Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Immunol ; 92(1): e12882, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32243627

ABSTRACT

Intelectin (ITLN) is a new type of glycan-binding lectin. It has been demonstrated to agglutinate bacteria probably due to its carbohydrate-binding capacity, suggesting its role in an innate immune response. It is involved not only in many physiological processes but also in some human diseases such as asthma, heart disease, inflammatory bowel disease, chronic obstructive pulmonary disease and cancer. Up to now, intelectin orthologs have been identified in placozoans, urochordatas, cephalochordates and several vertebrates, such as cyclostomata, fish, amphibians and mammals. Although the sequences of intelectins in different species are conserved, their expression patterns, quaternary structures and functions differ considerably among and within species. We summarize the evolution of the intelectin gene family, the tissue distribution, structure and functions of intelectins. We conclude that intelectin plays a role in innate immune response and there are still potential functions of intelectin awaiting discovery.


Subject(s)
Bacteria/immunology , Cytokines/genetics , Cytokines/metabolism , Immunity, Innate/immunology , Lectins/genetics , Lectins/metabolism , Pattern Recognition, Physiological/physiology , Amino Acid Sequence , Animals , Cytokines/pharmacokinetics , Evolution, Molecular , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/pharmacokinetics , Humans , Lectins/pharmacokinetics , Protein Structure, Secondary , Sequence Alignment , Tissue Distribution/physiology
2.
Clin Cancer Res ; 25(15): 4723-4734, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31064781

ABSTRACT

PURPOSE: Targeted thorium-227 conjugates (TTC) represent a new class of molecules for targeted alpha therapy (TAT). Covalent attachment of a 3,2-HOPO chelator to an antibody enables specific complexation and delivery of the alpha particle emitter thorium-227 to tumor cells. Because of the high energy and short penetration range, TAT efficiently induces double-strand DNA breaks (DSB) preferentially in the tumor cell with limited damage to the surrounding tissue. We present herein the preclinical evaluation of a mesothelin (MSLN)-targeted thorium-227 conjugate, BAY 2287411. MSLN is a GPI-anchored membrane glycoprotein overexpressed in mesothelioma, ovarian, pancreatic, lung, and breast cancers with limited expression in healthy tissue. EXPERIMENTAL DESIGN: The binding activity and radiostability of BAY 2287411 were confirmed bioanalytically. The mode-of-action and antitumor potency of BAY 2287411 were investigated in vitro and in vivo in cell line and patient-derived xenograft models of breast, colorectal, lung, ovarian, and pancreatic cancer. RESULTS: BAY 2287411 induced DSBs, apoptotic markers, and oxidative stress, leading to reduced cellular viability. Furthermore, upregulation of immunogenic cell death markers was observed. BAY 2287411 was well-tolerated and demonstrated significant antitumor efficacy when administered via single or multiple dosing regimens in vivo. In addition, significant survival benefit was observed in a disseminated lung cancer model. Biodistribution studies showed specific uptake and retention of BAY 2287411 in tumors and enabled the development of a mechanistic pharmacokinetic/pharmacodynamic model to describe the preclinical data. CONCLUSIONS: These promising preclinical results supported the transition of BAY 2287411 into a clinical phase I program in mesothelioma and ovarian cancer patients (NCT03507452).


Subject(s)
Alpha Particles/therapeutic use , Drug Evaluation, Preclinical/methods , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/pharmacology , Neoplasms/drug therapy , Radiopharmaceuticals/pharmacology , Thorium/pharmacology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/pharmacokinetics , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mesothelin , Mesothelioma/drug therapy , Mesothelioma/metabolism , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Radiopharmaceuticals/pharmacokinetics , Thorium/administration & dosage , Thorium/chemistry , Thorium/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Histochem Cell Biol ; 145(1): 53-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26515055

ABSTRACT

Hyaluronidase 2 (HYAL2) is a membrane-anchored protein that is proposed to initiate the degradation of hyaluronan (HA) in the extracellular matrix. The distribution of HYAL2 in tissues, and of HA in tissues lacking HYAL2, is largely unexplored despite the importance of HA metabolism in several disease processes. Herein, we use immunoblot and histochemical analyses to detect HYAL2 and HA in mouse tissues, as well as agarose gel electrophoresis to examine the size of HA. HYAL2 was detected in all tissues that were examined, including the brain. It was localized to the surface and cytoplasm of endothelial cells, as well as specialized epithelial cells in several tissues, including the skin. Accumulated HA, often of higher molecular mass than that in control tissues, was detected in tissues from Hyal2 (-/-) mice. The accumulating HA was located near to where HYAL2 is normally found, although in some tissues, it was distant from the site of HYAL2 localization. Overall, HYAL2 was highest in tissues that remove HA from the circulation (liver, lymph node and spleen), but the levels of HA accumulation in Hyal2 (-/-) mice were highest in tissues that catabolize locally synthesized HA. Our results support HYAL2's role as an extracellular enzyme that initiates HA breakdown in somatic tissues. However, our findings also suggest that HYAL2 contributes to HA degradation through other routes, perhaps as a soluble or secreted form.


Subject(s)
Endothelial Cells/metabolism , Epithelial Cells/metabolism , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/biosynthesis , Hyaluronoglucosaminidase/pharmacokinetics , Animals , Electrophoresis, Agar Gel/methods , Extracellular Matrix/metabolism , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , GPI-Linked Proteins/pharmacokinetics , Hyaluronoglucosaminidase/genetics , Immunoblotting/methods , Immunohistochemistry/methods , Mice , Mice, Knockout
4.
Toxicol Appl Pharmacol ; 287(3): 202-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26051873

ABSTRACT

PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.


Subject(s)
Acetylcholinesterase/pharmacology , Antidotes/pharmacology , Organophosphate Poisoning/drug therapy , Organophosphate Poisoning/prevention & control , Polyethylene Glycols/chemistry , Acetylcholinesterase/administration & dosage , Acetylcholinesterase/adverse effects , Acetylcholinesterase/chemistry , Acetylcholinesterase/pharmacokinetics , Adult , Animals , Antidotes/administration & dosage , Antidotes/adverse effects , Antidotes/chemistry , Antidotes/pharmacokinetics , Chemistry, Pharmaceutical , Disease Models, Animal , Female , GPI-Linked Proteins/administration & dosage , GPI-Linked Proteins/adverse effects , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/pharmacokinetics , GPI-Linked Proteins/pharmacology , Half-Life , Humans , Injections, Intravenous , Israel , Male , Mice, Inbred BALB C , Middle Aged , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Recombinant Proteins , Swine , Swine, Miniature , Young Adult
5.
Clin Pharmacol Ther ; 98(2): 196-204, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25869840

ABSTRACT

Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 µg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs.


Subject(s)
Alkaline Phosphatase/administration & dosage , Alkaline Phosphatase/pharmacokinetics , Carbon Radioisotopes , Isoenzymes/administration & dosage , Isoenzymes/pharmacokinetics , Administration, Intravenous , Adolescent , Adult , Alkaline Phosphatase/adverse effects , Area Under Curve , Double-Blind Method , Drug Dosage Calculations , GPI-Linked Proteins/administration & dosage , GPI-Linked Proteins/adverse effects , GPI-Linked Proteins/pharmacokinetics , Half-Life , Healthy Volunteers , Humans , Isoenzymes/adverse effects , Linear Models , Male , Mass Spectrometry/methods , Metabolic Clearance Rate , Models, Biological , Netherlands , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...