opportunities for the extension of shrubs beyond the upper limit of the tree. However, little is known about the limitation of the biotic factors belowground of shrub growth at these cruising altitudes. To fill this gap, the present study deals with the documentation of root-associated microbiota with their predicted functional profiles and interactions in the host Rhododendron campanulatum, a krummholz species. While processing 12 root samples of R. campanulatum from the sites using Omics we could identify 134 root-associated fungal species belonging to 104 genera, 74 families, 39 orders, 17 classes, and 5 phyla. The root-associated microbiota members of Ascomycota were unambiguously dominant followed by Basidiomycota. Using FUNGuild, we reported that symbiotroph and pathotroph as abundant trophic modes. Furthermore, FUNGuild revealed the dominant prevalence of the saptroptroph guild followed by plant pathogens and wood saprotrophs. Alpha diversity was significantly different at the sites. The heatmap dendrogram showed the correlation between various soil nutrients and some fungal species. The study paves the way for a more in-depth exploration of unidentified root fungal symbionts, their interactions and their probable functional roles, which may serve as an important factor for the growth and conservation of these high-altitude ericaceous plants.


Subject(s)
High-Throughput Nucleotide Sequencing , Plant Roots , Rhododendron , Rhododendron/microbiology , Rhododendron/genetics , Plant Roots/microbiology , Fungi/genetics , Fungi/classification , Mycobiome , Soil Microbiology , Symbiosis , Phylogeny
3.
Microb Ecol ; 87(1): 78, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806848

ABSTRACT

Fungi contribute to different important ecological processes, including decomposition of organic matter and nutrient cycling, but in the marine environment the main factors influencing their diversity and dynamics at the spatial and temporal levels are still largely unclear. In this study, we performed DNA metabarcoding on seawater sampled monthly over a year and a half in the Gulf of Trieste (northern Adriatic Sea), targeting the internal transcribed spacer (ITS) and the 18S rRNA gene regions. The fungal communities were diverse, very dynamic, and belonged predominantly to marine taxa. Samples could be clustered in two groups, mainly based on the high (> 30%) or low relative proportion of the ascomycetes Parengyodontium album, which emerged as a key taxon in this area. Dissolved and particulate organic C:N ratio played important roles in shaping the mycoplankton assemblages, suggesting that differently bioavailable organic matter pools may be utilized by different consortia. The proportion of fungal over total reads was 31% for ITS and 0.7% for 18S. ITS had the highest taxonomic resolution but low power to detect early divergent fungal lineages. Our results on composition, distribution, and environmental drivers extended our knowledge of the structure and function of the mycobiome of coastal waters.


Subject(s)
Biodiversity , Fungi , RNA, Ribosomal, 18S , Seawater , Seawater/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Mycobiome , DNA, Fungal/genetics , DNA Barcoding, Taxonomic , Phylogeny , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/analysis , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification
4.
Fungal Biol ; 128(3): 1751-1757, 2024 May.
Article in English | MEDLINE | ID: mdl-38796259

ABSTRACT

This study explores the fungal diversity associated with tarballs, weathered crude oil deposits, on Goa's tourist beaches. Despite tarball pollution being a longstanding issue in Goa state in India, comprehensive studies on associated fungi are scarce. Our research based on amplicon sequence analysis of fungal ITS region fills this gap, revealing a dominance of Aspergillus, particularly Aspergillus penicillioides, associated with tarballs from Vagator and Morjim beaches. Other notable species, including Aspergillus sydowii, Aspergillus carbonarius, and Trichoderma species, were identified, all with potential public health and ecosystem implications. A FUNGuild analysis was conducted to investigate the potential ecological roles of these fungi, revealing a diverse range of roles, including nutrient cycling, disease propagation, and symbiotic relationships. The study underscores the need for further research and monitoring, given the potential health risks and contribution of tarball-associated fungi to the bioremediation of crude oil-contaminated beaches.


Subject(s)
Biodiversity , DNA, Fungal , Fungi , India , DNA, Fungal/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Phylogeny , Petroleum/microbiology
5.
Physiol Plant ; 176(3): e14359, 2024.
Article in English | MEDLINE | ID: mdl-38797943

ABSTRACT

Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.


