Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.575
Filter
1.
PLoS One ; 19(6): e0304688, 2024.
Article in English | MEDLINE | ID: mdl-38829914

ABSTRACT

The high-quality development of SRDI enterprises is crucial for China to overcome critical technological bottlenecks and thereby achieve technological independence and strength. However, the factors driving the high-quality development of SRDI enterprises are not isolated elements, but rather a complex system of interconnected antecedents. This study employs the TOE framework and fuzzy set Qualitative Comparative Analysis (fsQCA) with 141 Chinese SRDI "little giant" listed companies as samples to explore how various factors contribute to their high-quality development. The findings indicate: (1) No single factor is necessary for SRDI enterprises' high-quality development. (2) It is the synergy of multiple factors, in various combinations, that drives their high-quality development. (3) Technological innovation plays a key role in these pathways; SRDI enterprises should leverage their resources and capabilities for a synergistic technology-organization-environment match, selecting the most suitable development path. The results of this study not only enrich our understanding of the factors influencing SRDI enterprises' high-quality development but also offer insights for both the enterprises and government policy-making.


Subject(s)
Fuzzy Logic , China , Humans , Technology , Inventions
2.
PeerJ ; 12: e17437, 2024.
Article in English | MEDLINE | ID: mdl-38832031

ABSTRACT

Reference evapotranspiration (ET0 ) is a significant parameter for efficient irrigation scheduling and groundwater conservation. Different machine learning models have been designed for ET0 estimation for specific combinations of available meteorological parameters. However, no single model has been suggested so far that can handle diverse combinations of available meteorological parameters for the estimation of ET0. This article suggests a novel architecture of an improved hybrid quasi-fuzzy artificial neural network (ANN) model (EvatCrop) for this purpose. EvatCrop yielded superior results when compared with the other three popular models, decision trees, artificial neural networks, and adaptive neuro-fuzzy inference systems, irrespective of study locations and the combinations of input parameters. For real-field case studies, it was applied in the groundwater-stressed area of the Terai agro-climatic region of North Bengal, India, and trained and tested with the daily meteorological data available from the National Centres for Environmental Prediction from 2000 to 2014. The precision of the model was compared with the standard Penman-Monteith model (FAO56PM). Empirical results depicted that the model performances remarkably varied under different data-limited situations. When the complete set of input parameters was available, EvatCrop resulted in the best values of coefficient of determination (R2 = 0.988), degree of agreement (d = 0.997), root mean square error (RMSE = 0.183), and root mean square relative error (RMSRE = 0.034).


Subject(s)
Fuzzy Logic , Neural Networks, Computer , India , Groundwater , Plant Transpiration
3.
Environ Monit Assess ; 196(7): 594, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833077

ABSTRACT

In view of the suitability assessment of forest land resources, a consistent fuzzy assessment method with heterogeneous information is proposed. Firstly, some formulas for transforming large-scale real data and interval data into fuzzy numbers are provided. To derive the unified representation of multi-granularity linguistic assessment information, a fuzzy quantitative transformation for multi-granularity uncertain linguistic information is proposed. The proofs of the desirable properties and some normalized formulas for the trapezoidal fuzzy numbers are presented simultaneously. Next, the objective weight of each assessment indicator is further determined by calculating the Jaccard-Cosine similarity between the trapezoidal fuzzy numbers. Moreover, the trapezoidal fuzzy numbers corresponding to the comprehensive assessment values of each alternative are obtained. The alternatives are effectively ranked according to the distance from the centroid of the trapezoidal fuzzy number to the origin. Finally, based on the proposed consistent fuzzy assessment method, the suitability assessment of forest land resources is achieved under a multi-source heterogeneous data setting.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring , Forests , Fuzzy Logic , Environmental Monitoring/methods , Conservation of Natural Resources/methods
4.
PLoS One ; 19(5): e0299778, 2024.
Article in English | MEDLINE | ID: mdl-38691573

