Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.972
Filter
1.
Carbohydr Polym ; 339: 122268, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823931

ABSTRACT

The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.


Subject(s)
Galactose , Mannans , Molecular Weight , Plant Gums , Mannans/chemistry , Galactose/chemistry , Galactose/analogs & derivatives , Plant Gums/chemistry , Humans , Lung/metabolism , Drug Carriers/chemistry , Particle Size , Viscosity , Insulin/chemistry , Insulin/administration & dosage , Drug Liberation , Galactans/chemistry , Mannose/chemistry , Animals
2.
Int J Biol Macromol ; 270(Pt 1): 132379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754680

ABSTRACT

Hydrogels based on natural polysaccharides have demonstrated efficacy in epithelial recovery from cutaneous burn wounds. Here, we prepared a double-network hydrogel consisting of galactomannan (from Cassia grandis seeds) and κ-carrageenan (commercially sourced), cross-linked with CaCl2, as a matrix for immobilizing lactoferrin and/or Cramoll, aiming at its applicability as dressings for second-degree burn wounds. The formulations obtained [H - hydrogel, HL - hydrogel + lactoferrin, HC - hydrogel + Cramoll and HLC - hydrogel + lactoferrin + Cramoll] were analyzed rheologically as well as in terms of their stability (pH, color, microbial contamination) for 90 days. The burn was created with an aluminum bar (97 ± 3 °C) in the dorsal region of Wistar rats and subsequently treated with hydrogels (H, HL, HC, HLC) and control saline solution (S). The burn was monitored for 3, 7 and 14 days to evaluate the efficacy of the hydrogels in promoting wound healing. The hydrogels did not reveal significant pH or microbiological changes; there was an increase in brightness and a reduction in opacity for H. The rheological analysis confirmed the gel-like viscoelastic signature of the systems without substantial modification of the basic rheological characteristics, however HLC proved to be more rigid, due to rheological synergy when combining protein biomolecules. Macroscopic analyses confirmed centripetal healing with wound contraction: S < H < HC < HL < HLC. Histopathological analyses showed that hydrogel-treated groups reduced inflammation, tissue necrosis and fibrosis, while promoting re-epithelialization with focal acanthosis, especially in HLC due to a positive synergistic effect, indicating its potential as a promising therapy in the repair of burns.


Subject(s)
Burns , Carrageenan , Galactose , Hydrogels , Mannans , Rats, Wistar , Wound Healing , Hydrogels/chemistry , Mannans/chemistry , Mannans/pharmacology , Animals , Burns/therapy , Burns/drug therapy , Carrageenan/chemistry , Wound Healing/drug effects , Rats , Galactose/analogs & derivatives , Galactose/chemistry , Male , Lactoferrin/chemistry , Rheology
3.
J Mycol Med ; 34(2): 101481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718721

ABSTRACT

Several lateral flow assays (LFA) capable of detecting Aspergillus fumigatus in serum and broncho-alveolar lavage fluid (BALF) within the hour, thereby potentially accelerating the screening process, are now commercially available. We prospectively compared three LFA targeting A. fumigatus on BALF collected from non-surgical intensive care patients between June 2022 and February 2023. The three LFA tested were Sõna Aspergillus galactomannan LFA (Immy), Fungadia Aspergillus antigen (Gadia), and AspLFD (OLM Diagnostics). We compared the results of these LFA with those of the galactomannan (GM) Platelia Aspergillus enzyme immunoassay (Bio-Rad), culture on Sabouraud medium and Aspergillus qPCR. We tested 97 BALF samples from 92 patients. In total 84 BALF samples tested negative with all three LFA, and four BALF samples tested positive with the AspLFD assay only (OLM). Only one BALF sample tested positive with the three LFA. In addition, three BALF samples tested positive only with the GM Platelia immunoassay. Four diagnosis of probable invasive aspergillosis were retained for the 92 patients tested. This prospective series included very few positive samples. From a practical point of view, the LFA from OLM presented the simplest protocol for use.


Subject(s)
Antigens, Fungal , Aspergillus fumigatus , Bronchoalveolar Lavage Fluid , Galactose , Invasive Pulmonary Aspergillosis , Mannans , Humans , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Prospective Studies , Galactose/analogs & derivatives , Antigens, Fungal/analysis , Mannans/analysis , Male , Female , Aspergillus fumigatus/isolation & purification , Middle Aged , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Aged , Adult , Mass Screening/methods , Sensitivity and Specificity , Immunoassay/methods , Aged, 80 and over
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732045

ABSTRACT

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.