Subject(s)
Carrier Proteins , Droughts , Endophytes , Plant Proteins , Endophytes/physiology , Endophytes/metabolism , Antarctic Regions , Carrier Proteins/metabolism , Carrier Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Fungi/physiology , Fungi/genetics , Stress, Physiological , Molecular Dynamics Simulation
6.
Curr Microbiol ; 81(7): 192, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801460

ABSTRACT

The plant-colonized microbial communities have closely micro-ecological effects on host plant growth and health. There are many medicinal plants in the genus Hedyotis, but it is yet unclear about the shoot-assembled bacterial and fungal communities (SBFC) of Hedyotis plants. Hence, eight plant populations of Hedyotis diffusa (HD) and H. corymbosa (HC) were evaluated with 16S rRNA gene and ITS sequences, for comparing the types, abundance, or/and potential functions of SBFC at plant species- and population levels. In tested HD- and HC-SBFC, 682 fungal operational taxonomic units and 1,329 bacterial zero-radius operational taxonomic units were identified, with rich species compositions and varied alpha diversities. Notably, the SBFC compositions of HD and HC plant populations were exhibited with partly different types and abundances at phylum and genus levels but without significantly different beta diversities at plant species and population levels. Typically, the SBFC of HD and HC plant populations were presented with abundance-different biomarkers, such as Frankiaceae and Bryobacteraceae, and with similar micro-ecological functions of microbial metabolisms of lipids, terpenoids,and xenobiotics. Taken together, HD- and HC-SBFC possessed with varied rich compositions, conservative taxonomic structures, and similar metabolic functions, but with small-scale type and abundance differences at plant species- and population- levels.


Subject(s)
Bacteria , Fungi , Hedyotis , Microbiota , RNA, Ribosomal, 16S , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , RNA, Ribosomal, 16S/genetics , Hedyotis/chemistry , Hedyotis/genetics , Plant Shoots/microbiology , Plants, Medicinal/microbiology , Phylogeny , Biodiversity
7.
Biomolecules ; 14(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38785964

ABSTRACT

Mannosylerythritol lipids (MELs) are a class of glycolipids that have been receiving increasing attention in recent years due to their diverse biological activities. MELs are produced by certain fungi and display a range of bioactivities, making them attractive candidates for various applications in medicine, agriculture, and biotechnology. Despite their remarkable qualities, industrial-scale production of MELs remains a challenge for fungal strains. Excellent fungal strains and fermentation processes are essential for the efficient production of MELs, so efforts have been made to improve the fermentation yield by screening high-yielding strains, optimizing fermentation conditions, and improving product purification processes. The availability of the genome sequence is pivotal for elucidating the genetic basis of fungal MEL biosynthesis. This review aims to shed light on the applications of MELs and provide insights into the genetic basis for efficient MEL production. Additionally, this review offers new perspectives on optimizing MEL production, contributing to the advancement of sustainable biosurfactant technologies.


Subject(s)
Fungi , Glycolipids , Glycolipids/biosynthesis , Glycolipids/metabolism , Glycolipids/genetics , Fungi/genetics , Fungi/metabolism , Fermentation , Surface-Active Agents/metabolism , Biotechnology/methods
8.
Food Res Int ; 187: 114405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763659

ABSTRACT

Sojae semen praeparatum (SSP), a fermented product known for its distinctive flavor and medicinal properties, undergoes a complex fermentation process due to the action of various microorganisms. Despite its widespread use, the effect of these microorganisms on the flavor compounds and functional components of SSP remains poorly understood. This study aimed to shed light on this aspect by identifying 20 metabolites as potential key flavor substances in SSP. Moreover, glycine and lysine were identified as crucial flavor substances. Additionally, 24 metabolites were identified as key functional components. The dominant microorganisms involved in the fermentation process were examined, revealing six genera of fungi and 12 genera of bacteria. At the species level, 16 microorganisms were identified as dominant through metagenome sequencing. Spearman correlation analysis demonstrated a strong association between dominant microorganisms and both flavor substances and functional components. Furthermore, the study validated the significance of four core functional microorganisms in improving the flavor and quality of SSP. This comprehensive exploration of functional microorganisms of SSP on key flavor substances/functional components during SSP fermentation. The study findings serve as a valuable reference for enhancing the overall flavor and quality of SSP.