ABSTRACT

Today, supply chain (SC) networks are facing more disruptions compared to the past. While disruptions are rare, they can have catastrophic long-term economic or societal repercussions, and the recovery processes can be lengthy. These can tremendously affect the SC and make it vulnerable, as observed during the COVID-19 pandemic. The identification of these concerns has prompted the demand for improved disruption management by developing resilient, agile, and adaptive SC. The aim of this study is to introduce an assessment framework for prioritizing and evaluating the determinants to supply chain resilience (SCR). To analyze the empirical data, fuzzy criteria importance through intercriteria correlation (fuzzy CRITIC) and fuzzy technique for order of preference by similarity to ideal solution (fuzzy TOPSIS) have been incorporated. Fuzzy CRITIC method was used to identify the critical determinants and fuzzy TOPSIS method was applied for determining relative ranking of some real-world companies. Finally, by developing propositions an interpretive triple helix framework was proposed to achieve SCR. This research stands out for its originality in both methodology and implications. By introducing the novel combination of Fuzzy CRITIC and Fuzzy TOPSIS in the assessment of determinants to SCR and applying these determinants with the help of interpretive triple helix framework to establish a resilient SC, this study offers a unique and valuable contribution to the field of SCR. The key findings suggest that 'Responsiveness' followed by 'Managerial coordination and information integration' are the most significant determinant to achieve SCR. The outcome of this work can assist the managers to achieve SCR with improved agility and adaptivity.


Subject(s)
COVID-19 , Fuzzy Logic , Pandemics , COVID-19/epidemiology , Humans , SARS-CoV-2
5.
BMC Oral Health ; 24(1): 519, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698358

ABSTRACT

BACKGROUND: Oral cancer is a deadly disease and a major cause of morbidity and mortality worldwide. The purpose of this study was to develop a fuzzy deep learning (FDL)-based model to estimate the survival time based on clinicopathologic data of oral cancer. METHODS: Electronic medical records of 581 oral squamous cell carcinoma (OSCC) patients, treated with surgery with or without radiochemotherapy, were collected retrospectively from the Oral and Maxillofacial Surgery Clinic and the Regional Cancer Center from 2011 to 2019. The deep learning (DL) model was trained to classify survival time classes based on clinicopathologic data. Fuzzy logic was integrated into the DL model and trained to create FDL-based models to estimate the survival time classes. RESULTS: The performance of the models was evaluated on a test dataset. The performance of the DL and FDL models for estimation of survival time achieved an accuracy of 0.74 and 0.97 and an area under the receiver operating characteristic (AUC) curve of 0.84 to 1.00 and 1.00, respectively. CONCLUSIONS: The integration of fuzzy logic into DL models could improve the accuracy to estimate survival time based on clinicopathologic data of oral cancer.


Subject(s)
Deep Learning , Fuzzy Logic , Mouth Neoplasms , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/mortality , Retrospective Studies , Female , Male , Middle Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/therapy , Survival Analysis , Aged , Survival Rate , Adult
6.
Sci Rep ; 14(1): 10219, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702373

ABSTRACT

The difficulty of collecting maize leaf lesion characteristics in an environment that undergoes frequent changes, suffers varying illumination from lighting sources, and is influenced by a variety of other factors makes detecting diseases in maize leaves difficult. It is critical to monitor and identify plant leaf diseases during the initial growing period to take suitable preventative measures. In this work, we propose an automated maize leaf disease recognition system constructed using the PRF-SVM model. The PRFSVM model was constructed by combining three powerful components: PSPNet, ResNet50, and Fuzzy Support Vector Machine (Fuzzy SVM). The combination of PSPNet and ResNet50 not only assures that the model can capture delicate visual features but also allows for end-to-end training for smooth integration. Fuzzy SVM is included as a final classification layer to accommodate the inherent fuzziness and uncertainty in real-world image data. Five different maize crop diseases (common rust, southern rust, grey leaf spot, maydis leaf blight, and turcicum leaf blight along with healthy leaves) are selected from the Plant Village dataset for the algorithm's evaluation. The average accuracy achieved using the proposed method is approximately 96.67%. The PRFSVM model achieves an average accuracy rating of 96.67% and a mAP value of 0.81, demonstrating the efficacy of our approach for detecting and classifying various forms of maize leaf diseases.