Subject(s)
Galactose , Galactose/analogs & derivatives , Galactose/metabolism , Galactose/chemistry , Aspergillus/metabolism , Aspergillus/genetics , Lectins/metabolism , Lectins/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Mannans/chemistry , Animals , Serum Albumin, Bovine/chemistry
5.
Infect Dis Now ; 54(4): 104918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636842

ABSTRACT

PURPOSE: We evaluated the interest of systematic screening of serum fungal markers in patients hospitalized in a medical ward. METHODS: We retrospectively analyzed all patients hospitalized in our infectious disease department from October 1st to October 31st, 2020 for COVID-19 without prior ICU admission, and for whom systematic screening of serum fungal markers was performed. RESULTS: Thirty patients were included. The majority of patients received corticosteroids (96.7%). The galactomannan antigen assay was positive for 1/30 patients at D0, and 0/24, 0/16, 0/13 and 0/2 at D4, D7, D10 and D14 respectively. 1,3-ß-D-glucan was positive for 0/30, 1/24, 1/12, 0/12, 0/2 at D0, D4, D7, D10 and D14 respectively. No Aspergillus fumigatus PCR was positive. No cases of aspergillosis were retained. CONCLUSION: Our study does not support the interest of systematic screening of fungal markers in immunocompetent patients with COVID-19 in a conventional unit.


Subject(s)
Aspergillosis , Biomarkers , COVID-19 , Galactose , Mannans , beta-Glucans , Humans , COVID-19/diagnosis , COVID-19/blood , Retrospective Studies , Female , Male , Middle Aged , Aged , Galactose/analogs & derivatives , Mannans/blood , Biomarkers/blood , beta-Glucans/blood , Aspergillosis/diagnosis , Aspergillosis/blood , SARS-CoV-2 , Mass Screening/methods , Adult , Aged, 80 and over , Aspergillus fumigatus/isolation & purification
6.
J Infect ; 88(6): 106159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641139

ABSTRACT

OBJECTIVE: To diagnose invasive pulmonary aspergillosis (IPA), galactomannan (GM) detection in serum or bronchoalveolar lavage fluid (BALF) is widely used. However, the utility of proximal airway GM test (from induced sputum or tracheal aspirate) has not been well elucidated. METHODS: In this retrospective cohort study, we evaluated the diagnostic performance of proximal airway GM in diagnosis of IPA including COVID-19 associated pulmonary aspergillosis (CAPA). Between January 2022 and January 2023, patients who had been tested for GM with clinical suspicion or for surveillance from any specimen (serum, induced sputum, tracheal aspirate, and BALF) were screened. IPA was diagnosed using EORTC/MSGERC criteria, and CAPA was diagnosed following the 2020 ECMM/ISHAM consensus criteria. RESULTS: Of 624 patients with GM results, 70 met the criteria for proven/probable IPA and 427 had no IPA. The others included possible IPA and chronic form of aspergillosis. The sensitivities and specificities of serum, proximal airway, and BALF GM for proven/probable IPA versus no IPA were 78.9% and 70.6%, 93.1% and 78.7%, and 78.6% and 91.0%, respectively. Areas under the receiver operating characteristic curve (AUCs) were 0.742 for serum GM, 0.935 for proximal airway GM, and 0.849 for BALF GM (serum GM vs proximal airway GM, p = 0.014; proximal airway GM vs BALF GM, p = 0.334; serum GM vs BALF GM, p = 0.286). CONCLUSION: This study demonstrates that the performance of GM test from non-invasive proximal airway samples is comparable or even better than those from serum and distal airway sample (BALF).


