Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.155
Filter
1.
Nat Commun ; 15(1): 4768, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849336

ABSTRACT

Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.


Subject(s)
Basal Forebrain , GABAergic Neurons , Optogenetics , Parvalbumins , Animals , Parvalbumins/metabolism , Basal Forebrain/metabolism , Basal Forebrain/physiology , Male , Mice , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Reward , Punishment , Mice, Inbred C57BL , Learning/physiology , Neurons/metabolism , Neurons/physiology , Association Learning/physiology
2.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828651

ABSTRACT

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Subject(s)
Anesthesia, General , Consciousness , GABAergic Neurons , Isoflurane , Propofol , Propofol/pharmacology , Isoflurane/pharmacology , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Mice , Consciousness/drug effects , Consciousness/physiology , Male , Electroencephalography , Anesthetics, Inhalation/pharmacology , Anterior Thalamic Nuclei/drug effects , Anterior Thalamic Nuclei/physiology , Mice, Inbred C57BL , Mice, Transgenic , Anesthetics, Intravenous/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Optogenetics
3.
Acta Neuropathol ; 147(1): 80, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714540

ABSTRACT

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Subject(s)
GABAergic Neurons , Interneurons , Tuberous Sclerosis , Interneurons/pathology , Interneurons/metabolism , Tuberous Sclerosis/pathology , Tuberous Sclerosis/metabolism , Humans , GABAergic Neurons/pathology , GABAergic Neurons/metabolism , Male , Female , Median Eminence/pathology , Median Eminence/metabolism , Somatostatin/metabolism , Child , Child, Preschool , Receptors, GABA-A/metabolism , Adolescent , Ganglionic Eminence
4.
Addict Biol ; 29(5): e13403, 2024 May.
Article in English | MEDLINE | ID: mdl-38735880

ABSTRACT

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Subject(s)
Analgesics, Opioid , Fentanyl , Mice, Inbred C57BL , Ventral Tegmental Area , Animals , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Mice , Fentanyl/pharmacology , Male , Female , Analgesics, Opioid/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Self Administration , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Neurons/drug effects , Neurons/metabolism , Opioid-Related Disorders/genetics
5.
Sci Adv ; 10(19): eadj9911, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728406

ABSTRACT

During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.


Subject(s)
GABAergic Neurons , Interneurons , Somatosensory Cortex , Animals , Interneurons/metabolism , Interneurons/physiology , Interneurons/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/cytology , Somatosensory Cortex/physiology , Somatosensory Cortex/metabolism , Somatosensory Cortex/cytology , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Parvalbumins/metabolism
6.
J Mol Neurosci ; 74(2): 50, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693434

ABSTRACT

Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.


Subject(s)
Aneuploidy , GABAergic Neurons , Oxidative Stress , Phenotype , Animals , GABAergic Neurons/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Seizures/genetics , Seizures/metabolism , Drosophila melanogaster/genetics , Brain/metabolism , Drosophila/genetics
7.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810181

ABSTRACT

BACKGROUND AND OBJECTIVES: New-onset refractory status epilepticus (NORSE) occurs in previously healthy children or adults, often followed by refractory epilepsy and poor outcomes. The mechanisms that transform a normal brain into an epileptic one capable of seizing for prolonged periods despite treatment remain unclear. Nonetheless, several pieces of evidence suggest that immune dysregulation could contribute to hyperexcitability and modulate NORSE sequelae. METHODS: We used single-nucleus RNA sequencing to delineate the composition and phenotypic states of the CNS of 4 patients with NORSE, to better understand the relationship between hyperexcitability and immune disturbances. We compared them with 4 patients with chronic temporal lobe epilepsy (TLE) and 2 controls with no known neurologic disorder. RESULTS: Patients with NORSE and TLE exhibited a significantly higher proportion of excitatory neurons compared with controls, with no discernible difference in inhibitory GABAergic neurons. When examining the ratio between excitatory neurons and GABAergic neurons for each patient individually, we observed a higher ratio in patients with acute NORSE or TLE compared with controls. Furthermore, a negative correlation was found between the ratio of excitatory to GABAergic neurons and the proportion of GABAergic neurons. The ratio between excitatory neurons and GABAergic neurons correlated with the proportion of resident or infiltrating macrophages, suggesting the influence of microglial reactivity on neuronal excitability. Both patients with NORSE and TLE exhibited increased expression of genes associated with microglia activation, phagocytic activity, and NLRP3 inflammasome activation. However, patients with NORSE had decreased expression of genes related to the downregulation of the inflammatory response, potentially explaining the severity of their presentation. Microglial activation in patients with NORSE also correlated with astrocyte reactivity, possibly leading to higher degrees of demyelination. DISCUSSION: Our study sheds light on the complex cellular dynamics in NORSE, revealing the potential roles of microglia, infiltrating macrophages, and astrocytes in hyperexcitability and demyelination, offering potential avenues for future research targeting the identified pathways.


