Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 775
Filter
1.
PLoS One ; 19(5): e0298864, 2024.
Article in English | MEDLINE | ID: mdl-38753630

ABSTRACT

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease. Determination of zampilimab half-maximal inhibitory concentration (IC50) against recombinant human TG2 was undertaken using the KxD assay and determination of dissociation constant (Kd) by surface plasmon resonance. Efficacy in vitro was established using a primary human renal epithelial cell model of tubulointerstitial fibrosis, to assess mature deposited extracellular matrix proteins. Proof of concept in vivo used a cynomolgus monkey unilateral ureteral obstruction model of chronic kidney disease. Zampilimab inhibited TG2 crosslinking transamidation activity with an IC50 of 0.25 nM and Kd of <50 pM. In cell culture, zampilimab inhibited extracellular TG2 activity (IC50 119 nM) and dramatically reduced transforming growth factor-ß1-driven accumulation of multiple extracellular matrix proteins including collagens I, III, IV, V, and fibronectin. Intravenous administration of BB7 in rabbits resulted in a 68% reduction in fibrotic index at Day 25 post-unilateral ureteral obstruction. Weekly intravenous administration of zampilimab in cynomolgus monkeys with unilateral ureteral obstruction reduced fibrosis at 4 weeks by >50%, with no safety signals. Our data support the clinical investigation of zampilimab for the treatment of kidney fibrosis.


Subject(s)
Disease Models, Animal , Fibrosis , GTP-Binding Proteins , Macaca fascicularis , Protein Glutamine gamma Glutamyltransferase 2 , Renal Insufficiency, Chronic , Transglutaminases , Animals , Humans , Fibrosis/drug therapy , Rabbits , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism
2.
BMJ Case Rep ; 17(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719261

ABSTRACT

Olmesartan is an angiotensin II receptor blocker licensed for the treatment of hypertension. It can cause a sprue-like enteropathy (SLE), characterised by chronic diarrhoea, weight loss and villous atrophy. Transiently raised anti-tissue transglutaminase (ATTG) antibody has also been rarely reported in the literature.We describe the case of a woman in her mid-50s, who presented with a history of intermittent loose stools over 1 year, associated with significant weight loss. She had two marginally raised serum ATTG antibody tests during her work-up.After extensive investigations, she was diagnosed with olmesartan-induced enteropathy. On subsequent follow-up, her symptoms had resolved with cessation of her olmesartan therapy.This case adds to existing literature, highlighting the importance of considering olmesartan as a possible differential diagnosis for SLE. It also reports the presence of a raised ATTG antibody which is infrequently reported in this context.


Subject(s)
Diarrhea , Imidazoles , Tetrazoles , Transglutaminases , Weight Loss , Humans , Female , Imidazoles/adverse effects , Diarrhea/chemically induced , Tetrazoles/adverse effects , Middle Aged , Transglutaminases/immunology , Diagnosis, Differential , Angiotensin II Type 1 Receptor Blockers/adverse effects , Autoantibodies/blood , Protein Glutamine gamma Glutamyltransferase 2 , Chronic Disease , Celiac Disease/diagnosis , GTP-Binding Proteins/immunology , GTP-Binding Proteins/antagonists & inhibitors
3.
Exp Lung Res ; 50(1): 106-117, 2024.
Article in English | MEDLINE | ID: mdl-38642025

ABSTRACT

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Subject(s)
Autophagy , GTP-Binding Proteins , Lung Injury , Pneumonia , Respiratory Distress Syndrome , Animals , Mice , Autophagy/drug effects , Inflammation/metabolism , Lipopolysaccharides , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Pneumonia/metabolism , Pulmonary Emphysema , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism
4.
Nucleic Acids Res ; 50(D1): D518-D525, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34570219

ABSTRACT

Two-thirds of signaling substances, several sensory stimuli and over one-third of drugs act via receptors coupling to G proteins. Here, we present an online platform for G protein research with reference data and tools for analysis, visualization and design of scientific studies across disciplines and areas. This platform may help translate new pharmacological, structural and genomic data into insights on G protein signaling vital for human physiology and medicine. The G protein database is accessible at https://gproteindb.org.