Subject(s)
Bronchoalveolar Lavage Fluid , Galactose , Invasive Pulmonary Aspergillosis , Mannans , Sensitivity and Specificity , Humans , Galactose/analogs & derivatives , Mannans/blood , Mannans/analysis , Invasive Pulmonary Aspergillosis/diagnosis , Retrospective Studies , Male , Female , Middle Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/microbiology , Aged , COVID-19/diagnosis , Sputum/microbiology , Adult , SARS-CoV-2/isolation & purification , ROC Curve
7.
mSphere ; 9(5): e0010024, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38651868

ABSTRACT

The cellular surface of the pathogenic filamentous fungus Aspergillus fumigatus is enveloped in a mannose layer, featuring well-established fungal-type galactomannan and O-mannose-type galactomannan. This study reports the discovery of cell wall component in A. fumigatus mycelium, which resembles N-glycan outer chains found in yeast. The glycosyltransferases involved in its biosynthesis in A. fumigatus were identified, with a focus on two key α-(1→2)-mannosyltransferases, Mnn2 and Mnn5, and two α-(1→6)-mannosyltransferases, Mnn9 and Van1. In vitro examination revealed the roles of recombinant Mnn2 and Mnn5 in transferring α-(1→2)-mannosyl residues. Proton nuclear magnetic resonance (1H-NMR) analysis of cell wall extracts from the ∆mnn2∆mnn5 strain indicated the existence of an α-(1→6)-linked mannan backbone in the A. fumigatus mycelium, with Mnn2 and Mnn5 adding α-(1→2)-mannosyl residues to this backbone. The α-(1→6)-linked mannan backbone was absent in strains where mnn9 or van1 was disrupted in the parental ∆mnn2∆mnn5 strain in A. fumigatus. Mnn9 and Van1 functioned as α-(1→6)-linked mannan polymerases in heterodimers when co-expressed in Escherichia coli, indicating their crucial role in biosynthesizing the α-(1→6)-linked mannan backbone. Disruptions of these mannosyltransferases did not affect fungal-type galactomannan biosynthesis. This study provides insights into the complexity of fungal cell wall architecture and a better understanding of mannan biosynthesis in A. fumigatus. IMPORTANCE: This study unravels the complexities of mannan biosynthesis in A. fumigatus, a key area for antifungal drug discovery. It reveals the presence of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in A. fumigatus mycelium, offering fresh insights into the fungal cell wall's design. Key enzymes, Mnn2, Mnn5, Mnn9, and Van1, are instrumental in this process, with Mnn2 and Mnn5 adding specific mannose residues and Mnn9 and Van1 assembling the α-(1→6)-linked mannan structures. Although fungal-type galactomannan's presence in the cell wall is known, the existence of an α-(1→6)-linked mannan adds a new dimension to our understanding. This intricate web of mannan biosynthesis opens avenues for further exploration and enhances our understanding of fungal cell wall dynamics, paving the way for targeted drug development.


Subject(s)
Aspergillus fumigatus , Cell Wall , Mannans , Mycelium , Polysaccharides , Aspergillus fumigatus/genetics , Aspergillus fumigatus/chemistry , Aspergillus fumigatus/metabolism , Mannans/metabolism , Mannans/chemistry , Cell Wall/chemistry , Cell Wall/metabolism , Mycelium/chemistry , Mycelium/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Mannosyltransferases/chemistry , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Galactose/analogs & derivatives
8.
Carbohydr Polym ; 334: 122019, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553218

ABSTRACT

Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.


Subject(s)
Galactose/analogs & derivatives , Gleditsia , Gleditsia/chemistry , Mannans/chemistry , Seeds/chemistry , Fruit , Polysaccharides
9.
Carbohydr Polym ; 334: 122061, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553245

ABSTRACT

The galactomannan-based gel from Cassia grandis seeds was used to incorporate Penicillium sp. UCP 1286 and commercial collagenases. Experiments were carried out according to a 23-full factorial design to identify the most significant parameters for the incorporation process. The pH of the incorporation solution (pHi), stirring time (t), and initial protein concentration in the crude extract (PCi) were selected as the three independent variables, and the efficiency of collagenase incorporation (E) and collagenolytic activity (CA) after 360 min as the responses. pHi and PCi showed positive statistically significant effects on E, while CA was positively influenced by pHi and t, but negatively by PCi. The fungi collagenase was released from the gel following a pseudo-Fickian behavior. Additionally, no <76 % of collagenase was efficiently incorporated into the gel retaining a high CA (32.5-69.8 U/mL). The obtained results for the commercial collagenase (E = 93.88 %, CA = 65.8 U/mL, and n = 0.10) demonstrated a pseudo-Fickian behavior similar to the fungi-collagenase. The results confirm the biotechnological potential of the gel as an efficient matrix for the incorporation of catalytic compounds; additionally, the incorporation of collagenases was achieved by retaining the proteases CA and releasing them in a controlled manner.


