Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 46(51): 15198-207, 2007 Dec 25.
Article in English | MEDLINE | ID: mdl-18052213

ABSTRACT

Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.


Subject(s)
Galactose/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Myeloid Cells/drug effects , Myeloid Cells/enzymology , Tretinoin/pharmacology , Benzoates/pharmacology , Cell Line , Galactose/classification , Galactose/genetics , Humans , Isoenzymes/classification , Isoenzymes/genetics , Isoenzymes/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Tetrahydronaphthalenes/pharmacology , Time Factors , Up-Regulation/drug effects
2.
Carbohydr Res ; 341(4): 525-37, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16414033

ABSTRACT

Forty-one conformations of alpha- and beta-d-galactopyranose were geometry optimized using the B3LYP density functional and 6-311++G** basis set. Full geometry optimization was performed on different ring geometries and different hydroxymethyl rotamers (gg/gt/tg). Analytically derived Hessians were used to calculate zero point energy, enthalpy, and entropy. The lowest energy and free-energy conformation found is the alpha-gg-(4)C(1)-c chair conformation, which is of lower electronic and free energy than the lowest energy alpha-d-glucopyranose conformer because of favorable hydrogen-bonding interactions. The in vacuo calculations showed considerable ( approximately 2.2kcal/mol) energetic preference for the alpha over the beta anomer for galactopyranose in both the (4)C(1) and (1)C(4) chair conformations. Results are compared to glucopyranose and mannopyranose calculations in vacuo. Boat and skew-boat forms were found that remained stable upon gradient optimization, although many starting conformations moved to other boat forms upon optimization. As with glucopyranose and mannopyranose, the orientation and interaction of the hydroxyl groups make the most significant contributions to the conformation-energy relationship in vacuo.


Subject(s)
Carbohydrate Conformation , Computer Simulation , Galactose/chemistry , Models, Theoretical , Galactose/classification , Models, Molecular , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...