Subject(s)
Databases, Protein , GTP-Binding Proteins/metabolism , Prescription Drugs/chemistry , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/chemistry , Software , Amino Acid Sequence , Binding Sites , Eukaryotic Cells/cytology , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , Gene Expression Regulation , Humans , Models, Molecular , Molecular Sequence Annotation , Mutation , Prescription Drugs/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
5.
J Cell Biol ; 221(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34817557

ABSTRACT

ER network formation depends on membrane fusion by the atlastin (ATL) GTPase. In humans, three paralogs are differentially expressed with divergent N- and C-terminal extensions, but their respective roles remain unknown. This is partly because, unlike Drosophila ATL, the fusion activity of human ATLs has not been reconstituted. Here, we report successful reconstitution of fusion activity by the human ATLs. Unexpectedly, the major splice isoforms of ATL1 and ATL2 are each autoinhibited, albeit to differing degrees. For the more strongly inhibited ATL2, autoinhibition mapped to a C-terminal α-helix is predicted to be continuous with an amphipathic helix required for fusion. Charge reversal of residues in the inhibitory domain strongly activated its fusion activity, and overexpression of this disinhibited version caused ER collapse. Neurons express an ATL2 splice isoform whose sequence differs in the inhibitory domain, and this form showed full fusion activity. These findings reveal autoinhibition and alternate splicing as regulators of atlastin-mediated ER fusion.


Subject(s)
GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Membrane Fusion , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Endoplasmic Reticulum/metabolism , GTP-Binding Proteins/antagonists & inhibitors , Humans , Membrane Proteins/antagonists & inhibitors , Mutation/genetics , Protein Structure, Secondary
6.
EMBO Rep ; 22(11): e52948, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34467632

ABSTRACT

The type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear. In this study, we show that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in a robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC-I antigen presentation and stress granule signaling are enhanced in IRGM-deficient cells, indicating a robust cell-intrinsic antiviral immune state. Consistently, IRGM-depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviverdae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Altogether, our work highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS-CoV-2, CHIKV, and Zika virus.


Subject(s)
GTP-Binding Proteins/antagonists & inhibitors , Virus Diseases/immunology , Animals , Antiviral Agents/pharmacology , Humans , Mice , Virus Replication
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361059

ABSTRACT

In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.


Subject(s)
Cell Nucleus/metabolism , Dactinomycin/pharmacology , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Nuclear Proteins/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Transcription, Genetic , Cell Nucleus/drug effects , Cell Nucleus/genetics , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , HeLa Cells , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics
8.
N Engl J Med ; 385(1): 35-45, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34192430

ABSTRACT

BACKGROUND: In celiac disease, small intestinal transglutaminase 2 causes deamidation of glutamine residues in gluten peptides, which enhances stimulation of T cells and leads to mucosal injury. Inhibition of transglutaminase 2 is a potential treatment for celiac disease. METHODS: In a proof-of-concept trial, we assessed the efficacy and safety of a 6-week treatment with ZED1227, a selective oral transglutaminase 2 inhibitor, at three dose levels as compared with placebo, in adults with well-controlled celiac disease who underwent a daily gluten challenge. The primary end point was the attenuation of gluten-induced mucosal damage, as measured by the ratio of villus height to crypt depth. Secondary end points included intraepithelial lymphocyte density, the Celiac Symptom Index score, and the Celiac Disease Questionnaire score (for assessment of health-related quality of life). RESULTS: Of the 41 patients assigned to the 10-mg ZED1227 group, the 41 assigned to the 50-mg group, the 41 assigned to the 100-mg group, and the 40 assigned to the placebo group, 35, 39, 38, and 30 patients, respectively, had adequate duodenal-biopsy samples for the assessment of the primary end point. Treatment with ZED1227 at all three dose levels attenuated gluten-induced duodenal mucosal injury. The estimated difference from placebo in the change in the mean ratio of villus height to crypt depth from baseline to week 6 was 0.44 (95% confidence interval [CI], 0.15 to 0.73) in the 10-mg group (P = 0.001), 0.49 (95% CI, 0.20 to 0.77) in the 50-mg group (P<0.001), and 0.48 (95% CI, 0.20 to 0.77) in the 100-mg group (P<0.001). The estimated differences from placebo in the change in intraepithelial lymphocyte density were -2.7 cells per 100 epithelial cells (95% CI, -7.6 to 2.2) in the 10-mg group, -4.2 cells per 100 epithelial cells (95% CI, -8.9 to 0.6) in the 50-mg group, and -9.6 cells per 100 epithelial cells (95% CI, -14.4 to -4.8) in the 100-mg group. Use of the 100-mg dose may have improved symptom and quality-of-life scores. The most common adverse events, the incidences of which were similar across all groups, were headache, nausea, diarrhea, vomiting, and abdominal pain. Rash developed in 3 of 40 patients (8%) in the 100-mg group. CONCLUSIONS: In this preliminary trial, treatment with ZED1227 attenuated gluten-induced duodenal mucosal damage in patients with celiac disease. (Funded by Dr. Falk Pharma; CEC-3 EudraCT number, 2017-002241-30.).