Subject(s)
Cassia , Galactose/analogs & derivatives , Mannans , Cassia/chemistry , Collagenases/chemistry , Fungi/metabolism , Seeds/chemistry
10.
Int J Biol Macromol ; 265(Pt 1): 130721, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479660

ABSTRACT

Researchers have always been interested in polysaccharide degradation because of the increased biological activity and usability following degradation. In this work, low molecular weight galactomannan (LMW-GM) was produced through the degradation of galactomannan by H2O2 and oxalic acid (OA). The optimal reaction conditions were found by conducting the response surface optimization experiment based on single-factor experiment and kinetics analysis. Under these conditions, the LMW-GM yield was 69.48 ± 1.02 %. Ultimately, an analysis of the degradation process revealed that OA attacked GM indiscriminately, and H2O2 has a stronger effect on the removal of branched chains while degrading GM. Hence, the degradation steps were rearranged as H2O2 was added 20 min before OA at a constant total time. The LMW-GM yield was successfully increased to 76.49 ± 1.27 %. The goal of this work is hopefully to give a theoretical foundation for the low-cost preparation and industrial production of the degradation of galactomannan.


Subject(s)
Fabaceae , Galactose/analogs & derivatives , Hydrogen Peroxide , Oxalic Acid , Molecular Weight , Mannans
11.
Indian J Med Microbiol ; 48: 100557, 2024.
Article in English | MEDLINE | ID: mdl-38447858

ABSTRACT

An increasing number of fungal infections were reported post COVID-19 and many of them were caused by fungi of mixed aetiologies. This study was carried out to assess the utility of serum galactomannan (GM) assay in establishing the etiology of acute rhino-orbito-cerebral mycosis caused by Aspergillus spp. Two serum samples were obtained from 41 suspected post COVID-19 rhino-orbito-cerebral mycosis patients to perform GM assay. Serum GM assay was positive in 68.7% of the cases of proven aspergillosis at cut off OD = 1.0. Serum GM assay can be used as a supplementary test in the diagnosis of rhino-orbito-cerebral mycosis caused by Aspergillus spp.


Subject(s)
COVID-19 , Galactose/analogs & derivatives , Mannans , Humans , Mannans/blood , COVID-19/diagnosis , COVID-19/blood , COVID-19/complications , Male , Middle Aged , Female , Aspergillus/isolation & purification , Adult , SARS-CoV-2 , Aspergillosis/diagnosis , Aged
12.
Anal Biochem ; 689: 115494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403258

ABSTRACT

Invasive Aspergillosis is a high-risk illness with a high death rate in immunocompromised people due to a lack of early detection and timely treatment. Based on immunology study, we achieved an efficient production of anti-galactomannan antibody by Chinese hamster ovary (CHO) cells and applied it to time-resolved fluoroimmunoassay for Aspergillus galactomannan detection. We first introduced dual promoter expression vector into CHO host cells, and then applied a two-step screening strategy to screen the stable cell line by methionine sulfoximine pressurization. After amplification and fermentation, antibody yield reached 4500 mg/L. Then we conjugated the antibodies with fluorescent microspheres to establish a double antibody sandwich time-resolved fluoroimmunoassay, which was compared with the commercial Platelia™ Aspergillus Ag by clinical serum samples. The preformed assay could obtain the results in less than 25 min, with a limit of detection for galactomannan of approximately 1 ng/mL. Clinical results of the two methods showed that the overall percent agreement was 97.7% (95% CI: 96.6%-98.4%) and Cohen's kappa coefficient was 0.94. Overall, the assay is highly consistent with commercial detection, providing a more sensitive and effective method for the rapid diagnosis of invasive aspergillosis.


Subject(s)
Aspergillosis , Aspergillus , Galactose/analogs & derivatives , Animals , Cricetinae , Humans , CHO Cells , Cricetulus , Aspergillosis/diagnosis , Mannans , Fluoroimmunoassay , Antibodies, Monoclonal
13.
Clin Microbiol Infect ; 30(5): 682.e1-682.e4, 2024 May.
Article in English | MEDLINE | ID: mdl-38309324