Subject(s)
Plant Diseases , Plant Leaves , Support Vector Machine , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Plant Diseases/microbiology , Plant Leaves/microbiology , Algorithms , Fuzzy Logic
7.
Sci Rep ; 14(1): 10371, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710806

ABSTRACT

Emotion is a human sense that can influence an individual's life quality in both positive and negative ways. The ability to distinguish different types of emotion can lead researchers to estimate the current situation of patients or the probability of future disease. Recognizing emotions from images have problems concealing their feeling by modifying their facial expressions. This led researchers to consider Electroencephalography (EEG) signals for more accurate emotion detection. However, the complexity of EEG recordings and data analysis using conventional machine learning algorithms caused inconsistent emotion recognition. Therefore, utilizing hybrid deep learning models and other techniques has become common due to their ability to analyze complicated data and achieve higher performance by integrating diverse features of the models. However, researchers prioritize models with fewer parameters to achieve the highest average accuracy. This study improves the Convolutional Fuzzy Neural Network (CFNN) for emotion recognition using EEG signals to achieve a reliable detection system. Initially, the pre-processing and feature extraction phases are implemented to obtain noiseless and informative data. Then, the CFNN with modified architecture is trained to classify emotions. Several parametric and comparative experiments are performed. The proposed model achieved reliable performance for emotion recognition with an average accuracy of 98.21% and 98.08% for valence (pleasantness) and arousal (intensity), respectively, and outperformed state-of-the-art methods.


Subject(s)
Electroencephalography , Emotions , Fuzzy Logic , Neural Networks, Computer , Humans , Electroencephalography/methods , Emotions/physiology , Male , Female , Adult , Algorithms , Young Adult , Signal Processing, Computer-Assisted , Deep Learning , Facial Expression
8.
Environ Monit Assess ; 196(6): 537, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730190

ABSTRACT

Selecting an optimal solid waste disposal site is one of the decisive waste management issues because unsuitable sites cause serious environmental and public health problems. In Kenitra province, northwest Morocco, sustainable disposal sites have become a major challenge due to rapid urbanization and population growth. In addition, the existing disposal sites are traditional and inappropriate. The objective of this study is to suggest potential suitable disposal sites using fuzzy logic and analytical hierarchy process (fuzzy-AHP) method integrated with geographic information system (GIS) techniques. For this purpose, thirteen factors affecting the selection process were involved. The results showed that 5% of the studied area is considered extremely suitable and scattered in the central-eastern parts, while 9% is considered almost unsuitable and distributed in the northern and southern parts. Thereafter, these results were validated using the area under the curve (AUC) of the receiver operating characteristics (ROC). The AUC found was 57.1%, which is a moderate prediction's accuracy because the existing sites used in the validation's process were randomly selected. These results can assist relevant authorities and stakeholders for setting new solid waste disposal sites in Kenitra province.


Subject(s)
Fuzzy Logic , Geographic Information Systems , Refuse Disposal , Morocco , Refuse Disposal/methods , Solid Waste/analysis , Environmental Monitoring/methods , Waste Disposal Facilities , Waste Management/methods
9.
PLoS One ; 19(5): e0303042, 2024.
Article in English | MEDLINE | ID: mdl-38709744

