Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(7): e0255311, 2021.
Article in English | MEDLINE | ID: mdl-34297769

ABSTRACT

Essential hypertension is a common cardiovascular disease with complex etiology, closely related to genetic and environmental factors. The pathogenesis of hypertension involves alteration in vascular resistance caused by sympathetic nervous system (SNS) and renin angiotensin system (RAS). Susceptibility factors of hypertension vary with regions and ethnicities. In this study, we conducted target capture sequencing on 54 genes related to SNS and RAS derived from a collection of Han nationality, consisting of 151 hypertension patients and 65 normal subjects in Xinjiang, China. Six non-synonymous mutations related to hypertension were identified, including GRK4 rs1644731 and RDH8 rs1801058, Mutations are predicted to affect 3D conformation, force field, transmembrane domain and RNA secondary structure of corresponding genes. Based on protein interaction network and pathway enrichment, GRK4 is predicted to participate in hypertension by acting on dopaminergic synapse, together with interacting components. RDH8 is involved in vitamin A (retinol) metabolism and consequent biological processes related to hypertension. Thus, GRK4 and RDH8 may serve as susceptibility genes for hypertension. This finding provides new genetic evidence for elucidating risk factors of hypertension in Han nationality in Xinjiang, which in turn, enriches genetic resource bank of hypertension susceptibility genes.


Subject(s)
G-Protein-Coupled Receptor Kinase 4/genetics , Hypertension/genetics , Polymorphism, Single Nucleotide , China , G-Protein-Coupled Receptor Kinase 4/chemistry , G-Protein-Coupled Receptor Kinase 4/metabolism , Humans , Protein Interaction Maps
2.
J Biol Chem ; 290(33): 20360-73, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26134571

ABSTRACT

G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl ß,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.


Subject(s)
G-Protein-Coupled Receptor Kinase 4/chemistry , G-Protein-Coupled Receptor Kinase 4/metabolism , Hypertension/genetics , Amino Acid Sequence , Crystallography, X-Ray , G-Protein-Coupled Receptor Kinase 4/genetics , Humans , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Conformation , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...