ABSTRACT

OBJECTIVES: This study aimed to identify the cause of false-positive serum Aspergillus antigen galactomannan (GM) results in our centre. METHODS: We performed a case-control study aiming to elucidate the factors associated with false-positive GM results. Independent risk factors for false-positive GM were evaluated through a multivariable regression analysis. An interrupted time series analysis was used to evaluate the effectiveness of an intervention removing the identified factors. RESULTS: Among 568 patients tested, GM was positive in 130 patients of whom 97 had false-positive GM (cases). These were compared with 427 patients with true-negative GM (controls). Administration of dextrose-containing fluids within 6 days before GM testing was an independent predictor for false-positive GM results (adjusted odds ratio [aOR], 18.60; 95% CI, 8.95-38.66. An analysis of GM presence in different dextrose-containing fluids revealed positivity in 34.8% (8 of 23) (manufacturer A) and 33.3% (5 of 15) (manufacturer B) of the samples. Investigation of the manufacturing process revealed that the saccharification process employed enzymes derived from Aspergillus niger. After identifying the root cause of false positivity, GM-containing dextrose fluid use was restricted. Interrupted time series analysis showed an immediate reduction of GM false-positivity (-6.5% per week, p = 0.045) and a declining trend (-0.33% per week, p = 0.005) postintervention. CONCLUSIONS: Administering dextrose-containing fluids was the primary factor causing false-positive serum Aspergillus antigen GM assay results. Our investigation led to a modification of the manufacturing process of the dextrose-containing fluids.


Subject(s)
Antigens, Fungal , Aspergillosis , Galactose/analogs & derivatives , Glucose , Interrupted Time Series Analysis , Mannans , Humans , Mannans/blood , Case-Control Studies , Glucose/analysis , False Positive Reactions , Female , Male , Middle Aged , Aged , Antigens, Fungal/blood , Aspergillosis/diagnosis , Aspergillosis/blood , Adult , Aspergillus/immunology , Aspergillus/isolation & purification , Risk Factors , Aspergillus niger
14.
Parasite ; 31: 6, 2024.
Article in English | MEDLINE | ID: mdl-38334686

ABSTRACT

Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1ß, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.


Title: Le galactomannane inhibe l'invasion par Trichinella spiralis des cellules de l'épithélium intestinal et améliore la cytotoxicité cellulaire dépendante des anticorps tuant les larves en activant la polarisation des macrophages. Abstract: Des études antérieures ont montré que la galectine recombinante de Trichinella spiralis (rTsgal) est caractérisée par un motif de séquence de domaines de reconnaissance des glucides se liant au bêta-galactoside, et que la rTsgal favorise l'invasion larvaire des cellules épithéliales intestinales. Le galactomannane est un polysaccharide immunostimulateur composé d'un squelette mannane avec des résidus galactose. Le but de cette étude était de déterminer si le galactomannane inhibe l'intrusion larvaire des cellules épithéliales intestinales et améliore la cytotoxicité cellulaire dépendante des anticorps (CCDA) tuant les larves nouvelles-nées en polarisant les macrophages au phénotype M1. Les résultats ont montré que le galactomannane se liait spécialement au rTsgal et supprimait la facilitation du rTsgal sur l'invasion larvaire des cellules épithéliales intestinales. Les résultats de la qPCR, du Western blot et de la cytométrie en flux ont montré que le galactomannane et le rTsgal activaient la polarisation des macrophages M1, comme le démontre la forte expression de l'iNOS (marqueur de M1) et des gènes liés à M1 (IL-1ß, IL-6 et TNF-α), et l'augmentation des macrophages CD86+. Le galactomannane et le rTsgal ont également augmenté la production de NO. La capacité de destruction de la CCDA médiée par les macrophages sur les larves était également significativement améliorée dans les macrophages traités au galactomannane et au rTsgal. Les résultats ont démontré que Tsgal pourrait être considéré comme une molécule cible potentielle d'un vaccin contre l'invasion par T. spiralis, et que le galactomannane pourrait être un nouvel agent thérapeutique adjuvant et un adjuvant vaccinal potentiel contre l'infection à T. spiralis.


Subject(s)
Galactose/analogs & derivatives , Rodent Diseases , Trichinella spiralis , Trichinellosis , Animals , Mice , Mannans/pharmacology , Mannans/metabolism , Larva/genetics , Intestinal Mucosa , Antibody-Dependent Cell Cytotoxicity , Mice, Inbred BALB C
15.
Mol Microbiol ; 121(5): 912-926, 2024 05.
Article in English | MEDLINE | ID: mdl-38400525

ABSTRACT

Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched ß-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.