ABSTRACT

Probabilistic hesitant fuzzy sets (PHFSs) are superior to hesitant fuzzy sets (HFSs) in avoiding the problem of preference information loss among decision makers (DMs). Owing to this benefit, PHFSs have been extensively investigated. In probabilistic hesitant fuzzy environments, the correlation coefficients have become a focal point of research. As research progresses, we discovered that there are still a few unresolved issues concerning the correlation coefficients of PHFSs. To overcome the limitations of existing correlation coefficients for PHFSs, we propose new correlation coefficients in this study. In addition, we present a multi-criteria group decision-making (MCGDM) method under unknown weights based on the newly proposed correlation coefficients. In addition, considering the limitations of DMs' propensity to use language variables for expression in the evaluation process, we propose a method for transforming the evaluation information of the DMs' linguistic variables into probabilistic hesitant fuzzy information in the newly proposed MCGDM method. To demonstrate the applicability of the proposed correlation coefficients and MCGDM method, we applied them to a comprehensive clinical evaluation of orphan drugs. Finally, the reliability, feasibility and efficacy of the newly proposed correlation coefficients and MCGDM method were validated.


Subject(s)
Fuzzy Logic , Humans , Orphan Drug Production , Decision Making , Probability , Algorithms
10.
PLoS One ; 19(5): e0302054, 2024.
Article in English | MEDLINE | ID: mdl-38709781

ABSTRACT

Ship design involves optimizing the hull in order to enhance safety, economic efficiency, and technical efficiency. Despite the long-term research on this problem and a number of significant conclusions, some of its content still needs to be improved. In this study, block and midship coefficients are incorporated to optimize the ship's hull. The considered ship was a patrol vessel. The seakeeping analysis was performed employing strip theory. The hull form was generated using a fuzzy model. Though the body lines generated by the midship coefficient (CM) and block coefficient (CB) varied indecently, the other geometric parameters remained the same. Multi-objective optimization was used to optimize CB and CM. According to the results of this study, these coefficients have a significant impact on the pitch motion of the patrol vessel as well as the motion sickness index. Heave and roll motions, as well as the added resistance, were not significantly influenced by the coefficients of CM and CB. However, increasing the hull form parameters increases the maximum Response Amplitude Operator (RAO) of heave and roll motions. The frequency of occurrence of the maximum roll RAO was in direct relation with CB and CM. These coefficients, however, had no meaningful impact on the occurrence frequency of other motion indices. In the end, the CB and CM coefficients were selected based on the vessel's seakeeping performance. These findings might be used by shipbuilders to construct the vessel with more efficient seakeeping performance.


Subject(s)
Ships , Humans , Models, Theoretical , Motion , Fuzzy Logic , Equipment Design
11.
PLoS One ; 19(5): e0303139, 2024.
Article in English | MEDLINE | ID: mdl-38728302

ABSTRACT

Road traffic accidents (RTAs) pose a significant hazard to the security of the general public, especially in developing nations. A daily average of more than three thousand fatalities is recorded worldwide, rating it as the second most prevalent cause of death among people aged 5-29. Precise and reliable decisionmaking techniques are essential for identifying the most effective approach to mitigate road traffic incidents. This research endeavors to investigate this specific concern. The Fermatean fuzzy set (FFS) is a strong and efficient method for addressing ambiguity, particularly when the concept of Pythagorean fuzzy set fails to provide a solution. This research presents two innovative aggregation operators: the Fermatean fuzzy ordered weighted averaging (FFOWA) operator and the Fermatean fuzzy dynamic ordered weighted geometric (FFOWG) operator. The salient characteristics of these operators are discussed and important exceptional scenarios are thoroughly delineated. Furthermore, by implementing the suggested operators, we develop a systematic approach to handle multiple attribute decisionmaking (MADM) scenarios that involve Fermatean fuzzy (FF) data. In order to show the viability of the developed method, we provide a numerical illustration encompassing the determination of the most effective approach to alleviate road traffic accidents. Lastly, we conduct a comparative evaluation of the proposed approach in relation to a number of established methodologies.