Subject(s)
Brain , Drug Resistant Epilepsy , Single-Cell Analysis , Status Epilepticus , Humans , Status Epilepticus/genetics , Male , Female , Adult , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/immunology , Brain/metabolism , Transcriptome , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/physiopathology , Young Adult , Child , Middle Aged , Adolescent , GABAergic Neurons/metabolism , Gene Expression Profiling , Microglia/metabolism
8.
Proc Natl Acad Sci U S A ; 121(23): e2316364121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809712

ABSTRACT

Epilepsies have numerous specific mechanisms. The understanding of neural dynamics leading to seizures is important for disclosing pathological mechanisms and developing therapeutic approaches. We investigated electrographic activities and neural dynamics leading to convulsive seizures in patients and mouse models of Dravet syndrome (DS), a developmental and epileptic encephalopathy in which hypoexcitability of GABAergic neurons is considered to be the main dysfunction. We analyzed EEGs from DS patients carrying a SCN1A pathogenic variant, as well as epidural electrocorticograms, hippocampal local field potentials, and hippocampal single-unit neuronal activities in Scn1a+/- and Scn1aRH/+ DS mice. Strikingly, most seizures had low-voltage-fast onset in both patients and mice, which is thought to be generated by hyperactivity of GABAergic interneurons, the opposite of the main pathological mechanism of DS. Analyzing single-unit recordings, we observed that temporal disorganization of the firing of putative interneurons in the period immediately before the seizure (preictal) precedes the increase of their activity at seizure onset, together with the entire neuronal network. Moreover, we found early signatures of the preictal period in the spectral features of hippocampal and cortical field potential of Scn1a mice and of patients' EEG, which are consistent with the dysfunctions that we observed in single neurons and that allowed seizure prediction. Therefore, the perturbed preictal activity of interneurons leads to their hyperactivity at the onset of generalized seizures, which have low-voltage-fast features that are similar to those observed in other epilepsies and are triggered by hyperactivity of GABAergic neurons. Preictal spectral features may be used as predictive seizure biomarkers.


Subject(s)
Epilepsies, Myoclonic , GABAergic Neurons , Hippocampus , Interneurons , NAV1.1 Voltage-Gated Sodium Channel , Seizures , Animals , Epilepsies, Myoclonic/physiopathology , Epilepsies, Myoclonic/genetics , Interneurons/physiology , Interneurons/metabolism , Mice , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Seizures/physiopathology , Humans , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Male , Hippocampus/physiopathology , Hippocampus/metabolism , Female , Disease Models, Animal , Electroencephalography , Child
9.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771878

ABSTRACT

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Subject(s)
Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
10.
Cell Rep ; 43(5): 114204, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748878

ABSTRACT

Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.


Subject(s)
Caenorhabditis elegans , DNA-Binding Proteins , Disease Models, Animal , Animals , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , GABAergic Neurons/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Motor Neurons/metabolism , Locomotion , Synaptic Transmission , Movement , Cholinergic Neurons/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791562

ABSTRACT

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Subject(s)
Astrocytes , Cyclin-Dependent Kinase 5 , Hippocampus , Neurogenesis , Reelin Protein , Animals , Astrocytes/metabolism , Rats , Reelin Protein/metabolism , Male , Hippocampus/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , GABAergic Neurons/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Rats, Wistar , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Parvalbumins/metabolism
12.
Proc Natl Acad Sci U S A ; 121(21): e2321410121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748575