Subject(s)
Cell Wall , Colletotrichum , Fungal Proteins , Galactose , Mannans , Plant Diseases , UDPglucose 4-Epimerase , Virulence Factors , Zea mays , Colletotrichum/genetics , Colletotrichum/metabolism , Colletotrichum/pathogenicity , Zea mays/microbiology , Galactose/metabolism , Galactose/analogs & derivatives , Plant Diseases/microbiology , Cell Wall/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , UDPglucose 4-Epimerase/metabolism , UDPglucose 4-Epimerase/genetics , Mannans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Galactans/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Hyphae/metabolism , Virulence/genetics
16.
Org Biomol Chem ; 22(12): 2395-2403, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38412026

ABSTRACT

The synthesis of six model trisaccharides representative of galactomannans produced by lichens was performed through stereoselective glycosylation. These standards include linear and branched galactomannans bearing either galactofuranosyl or galactopyranosyl entities. The complete assignment of 1H and 13C signals for both forms of synthetically reduced oligosaccharides was performed. The resulting NMR data were used to quickly demonstrate the structural characteristics of minor polysaccharides within different extracts of three representative lichens.


Subject(s)
Galactose/analogs & derivatives , Lichens , Polysaccharides/chemistry , Mannans/chemistry , Magnetic Resonance Spectroscopy/methods
17.
Medicine (Baltimore) ; 103(5): e37067, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306560

ABSTRACT

BACKGROUND: Serum galactomannan (GM) and ß-D-glucan (BG) are known markers of invasive aspergillosis (IA). The aim of this meta-analysis was to evaluate the efficiency of serum GM and BG as diagnostic markers of symptomatic IA infection and compare the performance of the combined tests with that of either test individually. METHODS: A literature search was carried out using PubMed, Web of Science, and EMBASE databases to include relevant studies published in English up to May 2023. The quality assessment was performed using Review Manager 5.3 software. A bivariate model was applied to pool diagnostic parameters using Stata 14.0 software. We used Cochrane I2 index to assess heterogeneity and identify the potential source of heterogeneity by meta-regression. Paired t tests were used to compare the value of GM and BG for IA diagnosis when used in combination or alone. RESULTS: Sixteen studies were eligible for inclusion in the meta-analysis. For proven or probable IA, serum GM and BG yielded a pooled sensitivity of 0.53 (95% CI 0.40-0.66) vs 0.72 (95% CI 0.61-0.81) and a pooled specificity of 0.94 (95% CI 0.91-0.97) vs 0.82 (95% CI 0.73-0.88). The area under the curve (AUC) of ROC was 0.90 (95% CI 0.87-0.92) vs 0.83 (95% CI 0.80-0.86) for all studies. The pooled sensitivity and specificity for IA diagnosis by combined GM and BG assays (GM/BG) were 0.84 (95% CI 0.69-0.86) and 0.76 (95% CI 0.69-0.81), respectively. The sensitivity of the combined GM/BG test to diagnose IA was higher than of the GM or BG test alone. CONCLUSION: Serum GM and BG tests had a relatively high accuracy for IA diagnosis in suspected patients. The diagnostic accuracy of both assays is comparable, and the diagnostic sensitivity is further improved by the combined detection of the 2 markers.


Subject(s)
Aspergillosis , Galactose/analogs & derivatives , Invasive Fungal Infections , Invasive Pulmonary Aspergillosis , beta-Glucans , Humans , Aspergillosis/diagnosis , Sensitivity and Specificity , Mannans , Invasive Fungal Infections/diagnosis , Invasive Pulmonary Aspergillosis/diagnosis
18.
Int J Biol Macromol ; 261(Pt 2): 129859, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302020

ABSTRACT

Sustainable composite hydrogel materials with harsh environmental adaption and tolerance capability have received considerable interests but still remain as challenges. In this work, biomimetic strategy was adapted for construction of three-dimensional galactomannan (GM) hydrogels with intercalation of flexible polymer chains polyethyleneimine (PEI), biomacromolecules tannin acid (TA) and CeO2 nanoparticles (NPs). The hydrogels cross-linked with double-networks (DN) present not only pH-responsive water absorption property, but also boosted mechanical strength with highest toughness of 326 kJ/m3 and Young's modulus of 220 kPa. Self-healing and anti-freezing capabilities were revealed for the hydrogels by maintaining of fracture elongation (23 %) and fracture strength (250 kPa). TA, CeO2 NPs as well as the amide groups in PEI of the hydrogels introduced excellent bacterial prohibition performance on both Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli). Also, due to the existence of the free ions, the hydrogels exhibited electric conductive properties, with wide-range high sensitivity and long-time conductive stability. In addition, various tensile strain degrees were related to the conductive resistance values, and the great recovery performance was proved by cyclic tensile-conductive tests for 3000 times. Therefore, the proposed GM-based hydrogels displayed great potentials as strain sensors that are adaptable and tolerant to various environmental conditions.