Subject(s)
Accidents, Traffic , Fuzzy Logic , Accidents, Traffic/prevention & control , Humans
12.
PLoS One ; 19(5): e0302559, 2024.
Article in English | MEDLINE | ID: mdl-38743732

ABSTRACT

The persistent evolution of cyber threats has given rise to Gen V Multi-Vector Attacks, complex and sophisticated strategies that challenge traditional security measures. This research provides a complete investigation of recent intrusion detection systems designed to mitigate the consequences of Gen V Multi-Vector Attacks. Using the Fuzzy Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), we evaluate the efficacy of several different intrusion detection techniques in adjusting to the dynamic nature of sophisticated cyber threats. The study offers an integrated analysis, taking into account criteria such as detection accuracy, adaptability, scalability, resource effect, response time, and automation. Fuzzy AHP is employed to establish priority weights for each factor, reflecting the nuanced nature of security assessments. Subsequently, TOPSIS is employed to rank the intrusion detection methods based on their overall performance. Our findings highlight the importance of behavioral analysis, threat intelligence integration, and dynamic threat modeling in enhancing detection accuracy and adaptability. Furthermore, considerations of resource impact, scalability, and efficient response mechanisms are crucial for sustaining effective defense against Gen V Multi-Vector Attacks. The integrated approach of Fuzzy AHP and TOPSIS presents a strong and adaptable strategy for decision-makers to manage the difficulties of evaluating intrusion detection techniques. This study adds to the ongoing discussion about cybersecurity by providing insights on the positive and negative aspects of existing intrusion detection systems in the context of developing cyber threats. The findings help organizations choose and execute intrusion detection technologies that are not only effective against existing attacks, but also adaptive to future concerns provided by Gen V Multi-Vector Attacks.


Subject(s)
Computer Security , Fuzzy Logic , Humans , Algorithms
13.
PLoS One ; 19(5): e0297462, 2024.
Article in English | MEDLINE | ID: mdl-38768117

ABSTRACT

Considering the advantages of q-rung orthopair fuzzy 2-tuple linguistic set (q-RFLS), which includes both linguistic and numeric data to describe evaluations, this article aims to design a new decision-making methodology by integrating Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and qualitative flexible (QUALIFLEX) methods based on the revised aggregation operators to solve multiple criteria group decision making (MCGDM). To accomplish this, we first revise the extant operational laws of q-RFLSs to make up for their shortcomings. Based on novel operational laws, we develop q-rung orthopair fuzzy 2-tuple linguistic (q-RFL) weighted averaging and geometric operators and provide the corresponding results. Next, we develop a maximization deviation model to determine the criterion weights in the decision-making procedure, which accounts for partial weight unknown information. Then, the VIKOR and QUALIFLEX methodologies are combined, which can assess the concordance index of each ranking combination using group utility and individual maximum regret value of alternative and acquire the ranking result based on each permutation's general concordance index values. Consequently, a case study is conducted to select the best bike-sharing recycling supplier utilizing the suggested VIKOR-QUALIFLEX MCGDM method, demonstrating the method's applicability and availability. Finally, through sensitivity and comparative analysis, the validity and superiority of the proposed method are demonstrated.


Subject(s)
Decision Making , Fuzzy Logic , Linguistics , Humans , Algorithms
14.
PLoS One ; 19(5): e0303542, 2024.
Article in English | MEDLINE | ID: mdl-38768161

ABSTRACT

We introduce a new approach for automated guideline-based-care quality assessment, the bidirectional knowledge-based assessment of compliance (BiKBAC) method, and the DiscovErr system, which implements it. Our methodology compares the guideline's Asbru-based formal representation, including its intentions, with the longitudinal medical record, using a top-down and bottom-up approach. Partial matches are resolved using fuzzy temporal logic. The system was evaluated in the type 2 Diabetes management domain, comparing it to three expert clinicians, including two diabetes experts. The system and the experts commented on the management of 10 patients, randomly selected from 2,000 diabetes patients. On average, each record spanned 5.23 years; the data included 1,584 medical transactions. The system provided 279 comments. The experts made 181 different unique comments. The completeness (recall) of the system was 91% when the gold standard was comments made by at least two of the three experts, and 98%, compared to comments made by all three experts. The experts also assessed all of the 114 medication-therapy-related comments, and a random 35% of the 165 tests-and-monitoring-related comments. The system's correctness (precision) was 81%, compared to comments judged as correct by both diabetes experts, and 91%, compared to comments judged as correct by one diabetes expert and at least as partially correct by the other. 89% of the comments were judged as important by both diabetes experts, 8% were judged as important by one expert, and 3% were judged as less important by both experts. Adding the validated system comments to the experts' comments, the completeness scores of the experts were 75%, 60%, and 55%; the expert correctness scores were respectively 99%, 91%, and 88%. Thus, the system could be ranked first in completeness and second in correctness. We conclude that systems such as DiscovErr can effectively assess the quality of continuous guideline-based care.