Subject(s)
Celiac Disease/drug therapy , Duodenum/pathology , GTP-Binding Proteins/antagonists & inhibitors , Imidazoles/administration & dosage , Intestinal Mucosa/pathology , Pyridines/administration & dosage , Transglutaminases/antagonists & inhibitors , Administration, Oral , Adult , Celiac Disease/pathology , Dose-Response Relationship, Drug , Double-Blind Method , Duodenum/immunology , Female , Glutens/administration & dosage , Glutens/adverse effects , Humans , Imidazoles/adverse effects , Intestinal Mucosa/immunology , Lymphocyte Count , Male , Middle Aged , Proof of Concept Study , Protein Glutamine gamma Glutamyltransferase 2 , Pyridines/adverse effects , Quality of Life , Severity of Illness Index
9.
J Med Chem ; 64(6): 3462-3478, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33705656

ABSTRACT

The transamidase activity of transglutaminase 2 (TGase 2) is considered to be important for several pathophysiological processes including fibrotic and neoplastic tissue growth, whereas in healthy cells this enzymatic function is predominantly latent. Methods that enable the highly sensitive detection of TGase 2, such as application of radiolabeled activity-based probes, will support the exploration of the enzyme's function in various diseases. In this context, the radiosynthesis and detailed in vitro radiopharmacological evaluation of an 18F-labeled Nε-acryloyllysine piperazide are reported. Robust and facile detection of the radiotracer-TGase 2 complex by autoradiography of thin layer plates and polyacrylamide gels after chromatographic and electrophoretic separation owing to irreversible covalent bond formation was demonstrated for the isolated protein, cell lysates, and living cells. By use of this radiotracer, quantitative data on the expression profile of activatable TGase 2 in mouse organs and selected tumors were obtained for the first time by autoradiography of tissue sections.


Subject(s)
Fluorine Radioisotopes/chemistry , GTP-Binding Proteins/analysis , Lysine/analogs & derivatives , Piperazines/chemistry , Transglutaminases/analysis , Animals , Cell Line, Tumor , GTP-Binding Proteins/antagonists & inhibitors , Humans , Lysine/chemical synthesis , Mice , Neoplasms/enzymology , Neoplasms/pathology , Piperazines/chemical synthesis , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/antagonists & inhibitors
10.
Amino Acids ; 53(2): 205-217, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33474654

ABSTRACT

This study investigates the effects of a site-directed TG2-selective inhibitor on the lung myofibroblast phenotype and ECM deposition to elucidate TG2 as a novel therapeutic target in idiopathic pulmonary fibrosis (IPF)-an incurable progressive fibrotic disease. IPF fibroblasts showed increased expression of TG2, α smooth muscle actin (αSMA) and fibronectin (FN) with increased extracellular TG2 and transforming growth factor ß1 (TGFß1) compared to normal human lung fibroblasts (NHLFs) which do not express αSMA and express lower levels of FN. The myofibroblast phenotype shown by IPF fibroblasts could be reversed by selective TG2 inhibition with a reduction in matrix FN and TGFß1 deposition. TG2 transduction or TGFß1 treatment of NHLFs led to a comparable phenotype to that of IPF fibroblasts which was reversible following selective TG2 inhibition. Addition of exogenous TG2 to NHLFs also induced the myofibroblast phenotype by a mechanism involving TGFß1 activation which could be ameliorated by selective TG2 inhibition. SMAD3-deleted IPF fibroblasts via CRISPR-cas9 genome editing, showed reduced TG2 protein levels following TGFß1 stimulation. This study demonstrates a key role for TG2 in the induction of the myofibroblast phenotype and shows the potential for TG2-selective inhibitors as therapeutic agents for the treatment of fibrotic lung diseases like IPF.