Subject(s)
Bacteria , Fermentation , High-Throughput Nucleotide Sequencing , Metabolomics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Flavoring Agents/metabolism , Taste , Fungi/metabolism , Fungi/genetics , Food Microbiology , Fermented Foods/microbiology , Lysine/metabolism
9.
Mol Biol Rep ; 51(1): 673, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787479

ABSTRACT

BACKGROUND: T-type calcium channels, characterized as low-voltage activated (LVA) calcium channels, play crucial physiological roles across a wide range of tissues, including both the neuronal and nonneuronal systems. Using in situ hybridization and RNA interference (RNAi) techniques in vitro, we previously identified the tissue distribution and physiological function of the T-type calcium channel α1 subunit (DdCα1G) in the plant-parasitic nematode Ditylenchus destructor. METHODS AND RESULTS: To further characterize the functional role of DdCα1G, we employed a combination of immunohistochemistry and fungus-mediated RNAi and found that DdCα1G was clearly distributed in stylet-related tissue, oesophageal gland-related tissue, secretory-excretory duct-related tissue and male spicule-related tissue. Silencing DdCα1G led to impairments in the locomotion, feeding, reproductive ability and protein secretion of nematodes. To confirm the defects in behavior, we used phalloidin staining to examine muscle changes in DdCα1G-RNAi nematodes. Our observations demonstrated that defective behaviors are associated with related muscular atrophy. CONCLUSION: Our findings provide a deeper understanding of the physiological functions of T-type calcium channels in plant-parasitic nematodes. The T-type calcium channel can be considered a promising target for sustainable nematode management practices.


Subject(s)
Actins , Calcium Channels, T-Type , RNA Interference , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/genetics , Actins/metabolism , Actins/genetics , Male , Fungi/genetics , Gene Silencing
10.
Microb Ecol ; 87(1): 74, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771320

ABSTRACT

Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.


Subject(s)
Adaptation, Physiological , Bacteria , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Fungi/genetics , Fungi/classification , Fungi/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Ecosystem , Bacterial Physiological Phenomena
11.
Elife ; 122024 May 01.
Article in English | MEDLINE | ID: mdl-38690990

ABSTRACT

Caesarean section scar diverticulum (CSD) is a significant cause of infertility among women who have previously had a Caesarean section, primarily due to persistent inflammatory exudation associated with this condition. Even though abnormal bacterial composition is identified as a critical factor leading to this chronic inflammation, clinical data suggest that a long-term cure is often unattainable with antibiotic treatment alone. In our study, we employed metagenomic analysis and mass spectrometry techniques to investigate the fungal composition in CSD and its interaction with bacteria. We discovered that local fungal abnormalities in CSD can disrupt the stability of the bacterial population and the entire microbial community by altering bacterial abundance via specific metabolites. For instance, Lachnellula suecica reduces the abundance of several Lactobacillus spp., such as Lactobacillus jensenii, by diminishing the production of metabolites like Goyaglycoside A and Janthitrem E. Concurrently, Clavispora lusitaniae and Ophiocordyceps australis can synergistically impact the abundance of Lactobacillus spp. by modulating metabolite abundance. Our findings underscore that abnormal fungal composition and activity are key drivers of local bacterial dysbiosis in CSD.


Subject(s)
Bacteria , Cesarean Section , Cicatrix , Diverticulum , Female , Cesarean Section/adverse effects , Humans , Diverticulum/microbiology , Diverticulum/metabolism , Bacteria/metabolism , Bacteria/genetics , Cicatrix/microbiology , Cicatrix/metabolism , Dysbiosis/microbiology , Fungi/metabolism , Fungi/genetics , Fungi/physiology , Microbial Interactions , Microbiota
12.
Food Res Int ; 183: 114196, 2024 May.
Article in English | MEDLINE | ID: mdl-38760131