Subject(s)
Diabetes Mellitus, Type 2 , Guideline Adherence , Diabetes Mellitus, Type 2/drug therapy , Humans , Practice Guidelines as Topic , Fuzzy Logic
15.
PLoS One ; 19(5): e0299655, 2024.
Article in English | MEDLINE | ID: mdl-38781279

ABSTRACT

Nowadays, most fatal diseases are attributed to the malfunction of bodily. Sometimes organ transplantation is the only possible therapy, for instance for patients with end-stage liver diseases, and the preferred treatment, for instance for patients with end-stage renal diseases. However, this surgical procedure comes with inherent risks and effectively managing these risks to minimize the likelihood of complications arising from organ transplantation (maximizing life years from transplant and quality-adjusted life years) is crucial. To facilitate this process, risk ranking is used to identify and promptly address potential risks. Over recent years, considerable efforts have been made, and various approaches have been proposed to enhance Failure Modes and Effects Analysis (FMEA). In this study, taking into account the uncertainty in linguistic variables (F-FMEA), we introduce an approach based on Fuzzy Multi Criteria Decision Making (F-MCDM) for effectively evaluating scenarios and initial failure hazards. Nevertheless, the results of ranking failure modes generated by different MCDM methods may vary. This study is a retrospective study that suggests a comprehensive unified risk assessment model, integrating multiple techniques to produce a more inclusive ranking of failure modes. Exploring a broad spectrum of risks associated with organ transplant operations, we identified 20 principal hazards with the assistance of literature and experts. We developed a questionnaire to examine the impact of various critical factors on the survival of transplanted organs, such as irregularities in immunosuppressive drug consumption, inappropriate dietary habits, psychological disorders, engaging in strenuous activities post-transplant, neglecting quarantine regulations, and other design-related factors. Subsequently, we analyzed the severity of their effects on the durability of transplanted organs. Utilizing the Mamdani algorithm as a fuzzy inference engine and the Center of Gravity algorithm for tooling, we expressed the probability and severity of each risk. Finally, the failure mode ranking obtained from the F-FMEA method, three fuzzy MCDM methods, and the proposed combined method were identified. Additionally, the results obtained from various methods were evaluated by an expert team, demonstrating that the highest consistency and effectiveness among different methods are attributed to the proposed method, as it achieved a 91.67% agreement with expert opinions.


Subject(s)
Fuzzy Logic , Organ Transplantation , Humans , Risk Assessment/methods , Organ Transplantation/methods , Organ Transplantation/adverse effects , Retrospective Studies , Healthcare Failure Mode and Effect Analysis
16.
Comput Biol Med ; 175: 108440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701589