Subject(s)
Enzyme Inhibitors/pharmacology , GTP-Binding Proteins/antagonists & inhibitors , Idiopathic Pulmonary Fibrosis/metabolism , Transglutaminases/antagonists & inhibitors , Actins/genetics , Actins/metabolism , Fibronectins/genetics , Fibronectins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
11.
Cancer Res ; 81(8): 2101-2115, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33483373

ABSTRACT

The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.


Subject(s)
Astrocytes/enzymology , Brain Neoplasms/radiotherapy , Brain/radiation effects , GTP-Binding Proteins/metabolism , Glioblastoma/radiotherapy , Neoplastic Stem Cells , Transglutaminases/metabolism , Tumor Microenvironment/radiation effects , Animals , Astrocytes/radiation effects , Brain/cytology , Brain/physiology , Brain Neoplasms/pathology , Cell Survival/physiology , Enzyme Inhibitors/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects , Female , GTP-Binding Proteins/antagonists & inhibitors , Glioblastoma/pathology , Glioma/pathology , Glioma/radiotherapy , Humans , Male , Mice , Neoplasm Recurrence, Local/enzymology , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/physiology , Protein Glutamine gamma Glutamyltransferase 2 , Radiation Tolerance , Transglutaminases/antagonists & inhibitors , Tumor Microenvironment/physiology
12.
Eur J Pharmacol ; 890: 173640, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33045198

ABSTRACT

Opioids are the most powerful analgesics used clinically; however, severe side effects limit their long-term use. Various concepts involving biased intracellular signaling, partial agonism or multi-receptor targeting have been proposed to identify novel opioids with increased analgesic efficacy but reduced side effects. The search for such 'better opioids' implies screening of huge compound libraries and requires highly reliable, easy to perform and high throughput screening (HTS) assays. Here, we utilize an established membrane potential assay to monitor activation of G protein-coupled inwardly rectifying potassium (GIRK) channels, one of the main effectors of opioid receptor signaling, as readout to determine pharmacological profiles of opioids in a non-invasive manner. Specifically, in this study, we optimize assay conditions and extend the application of this assay to screen all four members of the opioid receptor family, stably expressed in AtT-20 and HEK293 cells. This ultra-sensitive system yielded EC50 values in the nano-molar range. We further validate this system for screening cells stably co-expressing two opioid receptors, which could be a valuable tool for investigating bi-functional ligands and studying interactions between receptors. Additionally, we demonstrate the utility of this assay to study antagonists as well as ligands with varying efficacies. Our results suggest that this assay could easily be up-scaled to HTS assay in order to efficiently study receptor activation and screen for novel opioids.


Subject(s)
GTP-Binding Proteins/drug effects , GTP-Binding Proteins/metabolism , High-Throughput Screening Assays/methods , Membrane Potentials/drug effects , Receptors, Opioid/metabolism , Signal Transduction/drug effects , Analgesics, Opioid/pharmacology , Animals , Cell Line, Tumor , Cell Separation , Flow Cytometry , Fluorescence , G Protein-Coupled Inwardly-Rectifying Potassium Channels/agonists , G Protein-Coupled Inwardly-Rectifying Potassium Channels/antagonists & inhibitors , G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , GTP-Binding Proteins/agonists , GTP-Binding Proteins/antagonists & inhibitors , HEK293 Cells , Humans , Ligands , Mice
13.
Biotechnol Prog ; 37(1): e3072, 2021 01.
Article in English | MEDLINE | ID: mdl-32964665