ABSTRACT

Here, we describe a group of basal forebrain (BF) neurons expressing neuronal Per-Arnt-Sim (PAS) domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+ neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+ neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+ neurons was high, five to six times that of neighboring cholinergic, parvalbumin, or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+ neurons to brain regions involved in sleep-wake control, motivated behaviors, and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area, and olfactory bulb. Chemogenetic activation of BF Npas1+ neurons in the light period increased the amount of wakefulness and the latency to sleep for 2 to 3 h, due to an increase in long wake bouts and short NREM sleep bouts. NREM slow-wave and sigma power, as well as sleep spindle density, amplitude, and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+ neurons in stress responsiveness, the anatomical projections of BF Npas1+ neurons and the effect of activating them suggest a possible role for BF Npas1+ neurons in motivationally driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia, and other neuropsychiatric conditions involving BF.


Subject(s)
Basal Forebrain , Basic Helix-Loop-Helix Transcription Factors , GABAergic Neurons , Wakefulness , Animals , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Basal Forebrain/metabolism , Basal Forebrain/physiology , Mice , Wakefulness/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Transgenic , Male , Sleep/physiology
13.
J Neurophysiol ; 131(6): 1226-1239, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691531

ABSTRACT

Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.


Subject(s)
Interneurons , Olfactory Bulb , Olfactory Bulb/physiology , Olfactory Bulb/cytology , Animals , Interneurons/physiology , Mice , GABAergic Neurons/physiology , Channelrhodopsins/metabolism , Channelrhodopsins/genetics , Male , Mice, Inbred C57BL , Action Potentials/physiology , Neural Inhibition/physiology , Female , Optogenetics
14.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38788194

ABSTRACT

Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved. Here, we tested the hypothesis that androgen signaling in GABAergic neurons is critical in PCOS pathogenesis in 2 well-characterized hyperandrogenic mouse models of PCOS. Using cre-lox transgenics, GABA-specific androgen receptor knockout (GABARKO) mice were generated and exposed to either acute prenatal androgen excess (PNA) or chronic peripubertal androgen excess (PPA). Females were phenotyped for reproductive and metabolic features associated with each model and brains of PNA mice were assessed for elevated GABAergic input to gonadotropin-releasing hormone (GnRH) neurons. Reproductive and metabolic dysfunction induced by PPA, including acyclicity, absence of corpora lutea, obesity, adipocyte hypertrophy, and impaired glucose homeostasis, was not different between GABARKO and wild-type (WT) mice. In PNA mice, acyclicity remained in GABARKO mice while ovarian morphology and luteinizing hormone secretion was not significantly impacted by PNA or genotype. However, PNA predictably increased the density of putative GABAergic synapses to GnRH neurons in adult WT mice, and this PNA-induced plasticity was absent in GABARKO mice. Together, these findings suggest that while direct androgen signaling in GABA neurons is largely not required for the development of PCOS-like traits in androgenized models of PCOS, developmental programming of GnRH neuron innervation is dependent upon androgen signaling in GABA neurons.


Subject(s)
Disease Models, Animal , GABAergic Neurons , Hyperandrogenism , Mice, Knockout , Polycystic Ovary Syndrome , Receptors, Androgen , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , GABAergic Neurons/metabolism , Hyperandrogenism/metabolism , Hyperandrogenism/genetics , Ovary/metabolism , Androgens/metabolism , Pregnancy , Gonadotropin-Releasing Hormone/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics
15.
Biochem Biophys Res Commun ; 721: 150145, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38795633

ABSTRACT

Itch, a common somatic sensation, serves as a crucial protective system. Recent studies have unraveled the neural mechanisms of itch at peripheral, spinal cord as well as cerebral levels. However, a comprehensive understanding of the central mechanism governing itch transmission and regulation remains elusive. Here, we report the role of the medial septum (MS), an integral component of the basal forebrain, in modulating the acute itch processing. The increases in c-Fos+ neurons and calcium signals within the MS during acute itch processing were observed. Pharmacogenetic activation manipulation of global MS neurons suppressed the scratching behaviors induced by chloroquine or compound 48/80. Microinjection of GABA into the MS or pharmacogenetic inhibition of non-GABAergic neurons markedly suppressed chloroquine-induced scratching behaviors. Pharmacogenetic activation of the MS-ACC GABAergic pathway attenuated chloroquine-induced acute itch. Hence, our findings reveal that MS has a regulatory role in the chloroquine-induced acute itch through local increased GABA to inhibit non-GABAergic neurons and the activation of MS-ACC GABAergic pathway.