ABSTRACT

The diagnosis of ankylosing spondylitis (AS) can be complex, necessitating a comprehensive assessment of medical history, clinical symptoms, and radiological evidence. This multidimensional approach can exacerbate the clinical burden and increase the likelihood of diagnostic inaccuracies, which may result in delayed or overlooked cases. Consequently, supplementary diagnostic techniques for AS have become a focal point in clinical research. This study introduces an enhanced optimization algorithm, SCJAYA, which incorporates salp swarm foraging behavior with cooperative predation strategies into the JAYA algorithm framework, noted for its robust optimization capabilities that emulate the evolutionary dynamics of biological organisms. The integration of salp swarm behavior is aimed at accelerating the convergence speed and enhancing the quality of solutions of the classical JAYA algorithm while the cooperative predation strategy is incorporated to mitigate the risk of convergence on local optima. SCJAYA has been evaluated across 30 benchmark functions from the CEC2014 suite against 9 conventional meta-heuristic algorithms as well as 9 state-of-the-art meta-heuristic counterparts. The comparative analyses indicate that SCJAYA surpasses these algorithms in terms of convergence speed and solution precision. Furthermore, we proposed the bSCJAYA-FKNN classifier: an advanced model applying the binary version of SCJAYA for feature selection, with the aim of improving the accuracy in diagnosing and prognosticating AS. The efficacy of the bSCJAYA-FKNN model was substantiated through validation on 11 UCI public datasets in addition to an AS-specific dataset. The model exhibited superior performance metrics-achieving an accuracy rate, specificity, Matthews correlation coefficient (MCC), F-measure, and computational time of 99.23 %, 99.52 %, 0.9906, 99.41 %, and 7.2800 s, respectively. These results not only underscore its profound capability in classification but also its substantial promise for the efficient diagnosis and prognosis of AS.


Subject(s)
Algorithms , Spondylitis, Ankylosing , Spondylitis, Ankylosing/diagnosis , Humans , Fuzzy Logic , Diagnosis, Computer-Assisted/methods
17.
Comput Biol Med ; 175: 108535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714049

ABSTRACT

Gastric cancer (GC), an acknowledged malignant neoplasm, threatens life and digestive system functionality if not detected and addressed promptly in its nascent stages. The indispensability of early detection for GC to augment treatment efficacy and survival prospects forms the crux of this investigation. Our study introduces an innovative wrapper-based feature selection methodology, referred to as bCIFMVO-FKNN-FS, which integrates a crossover-information feedback multi-verse optimizer (CIFMVO) with the fuzzy k-nearest neighbors (FKNN) classifier. The primary goal of this initiative is to develop an advanced screening model designed to accelerate the identification of patients with early-stage GC. Initially, the capability of CIFMVO is validated through its application to the IEEE CEC benchmark functions, during which its optimization efficiency is measured against eleven cutting-edge algorithms across various dimensionalities-10, 30, 50, and 100. Subsequent application of the bCIFMVO-FKNN-FS model to the clinical data of 1632 individuals from Wenzhou Central Hospital-diagnosed with either early-stage GC or chronic gastritis-demonstrates the model's formidable predictive accuracy (83.395%) and sensitivity (87.538%). Concurrently, this investigation delineates age, gender, serum gastrin-17, serum pepsinogen I, and the serum pepsinogen I to serum pepsinogen II ratio as parameters significantly associated with early-stage GC. These insights not only validate the efficacy of our proposed model in the early screening of GC but also contribute substantively to the corpus of knowledge facilitating early diagnosis.


Subject(s)
Early Detection of Cancer , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/blood , Early Detection of Cancer/methods , Male , Female , Algorithms , Middle Aged , Fuzzy Logic , Aged
18.
Anticancer Res ; 44(6): 2425-2436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821607