ABSTRACT

Baijiu production has relied on natural inoculated Qu as a starter culture, causing the unstable microbiota of fermentation grains, which resulted in inconsistent product quality across batches. Therefore, revealing the core microbes and constructing a synthetic microbiota during the fermentation process was extremely important for stabilizing product quality. In this study, the succession of the microbial community was analyzed by high-throughput sequencing technology, and ten core microbes of Xiaoqu light-aroma Baijiu were obtained by mathematical statistics, including Acetobacter, Bacillus, Lactobacillus, Weissella, Pichia,Rhizopus, Wickerhamomyces, Issatchenkia, Saccharomyces, and Kazachstania. Model verification showed that the core microbiota significantly affected the composition of non-core microbiota (P < 0.01) and key flavor-producing enzymes (R > 0.8, P < 0.01), thus significantly affecting the flavor of base Baijiu. Simulated fermentation validated that the core microbiota can reproduce the fermentation process and quality of Xiaoqu light-aroma Baijiu. The succession of bacteria was mainly regulated by acidity and ethanol, while the fungi, especially non-Saccharomyces cerevisiae, were mainly regulated by the initial dominant bacteria (Acetobacter, Bacillus, and Weissella). This study will play an important role in the transformation of Xiaoqu light-aroma Baijiu fermentation from natural fermentation to controlled fermentation and the identification of core microbes in other fermented foods.


Subject(s)
Bacteria , Fermentation , Food Microbiology , Microbiota , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/metabolism , Fungi/isolation & purification , Alcoholic Beverages/microbiology , High-Throughput Nucleotide Sequencing , Taste , Flavoring Agents/metabolism
13.
Microb Ecol ; 87(1): 72, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755460

ABSTRACT

Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.


Subject(s)
Air Pollution , Fungi , Mycobiome , Plant Leaves , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Plant Leaves/microbiology , Mexico , Air Pollution/adverse effects , Ozone , Stress, Physiological , Cities
14.
BMC Biol ; 22(1): 112, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745290

ABSTRACT

BACKGROUND: Fungi and ants belong to the most important organisms in terrestrial ecosystems on Earth. In nutrient-poor niches of tropical rainforests, they have developed steady ecological relationships as a successful survival strategy. In tropical ant-plant mutualisms worldwide, where resident ants provide the host plants with defense and nutrients in exchange for shelter and food, fungi are regularly found in the ant nesting space, inhabiting ant-made dark-colored piles ("patches"). Unlike the extensively investigated fungus-growing insects, where the fungi serve as the primary food source, the purpose of this ant-fungi association is less clear. To decipher the roles of fungi in these structures within ant nests, it is crucial to first understand the dynamics and drivers that influence fungal patch communities during ant colony development. RESULTS: In this study, we investigated how the ant colony age and the ant-plant species affect the fungal community in the patches. As model we selected one of the most common mutualisms in the Tropics of America, the Azteca-Cecropia complex. By amplicon sequencing of the internal transcribed spacer 2 (ITS2) region, we analyzed the patch fungal communities of 93 Azteca spp. colonies inhabiting Cecropia spp. trees. Our study demonstrates that the fungal diversity in patches increases as the ant colony grows and that a change in the prevalent fungal taxa occurs between initial and established patches. In addition, the ant species significantly influences the composition of the fungal community in established ant colonies, rather than the host plant species. CONCLUSIONS: The fungal patch communities become more complex as the ant colony develops, due to an acquisition of fungi from the environment and a substrate diversification. Our results suggest a successional progression of the fungal communities in the patches during ant colony growth and place the ant colony as the main driver shaping such communities. The findings of this study demonstrate the unexpectedly complex nature of ant-plant mutualisms in tropical regions at a micro scale.


Subject(s)
Ants , Fungi , Mycobiome , Symbiosis , Ants/microbiology , Ants/physiology , Animals , Fungi/genetics , Fungi/physiology , Fungi/classification , Cecropia Plant/microbiology , Myrmecophytes
15.
BMC Plant Biol ; 24(1): 398, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745310

