Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim ; 45(4): 240-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21771807

ABSTRACT

The current study investigated how the gastric evacuation rate (GER) was affected after surgically introducing dummies of a blood flow biotelemetry system into the abdominal cavity of Atlantic cod, Gadus morhua. Gastric evacuation experiments were performed two and 10 days postsurgery on surgically implanted and control G. morhua force-fed sandeel, Ammodytes tobianus. The results were compared with previously obtained estimates from unstressed conspecifics voluntarily feeding on a similar diet. After two days, GER was significantly lower in the group of fish with the dummy implants compared with the control group, but following 10 days of recovery no significant difference was seen between the two groups. The difference between implanted and control fish observed two days postsurgery may have resulted either from surgery, postsurgical stress and/or the presence of the implant. The conclusion is that 10 days of postsurgical recovery will stabilize GER in G. morhua, thus indicating that at this point the implant per se did not affect GER. Both the fish with surgical implants and controls in this study evacuated their stomachs much slower and with much higher interindividual variation compared with G. morhua feeding voluntarily on similar prey items. The lower GER and higher interindividual variation for force-fed fish indicate that handling, anaesthetization and force-feeding impair GER and that individual fish respond differently to the suppressing effects.


Subject(s)
Gadus morhua/physiology , Gadus morhua/surgery , Gastric Emptying/physiology , Recovery of Function/physiology , Surgical Procedures, Operative/veterinary , Animals , Telemetry/instrumentation , Time Factors
2.
J Exp Biol ; 213(5): 808-19, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20154197

ABSTRACT

Low water oxygen content (hypoxia) is a common feature of many freshwater and marine environments. However, we have a poor understanding of the degree to which diminished cardiac function contributes to the reduction in fish swimming performance concomitant with acute exposure to hypoxia, or how fish cardiorespiratory physiology is altered by, or adapts to, chronic hypoxia. Thus, we acclimated adult Atlantic cod (Gadus morhua) to either approximately 8-9 kPa O(2) (40-45% air saturation) or approximately 21 kPa O(2) (100% air saturation; normoxia) for 6-12 weeks at 10 degrees C, and subsequently measured metabolic variables [routine oxygen consumption (M(O(2)), maximum (M(O(2)), metabolic scope] and cardiac function (cardiac output, Q; heart rate, f(H); and stroke volume, V(S)) in these fish during critical swimming speed (U(crit)) tests performed at both levels of water oxygenation. Although surgery (flow probe implantation) reduced the U(crit) of normoxia-acclimated cod by 14% (from 1.74 to 1.50 BL s(-1)) under normoxic conditions, exposure to acute hypoxia lowered the U(crit) of both groups (surgery and non-surgery) by approximately 30% (to 1.23 and 1.02 BL s(-1), respectively). This reduction in swimming performance was associated with large decreases in maximum M(O(2)) and metabolic scope (> or = 50%), and maximum f(H) and Q (by 16 and 22%), but not V(S). Long-term acclimation to hypoxia resulted in a significant elevation in normoxic metabolic rate as compared with normoxia-acclimated fish (by 27%), but did not influence normoxic or hypoxic values for U(crit), maximum M(O(2)) or metabolic scope. This was surprising given that resting and maximum values for Q were significantly lower in hypoxia-acclimated cod at both levels of oxygenation, because of lower values for V(S). However, hypoxia-acclimated cod were able to consume more oxygen for a given cardiac output. These results provide important insights into how fish cardiorespiratory physiology is impacted by short-term and prolonged exposure to hypoxia, and further highlight the tremendous capacity of the fish cardiorespiratory system to deal with environmental challenges.


Subject(s)
Gadus morhua/physiology , Heart Function Tests , Heart/physiopathology , Hypoxia/physiopathology , Swimming/physiology , Acclimatization/physiology , Acute Disease , Anesthesia , Animals , Chronic Disease , Gadus morhua/surgery , Heart Rate/physiology , Oxygen Consumption/physiology , Stroke Volume/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...