ABSTRACT

Bacillus lichenformis is an industrially promising generally recognized as safe (GRAS) strain that can be used for the production of a valuable chemical, 2,3-butanediol (BDO). Conventional gene deletion vectors and/or methods are time-consuming and have poor efficiency. Therefore, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 mediated homologous recombination was used to engineer a newly isolated and UV-mutagenized B. licheniformis 4071-15 strain. With the help of a CRISPR-Cas9 system, this one-step process could be used for the deletion of ldh gene within 4 days with high-efficiency exceeding 60%. In addition, the sequential deletion of target genes for engineering studies was evaluated, and it was confirmed that a triple mutant strain (ldh, dgp, and acoR) could be obtained by repeated one-step cycles. Furthermore, a practical metabolic engineering study was carried out using a CRISPR-Cas9 system for the stereospecific production of (2R,3S)-BDO. The predicted (2R,3R)-butanediol dehydrogenase encoded by the gdh gene was selected as a target for the production of (2R,3S)-BDO, and the mutant was successfully obtained. The results show that the stereospecific production of (2R,3S)-BDO was possible with the gdh deletion mutant, while the 4071-15 host strain still generated 26% of (2R,3R)-BDO. It was also shown that the 4071-15 Δgdh mutant could produce 115 g/L of (2R,3S)-BDO in 64 hr by two-stage fed-batch fermentation. This study has shown the efficient development of a (2R,3S)-BDO producing B. licheniformis strain based on CRISPR-Cas9 and fermentation technologies.


Subject(s)
Bacillus licheniformis/metabolism , Bacterial Proteins/antagonists & inhibitors , Butylene Glycols/metabolism , Bacillus licheniformis/genetics , Bacillus licheniformis/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Cas Systems , Fermentation , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Metabolic Engineering , Mutation
14.
Hypertension ; 77(1): 216-227, 2021 01.
Article in English | MEDLINE | ID: mdl-33249864

ABSTRACT

Transglutaminase 2 (TG2) is an enzyme which in the open conformation exerts transamidase activity, leading to protein cross-linking and fibrosis. In the closed conformation, TG2 participates in transmembrane signaling as a G protein. The unspecific transglutaminase inhibitor cystamine causes vasorelaxation in rat resistance arteries. However, the role of TG2 conformation in vascular function is unknown. We investigated the vascular effects of selective TG2 inhibitors by myography in isolated rat mesenteric and human subcutaneous resistance arteries, patch-clamp studies on vascular smooth muscle cells, and blood pressure measurements in rats and mice. LDN 27219 promoted the closed TG2 conformation and inhibited transamidase activity in mesenteric arteries. In contrast to TG2 inhibitors promoting the open conformation (Z-DON, VA5), LDN 27219 concentration-dependently relaxed rat and resistance human arteries by a mechanism dependent on nitric oxide, large-conductance calcium-activated and voltage-gated potassium channels 7, lowering blood pressure. LDN 27219 also potentiated acetylcholine-induced relaxation by opening potassium channels in the smooth muscle; these effects were abolished by membrane-permeable TG2 inhibitors promoting the open conformation. In isolated arteries from 35- to 40-week-old rats, transamidase activity was increased, and LDN 27219 improved acetylcholine-induced relaxation more than in younger rats. Infusion of LDN 27219 decreased blood pressure more effectively in 35- to 40-week than 12- to 14-week-old anesthetized rats. In summary, pharmacological modulation of TG2 to the closed conformation age-dependently lowers blood pressure and, by opening potassium channels, potentiates endothelium-dependent vasorelaxation. Our findings suggest that promoting the closed conformation of TG2 is a potential strategy to treat age-related vascular dysfunction and lowers blood pressure.


Subject(s)
Blood Pressure/drug effects , Endothelium, Vascular/physiology , GTP-Binding Proteins/antagonists & inhibitors , Transglutaminases/antagonists & inhibitors , Vasodilation/drug effects , Age Factors , Animals , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/physiology , Large-Conductance Calcium-Activated Potassium Channels/physiology , Male , Myocytes, Smooth Muscle/drug effects , Nitric Oxide/physiology , Protein Conformation , Protein Glutamine gamma Glutamyltransferase 2 , Rats , Rats, Wistar , Transglutaminases/chemistry , Transglutaminases/physiology , Vascular Resistance
15.
Curr Top Med Chem ; 20(31): 2822-2829, 2020.
Article in English | MEDLINE | ID: mdl-33115393

ABSTRACT

Opioid agonists elicit their analgesic action mainly via µ opioid receptors; however, their use is limited because of adverse events including constipation and respiratory depression. It has been shown that analgesic action is transduced by the G protein-mediated pathway whereas adverse events are by the ß-arrestin-mediated pathway through µ opioid receptor signaling. The first new-generation opioid TRV130, which preferentially activates G protein- but not ß-arrestin-mediated signal, was constructed and developed to reduce adverse events. TRV130 and other G protein-biased compounds tend to elicit desirable analgesic action with less adverse effects. In clinical trials, the intravenous TRV130 (oliceridine) was evaluated in Phase I, II and III clinical studies. Here we review the discovery and synthesis of TRV130, its main action as a novel analgesic having less adverse events, its up-to-date status in clinical trials, and additional concerns about TRV130 as demonstrated in the literature.