Subject(s)
Biomimetics , Escherichia coli , Galactose/analogs & derivatives , Mannans , Amides , Electric Conductivity , Hydrogels , Polyethyleneimine
19.
Mycoses ; 67(1): e13695, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282361

ABSTRACT

BACKGROUND: Bronchoalveolar lavage (BAL) galactomannan (GM) is commonly used to diagnose Aspergillus-related lung diseases. However, unlike serum GM, which is measured in undiluted blood, BAL-GM is estimated using variable aliquots and cumulative volume of instillates during bronchoscopy. OBJECTIVE: Since different studies have reported varying diagnostic accuracy and cut-offs for BAL-GM in CPA, we hypothesized that the total volume of instillate and 'order/label' of aliquots significantly affects the BAL-GM values, which was evaluated as part of this study. PATIENTS & METHODS: We obtained 250 BAL samples from 50 patients (five from each) with suspected chronic pulmonary aspergillosis. BAL fluid was collected after instilling sequential volumes of 40 mL of normal saline each for the first four labels and a fifth label was prepared by mixing 1 mL from each of the previous labels. The GM level of each label was measured by PLATELIA™ ASPERGILLUS Ag enzyme immunoassay. This study measured the discordance, level of agreement, diagnostic characteristics (sensitivity, specificity and AUROC) and best cut-offs for BAL-GM in the different aliquots of lavage fluid. RESULTS: The study population, classified into CPA (28%) and non-CPA (72%) groups, based on ERS/ESCMID criteria (excluding BAL-GM) were not different with respect to clinico-radiological characteristics. The discordance of BAL-GM positivity (using a cut-off of >1) between the serial labels for the same patient ranged between 10% and 22%, while the discordance between classification using BAL-GM positivity (using a cut-off of ≥1) and clinic-radio-microbiological classification ranged between 18% and 30%. The level of agreement for serial labels was at best fair (<0.6 for all except one 'label'). The AUROC for the serial samples ranged between 0.595 and 0.702, with the '40 mL and the 'mix' samples performing the best. The best BAL-GM cut-off also showed significant variation between serial labels of varying dilutions (Range:1.01 - 4.26). INTERPRETATION: This study highlights the variation in BAL-GM measured and the 'positivity' between different 'labels' of aliquots of BAL, with the first aliquot and the mixed sample showing the best performances for diagnosis of CPA. Future studies should attempt to 'standardise' the instilled volume for BAL-GM estimation to standardise the diagnostic yield.


Subject(s)
Galactose/analogs & derivatives , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Pilot Projects , Sensitivity and Specificity , Pulmonary Aspergillosis/diagnosis , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/microbiology , Mannans , Persistent Infection , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology
20.
Int J Biol Macromol ; 259(Pt 2): 129369, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218271

ABSTRACT

The impact of the cell wall structure of Monascus purpureus M9 on the secretion of extracellular monascus pigments (exMPs) was investigated. To modify the cell wall structure, UDP-galactopyranose mutase (GlfA) was knocked out using Agrobacterium-mediated transformation method, leading to a significant reduction in the Galf-based polysaccharide within the cell wall. Changes in mycelium morphology, sporogenesis, and the expression of relevant genes in M9 were also observed following the mutation. Regarding MPs secretion, a notable increase was observed in six types of exMPs (R1, R2, Y1, Y2, O1 and O2). Specifically, these exMPs exhibited enhancement of 1.33, 1.59, 0.8, 2.45, 2.89 and 4.03 times, respectively, compared to the wild-type strain. These findings suggest that the alteration of the cell wall structure could selectively influence the secretion of MPs in M9. The underlying mechanisms were also discussed. This research contributes new insights into the regulation of the synthesis and secretion of MPs in Monascus spp..


Subject(s)
Galactose/analogs & derivatives , Intramolecular Transferases , Mannans , Monascus , Monascus/genetics , Monascus/metabolism , Pigments, Biological , Carbohydrate Metabolism , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...