ABSTRACT

BACKGROUND: The pollution of soil by heavy metals, particularly Cd, is constitutes a critical international environmental concern. Willow species are renowned for their efficacy in the phytoremediation of heavy metals owing to their high Cd absorption rate and rapid growth. However, the mechanisms underlying microbial regulation for high- and low-accumulating willow species remain poorly understood. Therefore, we investigated the responses of soil and rhizosphere microbial communities to high- and low-Cd-accumulating willows and Cd contamination. We analyzed soil properties were analyzed in bulk soil (SM) and rhizosphere soil (RM) planted with high-accumulating (H) and low-accumulating (L) willow species. RESULTS: Rhizosphere soil for different willow species had more NH4+ than that of bulk soil, and RM-H soil had more than RM-L had. The available phosphorus content was greater in hyper-accumulated species than it was in lower-accumulated species, especially in RM-H. Genome sequencing of bacterial and fungal communities showed that RM-L exhibited the highest bacterial diversity, whereas RM-H displayed the greatest richness than the other groups. SM-L exhibited the highest diversity and richness of fungal communities. Ralstonia emerged as the predominant bacterium in RM-H, whereas Basidiomycota and Cercozoa were the most enriched fungi in SM-H. Annotation of the N and C metabolism pathways revealed differential patterns: expression levels of NRT2, NarB, nirA, nirD, nrfA, and nosZ were highest in RM-H, demonstrating the effects of NO3-and N on the high accumulation of Cd in RM-H. The annotated genes associated with C metabolism indicated a preference for the tricarboxylic pathway in RM-H, whereas the hydroxypropionate-hydroxybutyrate cycle was implicated in C sequestration in SM-L. CONCLUSIONS: These contribute to elucidation of the mechanism underlying high Cd accumulation in willows, particularly in respect of the roles of microbes and N and C utilization. This will provide valuable insights for repairing polluted soil using N and employing organic acids to improve heavy metal remediation efficiency.


Subject(s)
Biodegradation, Environmental , Cadmium , Microbiota , Rhizosphere , Salix , Soil Microbiology , Soil Pollutants , Salix/microbiology , Salix/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism , Fungi/genetics , Soil/chemistry
16.
PLoS One ; 19(5): e0302462, 2024.
Article in English | MEDLINE | ID: mdl-38753836

ABSTRACT

Fruit shape is an important character of watermelon. And the compositions of rhizospheric and endophytic microorganisms of watermelon with different fruit shape also remains unclear. To elucidate the biological mechanism of watermelon fruit shape formations, the rhizospheric and endophytic microbial community compositions between oval (OW) and circular watermelons (CW) were analyzed. The results showed that except of the rhizospheric bacterial richness (P < 0.05), the rhizospheric and endophytic microbial (bacterial and fungal) diversity were not statistically significant between OW and CW (P > 0.05). However, the endophytic microbial (bacterial and fungal) compositions were significantly different. Firstly, Bacillus, Rhodanobacter, Cupriavidus, Luteimonas, and Devosia were the unique soil dominant bacterial genera in rhizospheres of circular watermelon (CW); In contrast, Nocardioides, Ensifer, and Saccharomonospora were the special soil dominant bacterial genera in rhizospheres of oval watermelons (OW); Meanwhile, Cephalotrichum, Neocosmospora, Phialosimplex, and Papulaspora were the unique soil dominant fungal genera in rhizospheres of circular watermelon (CW); By contrast, Acremonium, Cladosporium, Cryptococcus_f__Tremellaceae, Sodiomyces, Microascus, Conocybe, Sporidiobolus, and Acremonium were the unique soil dominant fungal genera in rhizospheres of oval watermelons (OW). Additionally, Lechevalieria, Pseudorhodoferax, Pseudomonas, Massilia, Flavobacterium, Aeromicrobium, Stenotrophomonas, Pseudonocardia, Novosphingobium, Melittangium, and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW; In contrast, Falsirhodobacter, Kocuria, and Kineosporia were the special dominant endophytic genera in stems of OW; Moreover, Lectera and Fusarium were the unique dominant endophytic fungal genera in stems of CW; By contrast, Cercospora only was the special dominant endophytic fungal genus in stems of OW. All above results suggested that watermelons with different fruit shapes exactly recruited various microorganisms in rhizospheres and stems. Meanwhile, the enrichments of the different rhizosphric and endophytic microorganisms could be speculated in relating to watermelon fruit shapes formation.


Subject(s)
Bacteria , Citrullus , Endophytes , Fruit , Fungi , Rhizosphere , Soil Microbiology , Citrullus/microbiology , Endophytes/genetics , Fruit/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Microbiota/genetics
17.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695903

ABSTRACT

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Subject(s)
Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
18.
Environ Microbiol Rep ; 16(3): e13213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738810

ABSTRACT

Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.