Subject(s)
Analgesics, Opioid/pharmacology , GTP-Binding Proteins/antagonists & inhibitors , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Analgesics, Opioid/adverse effects , Analgesics, Opioid/chemistry , GTP-Binding Proteins/metabolism , Humans , Signal Transduction/drug effects , Spiro Compounds/adverse effects , Spiro Compounds/chemistry , Thiophenes/adverse effects , Thiophenes/chemistry
16.
Sci Rep ; 10(1): 13228, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764573

ABSTRACT

Transglutaminase 2 (TG2), also known as tissue transglutaminase, is a calcium-dependent enzyme that has a variety of intracellular and extracellular substrates. TG2 not only increases in osteoarthritis (OA) tissue but also affects the progression of OA. However, it is still unclear how TG2 affects cartilage degradation in OA at the molecular level. Surgically induced OA lead to an increase of TG2 in the articular cartilage and growth plate, and it was dependent on TGFß1 in primary chondrocytes. The inhibition of TG2 enzymatic activity with intra-articular injection of ZDON, the peptide-based specific TG2 inhibitor, ameliorated the severity of surgically induced OA as well as the expression of MMP-3 and MMP-13. ZDON attenuated MMP-3 and MMP-13 expression in TGFß- and calcium ionophore-treated chondrocytes in a Runx2-independent manner. TG2 inhibition with ZDON suppressed canonical Wnt signaling through a reduction of ß-catenin, which was mediated by ubiquitination-dependent proteasomal degradation. In addition, TG2 activation by a calcium ionophore enhanced the phosphorylation of AMPK and FoxO3a and the nuclear translocation of FoxO3a, which was responsible for the increase in MMP-13. In conclusion, TG2 plays an important role in the pathogenesis of OA as a major catabolic mediator that affects the stability of ß-catenin and FoxO3a-mediated MMP-13 production.


Subject(s)
Forkhead Box Protein O3/metabolism , GTP-Binding Proteins/metabolism , Osteoarthritis/metabolism , Transglutaminases/metabolism , Wnt Signaling Pathway , Animals , Calcium/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , GTP-Binding Proteins/antagonists & inhibitors , Growth Plate/metabolism , Male , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoarthritis/physiopathology , Patient Acuity , Protein Glutamine gamma Glutamyltransferase 2 , Transforming Growth Factor beta/metabolism , Transglutaminases/antagonists & inhibitors , beta Catenin/metabolism
17.
Chem Commun (Camb) ; 56(63): 9008-9011, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32638755

ABSTRACT

Herein, a novel strategy for in situ imaging and real-time monitoring of intracellular tissue transglutaminase (TG2) is presented based on aggregation-induced emission (AIE). It has high sensitivity and specificity, minimal background signal and can also effectively distinguish different cell types (drug-resistant cancer cells, cancer cells and normal cells).


Subject(s)
GTP-Binding Proteins/analysis , Microscopy, Confocal , Transglutaminases/analysis , Cell Line , Cysteamine/chemistry , Cysteamine/metabolism , Drug Resistance, Neoplasm/genetics , Fluorescent Dyes/chemistry , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism , Humans , Nanocomposites/chemistry , Peptides/chemistry , Peptides/metabolism , Protein Aggregates , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism
18.
Cells ; 9(6)2020 06 16.
Article in English | MEDLINE | ID: mdl-32560270

ABSTRACT

More than 50% of human cancers harbor TP53 mutations and increased expression of Mouse double minute 2 homolog(MDM2), which contribute to cancer progression and drug resistance. Renal cell carcinoma (RCC) has an unusually high incidence of wild-type p53, with a mutation rate of less than 4%. MDM2 is master regulator of apoptosis in cancer cells, which is triggered through proteasomal degradation of wild-type p53. Recently, we found that p53 protein levels in RCC are regulated by autophagic degradation. Transglutaminase 2 (TGase 2) was responsible for p53 degradation through this pathway. Knocking down TGase 2 increased p53-mediated apoptosis in RCC. Therefore, we asked whether depleting p53 from RCC cells occurs via MDM2-mediated proteasomal degradation or via TGase 2-mediated autophagic degradation. In vitro gene knockdown experiments revealed that stability of p53 in RCC was inversely related to levels of both MDM2 and TGase 2 protein. Therefore, we examined the therapeutic efficacy of inhibitors of TGase 2 and MDM2 in an in vivo model of RCC. The results showed that inhibiting TGase 2 but not MDM2 had efficient anticancer effects.