Subject(s)
Chloroquine , Gyrus Cinguli , Pruritus , gamma-Aminobutyric Acid , Chloroquine/pharmacology , Animals , Pruritus/chemically induced , Pruritus/metabolism , Pruritus/drug therapy , Male , gamma-Aminobutyric Acid/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Mice, Inbred C57BL , Mice , Septal Nuclei/metabolism , Septal Nuclei/drug effects
16.
Eur J Histochem ; 68(2)2024 May 15.
Article in English | MEDLINE | ID: mdl-38766720

ABSTRACT

Previous studies on the granular layer of the cerebellar cortex have revealed a wide distribution of different subpopulations of less-known large neuron types, called "non-traditional large neurons", which are distributed in three different zones of the granular layer. These neuron types are mainly involved in the formation of intrinsiccircuits inside the cerebellar cortex. A subpopulation of these neuron types is represented by the synarmotic neuron, which could play a projective role within the cerebellar circuitry. The synarmotic neuron cell body map within the internal zone of the granular layer or in the subjacent white substance. Furthermore, the axon crosses the granular layer and runs in the subcortical white substance, to reenter in an adjacent granular layer, associating two cortico-cerebellar regions of the same folium or of different folia, or could project to the intrinsic cerebellar nuclei. Therefore, along with the Purkinje neuron, the traditional projective neuron type of the cerebellar cortex, the synarmotic neuron is candidate to represent the second projective neuron type of the cerebellar cortex. Studies of chemical neuroanatomy evidenced a predominant inhibitory GABAergic nature of the synarmotic neuron, suggesting that it may mediate an inhibitory GABAergic output of cerebellar cortex within cortico-cortical interconnections or in projections towards intrinsic cerebellar nuclei. On this basis, the present minireview mainly focuses on the morphofunctional and neurochemical data of the synarmotic neuron, and explores its potential involvement in some forms of cerebellar ataxias.


Subject(s)
Cerebellar Cortex , Neurons , Cerebellar Cortex/cytology , Animals , Humans , Neurons/cytology , Neurons/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/cytology
17.
Nat Commun ; 15(1): 4233, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762463

ABSTRACT

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Subject(s)
Avoidance Learning , Basal Forebrain , GABAergic Neurons , Glutamic Acid , Reward , Ventral Tegmental Area , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/cytology , Animals , Glutamic Acid/metabolism , Basal Forebrain/metabolism , Basal Forebrain/physiology , Male , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Avoidance Learning/physiology , Mice , Dopamine/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Neurons/metabolism , Neurons/physiology , gamma-Aminobutyric Acid/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Mice, Inbred C57BL , Behavior, Animal/physiology
18.
Sci Rep ; 14(1): 12274, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806540

ABSTRACT

Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.


Subject(s)
Cranial Irradiation , Extracellular Vesicles , GABAergic Neurons , Animals , Extracellular Vesicles/metabolism , Rats , Cranial Irradiation/adverse effects , GABAergic Neurons/metabolism , GABAergic Neurons/radiation effects , Male , Hippocampus/radiation effects , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/radiation effects , Neurons/metabolism , Glutamic Acid/metabolism , Neuronal Plasticity/radiation effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Behavior, Animal/radiation effects
19.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791587

ABSTRACT

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.


Subject(s)
Alzheimer Disease , Epilepsy , Interneurons , Parvalbumins , Humans , Interneurons/metabolism , Interneurons/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Parvalbumins/metabolism , Animals , Epilepsy/physiopathology , Epilepsy/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Brain/metabolism , Brain/physiopathology
20.
Cell Rep ; 43(5): 114187, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722743

ABSTRACT

The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.


Subject(s)
Dopamine , Dopaminergic Neurons , Locomotion , Mesencephalon , Receptors, Dopamine D1 , Animals , Mesencephalon/metabolism , Mice , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Mice, Inbred C57BL , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , GABAergic Neurons/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...