ABSTRACT

BACKGROUND/AIM: Despite the advances in oncology and cancer treatment over the past decades, cancer remains one of the deadliest diseases. This study focuses on further understanding the complex nature of cancer by using mathematical tumor modeling to understand, capture as best as possible, and describe its complex dynamics under chemotherapy treatment. MATERIALS AND METHODS: Focusing on autoregressive with exogenous inputs, i.e., ARX, and adaptive neuro-fuzzy inference system, i.e., ANFIS, models, this work investigates tumor growth dynamics under both single and combination anticancer agent chemotherapy treatments using chemotherapy treatment data on xenografted mice. RESULTS: Four ARX and ANFIS models for tumor growth inhibition were developed, estimated, and evaluated, demonstrating a strong correlation with tumor weight data, with ANFIS models showing superior performance in handling the multi-agent tumor growth complexities. These findings suggest potential clinical applications of the ANFIS models through further testing. Both types of models were also tested for their prediction capabilities across different chemotherapy schedules, with accurate forecasting of tumor growth up to five days in advance. The use of adaptive prediction and sliding (moving) data window techniques allowed for continuous model updating, ensuring more robust predictive capabilities. However, long-term forecasting remains a challenge, with accuracy declining over longer prediction horizons. CONCLUSION: While ANFIS models showed greater reliability in predictions, the simplicity and rapid deployment of ARX models offer advantages in situations requiring immediate approximations. Future research with larger, more diverse datasets and by exploring varying model complexities is recommended to improve the models' reliability and applicability in clinical decision-making, thereby aiding the development of personalized chemotherapy regimens.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Xenograft Model Antitumor Assays , Fuzzy Logic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Tumor Burden/drug effects
19.
PLoS One ; 19(5): e0300505, 2024.
Article in English | MEDLINE | ID: mdl-38814937

ABSTRACT

There are many different types of scientific design thinking methods, but it is necessary to evaluate the applicability of the methods to the components of the design teaching curriculum in universities. Therefore, this study assesses the applicability of design thinking in terms of "design practice" and "locality" based on the local design education philosophy and the characteristics of the students and courses. A two-dimensional linguistic fuzzy model with two-tuples was proposed, and the assessment values of 36 experts were statistically analysed using the Delphi, triangular fuzzy number, Euclidean distance, two-dimension linguistic label (2DLL), and two-dimensional linguistic weighted arithmetic aggregation (2DLWAA) methods. The results highlighted the 12 categories of design thinking methods that are most applicable to teaching and learning, indicating the basic views of university design faculty on the application of design thinking methods. Finally, the new design teaching methods have been validated and constructed through years of teaching practice, and have some reference value for teaching design courses in universities.


Subject(s)
Fuzzy Logic , Linguistics , Humans , Thinking , Teaching , Universities , Curriculum , Models, Theoretical
20.
Sci Total Environ ; 931: 172930, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701932

ABSTRACT

Similarly to other European mountain areas, in Serra da Estrela the grazing pressure has been reducing due to social and economic drivers that have pushed shepherds and sheep to the foothill, or plainly out of the sector. Shrub encroachment on commons and other previously grazed land is one of the most tangible effects of pastoral abandonment in Serra de Estrela. The impacts of the resulting increase in landscape continuity and biomass availability were made clear in the severe fires of 2017 and 2022. As fire risk is likely to increase with climate change, it becomes urgent to understand what strategies can be deployed to keep fragmentation in these landscapes. Key actors such as shepherds should be involved in this discussion to understand their perceptions, points of view and reasons for abandoning upland pastures. In this study, we use fuzzy cognitive mapping to identify the key variables and mechanisms affecting the pastoral system according to local shepherds. In our study, we developed with local stakeholders a framework outlining the local pastoral system. Based on that, we carried out the fuzzy cognitive mapping collecting 14 questionnaires. We found that shepherds' income is a central issue, but that it is highly dependent on many factors. Increasing the Common Agricultural Policy payments alone is not enough to incentivise the use of upland pastures. More targeted strategies, such as more support for shrub clearing, and direct payments conditional to transhumance are more impactful. Despite a contentious discourse between conservation and shepherding values in Serra da Estrela, we find that shepherd's values are aligned with biodiversity conservation and a potential nature-based solution for minimizing fire risk through woody fuel management. This opens up possibilities for new governance strategies, that put Serra da Estrela's social, environmental and cultural values at its core.


Subject(s)
Altitude , Conservation of Natural Resources , Animals , Spain , Climate Change , Fuzzy Logic , Agriculture , Grassland
SELECTION OF CITATIONS
SEARCH DETAIL
...