Subject(s)
Asclepias , Fungi , Herbivory , Plant Leaves , Animals , Plant Leaves/microbiology , Asclepias/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/physiology , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Mycobiome , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/physiology , Basidiomycota/isolation & purification , Gastrointestinal Microbiome , Larva/microbiology , Moths/microbiology
19.
EBioMedicine ; 103: 105137, 2024 May.
Article in English | MEDLINE | ID: mdl-38703606

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is a prevalent cardiovascular condition, and numerous studies have linked gut bacterial imbalance to CAD. However, the relationship of gut fungi, another essential component of the intestinal microbiota, with CAD remains poorly understood. METHODS: In this cross-sectional study, we analyzed fecal samples from 132 participants, split into 31 healthy controls and 101 CAD patients, further categorized into stable CAD (38), unstable angina (41), and acute myocardial infarction (22) groups. We conducted internal transcribed spacer 1 (ITS1) and 16S sequencing to examine gut fungal and bacterial communities. FINDINGS: Based on ITS1 analyses, Ascomycota and Basidiomycota were the dominant fungal phyla in all the groups. The α diversity of gut mycobiome remained unaltered among the control group and CAD subgroups; however, the structure and composition of the mycobiota differed significantly with the progression of CAD. The abundances of 15 taxa gradually changed with the occurrence and progression of the disease and were significantly correlated with major CAD risk factor indicators. The mycobiome changes were closely linked to gut microbiome dysbiosis in patients with CAD. Furthermore, disease classifiers based on gut fungi effectively identified subgroups with different degrees of CAD. Finally, the FUNGuild analysis further categorized these fungi into distinct ecological guilds. INTERPRETATION: In conclusion, the structure and composition of the gut fungal community differed from healthy controls to various subtypes of CAD, revealing key fungi taxa alterations linked to the onset and progression of CAD. Our study highlights the potential role of gut fungi in CAD and may facilitate the development of novel biomarkers and therapeutic targets for CAD. FUNDING: This work was supported by the grants from the National Natural Science Foundation of China (No. 82170302, 92168117, 82370432), National clinical key specialty construction project- Cardiovascular Surgery, the Reform and Development Program of Beijing Institute of Respiratory Medicine (No. Ggyfz202417, Ggyfz202308), the Beijing Natural Science Foundation (No. 7222068); and the Clinical Research Incubation Program of Beijing Chaoyang Hospital Affiliated to Capital Medical University (No. CYFH202209).


Subject(s)
Coronary Artery Disease , Gastrointestinal Microbiome , Mycobiome , Humans , Coronary Artery Disease/microbiology , Male , Female , Middle Aged , Aged , Cross-Sectional Studies , Feces/microbiology , Metagenomics/methods , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Severity of Illness Index , Dysbiosis/microbiology , Case-Control Studies , RNA, Ribosomal, 16S/genetics , Adult
20.
Mol Biol Rep ; 51(1): 647, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727981

ABSTRACT

Calcium (Ca2+) is a universal signaling molecule that is tightly regulated, and a fleeting elevation in cytosolic concentration triggers a signal cascade within the cell, which is crucial for several processes such as growth, tolerance to stress conditions, and virulence in fungi. The link between calcium and calcium-dependent gene regulation in cells relies on the transcription factor Calcineurin-Responsive Zinc finger 1 (CRZ1). The direct regulation of approximately 300 genes in different stress pathways makes it a hot topic in host-pathogen interactions. Notably, CRZ1 can modulate several pathways and orchestrate cellular responses to different types of environmental insults such as osmotic stress, oxidative stress, and membrane disruptors. It is our belief that CRZ1 provides the means for tightly modulating and synchronizing several pathways allowing pathogenic fungi to install into the apoplast and eventually penetrate plant cells (i.e., ROS, antimicrobials, and quick pH variation). This review discusses the structure, function, regulation of CRZ1 in fungal physiology and its role in plant pathogen virulence.


Subject(s)
Fungal Proteins , Fungi , Gene Expression Regulation, Fungal , Plants , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plants/microbiology , Plants/metabolism , Fungi/pathogenicity , Fungi/genetics , Fungi/metabolism , Virulence/genetics , Host-Pathogen Interactions/genetics , Calcium/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...