Subject(s)
Carcinoma, Renal Cell/drug therapy , GTP-Binding Proteins/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Piperazines/pharmacology , Transglutaminases/antagonists & inhibitors , Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Humans , Protein Glutamine gamma Glutamyltransferase 2 , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/pharmacology
19.
Eur Rev Med Pharmacol Sci ; 24(11): 6175-6184, 2020 06.
Article in English | MEDLINE | ID: mdl-32572883

ABSTRACT

OBJECTIVE: Multi-drug resistance (MDR) is the main obstacle influencing the anti-tumor effect in breast cancer. To date, no proper potential targets are found to overcome MDR. Here, tTG was explored to show whether it is a potential target to regulate MDR in breast cancer. MATERIALS AND METHODS: tTG was silenced by small interfere siRNA. After that, the mRNA level of CD44, CD24, LRP, MRP and MDR1 were detected by RT-PCR. The Western blot analysis was used to detect the expression of LRP, P-gp and MRP. In addition, the impact of tTG on cell apoptosis, as well as cell proliferation were observed. Finally, to evaluate the role of tTG in BALB/c nude mice, the growth of tumor was performed, and the immunohistochemistry analysis was used to observe the expression of LRP, P-gp and MRP in vivo. RESULTS: In MCF-7/ADR, Compared to MCF-7, tTG expression was highly increased. After silencing tTG, the mRNA level and the protein level of P-gp, MRP, LRP were both differently decreased. The mRNA level of CD44 and CD24 was also down-regulated after silencing tTG. In addition, the cell proliferation was significantly inhibited in the ADR + tTG siRNA+Adriamycin group (p<0.05), and the tumor growth was prevented in a time-dependent situation. Cell apoptosis was significantly strengthened in the ADR+tTG siRNA+Adriamycin group (p<0.05). In vivo, the growth of tumors was reduced after silencing tTG, and the LRP, P-gp and MRP expression were significantly down-regulated in ADR + tTG SiRNA +adriamycin group (p<0.05). CONCLUSIONS: It is concluded that the tTG may be a potential target regulating the MDR by regulating LRP, P-gp and MRP expression as well as the expression of CD44CD24 to improve the MDR in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , GTP-Binding Proteins/metabolism , Transglutaminases/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Female , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , Gene Silencing/drug effects , Humans , Male , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/enzymology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/antagonists & inhibitors , Transglutaminases/genetics , Tumor Cells, Cultured
20.
Anal Biochem ; 595: 113612, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32045569

ABSTRACT

A reliable solution-phase synthesis of the water-soluble dipeptidic fluorogenic transglutaminase substrate Z-Glu(HMC)-Gly-OH is presented. The route started from Z-Glu-OH, which was converted into the corresponding cyclic anhydride. This building block was transformed into the regioisomeric α- and γ-dipeptides. The key step was the esterification of Z-Glu-Gly-OtBu with 4-methylumbelliferone. The final substrate compound was obtained in an acceptable yield and excellent purity without the need of purification by RP-HPLC. The advantage of this acyl donor substrate for the kinetic characterisation of inhibitors and amine-type acyl acceptor substrates is demonstrated by evaluating commercially available or literature-known irreversible inhibitors and the biogenic amines serotonin, histamine and dopamine, respectively.


Subject(s)
Amines/antagonists & inhibitors , Dipeptides/pharmacology , Fluorescent Dyes/pharmacology , GTP-Binding Proteins/antagonists & inhibitors , Transglutaminases/antagonists & inhibitors , Amines/metabolism , Dipeptides/chemical synthesis , Dipeptides/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , GTP-Binding Proteins/metabolism , Humans , Molecular Structure , Protein Glutamine gamma Glutamyltransferase 2 , Solutions , Substrate Specificity , Transglutaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...