Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Metab Brain Dis ; 39(1): 239-248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37702899

ABSTRACT

Classic galactosemia is a rare inborn error of metabolism that affects the metabolism of galactose, a sugar derived from milk and derivates. Classic galactosemia is caused by variants of the GALT gene, which lead to absent or misfolded forms of the ubiquitously present galactose-1-phosphate uridylyltransferase enzyme (GALT) driving galactose metabolites to accumulate, damaging cells from neurons to hepatocytes. The disease has different prevalence around the world due to different allele frequencies among populations and its symptoms range from cognitive and psychomotor impairment to hepatic, ophthalmological, and bone structural damage. The practice of newborn screening still varies among countries, dairy restriction treatment is a consensus despite advances in preclinical treatment strategies. Recent clinical studies in Duarte variant suggest dairy restriction could be reconsidered in these cases. Despite noteworthy advances in the classic galactosemia understanding, preclinical trials are still crucial to fully understand the pathophysiology of the disease and help propose new treatments. This review aims to report a comprehensive analysis of past studies and state of art research on galactosemia screening, its clinical and preclinical trials, and treatments with the goal of shedding light on this complex and multisystemic innate error of the metabolism.


Subject(s)
Galactosemias , Infant, Newborn , Animals , Humans , Galactosemias/genetics , Galactosemias/metabolism , Galactose , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , Models, Animal , Gene Frequency
2.
J Inherit Metab Dis ; 46(6): 1131-1138, 2023 11.
Article in English | MEDLINE | ID: mdl-37776278

ABSTRACT

Classic galactosemia (CG) and clinical variant galactosemia (CVG) are allelic inborn errors of metabolism that result from profound deficiency, and near-profound deficiency, respectively, of galactose-1-P uridylyltransferase (GALT). Despite early detection and lifelong dietary restriction of galactose, which is the current standard of care, most patients with CG/CVG grow to experience a range of long-term developmental and other complications. One of the less well-understood complications of CG/CVG is decreased hand grip strength, as reported by Potter et al. (2013). Here, we confirm this phenotype in an independent cohort of 36 cases (4-18 years) and 19 controls (4-17 years), and further demonstrate that the grip strength deficit observed in cases may be secondary to growth delay. Specifically, we found that when grip strength of cases and controls in a new cohort recruited in 2022 was plotted by weight, rather than age, the difference between cases and controls for both sexes disappeared. Reanalyzing data from the original 2013 cohort, we found that differences in weight accounted for grip strength differences between cases and controls in girls and young women, but not in boys and young men. Finally, we tested whether a GALT-null rat model of CG also showed a grip strength deficit-it did-and again the difference between GALT-null and wild-type rats associated with differences in body mass. Combined, these results confirm that GALT deficiency is associated with a grip strength deficit in both young patients with CG/CVG and GALT-null rats, and further demonstrate that this phenotype may be secondary to growth delay, and therefore not evidence of a muscle abnormality.


Subject(s)
Galactosemias , Male , Humans , Female , Animals , Rats , Galactosemias/genetics , Galactosemias/metabolism , Galactose/metabolism , Hand Strength , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
3.
J Hum Nutr Diet ; 36(4): 1179-1192, 2023 08.
Article in English | MEDLINE | ID: mdl-36722740

ABSTRACT

BACKGROUND: Classical galactosaemia is a life-threatening disorder of carbohydrate metabolism, and the primary treatment is a lifelong galactose-restricted diet commenced in infancy. Adherence to restrictive diets can be burdensome for patients and their families; however, little is known about the impact on caregivers. AIM: This study aims to determine the nutrition-related knowledge, perceptions, practices, and barriers of caregivers related to the therapeutic diet for classical galactosaemia. METHODS: An online survey was conducted among 98 eligible members of the Galactosaemia Support Group using a novel questionnaire. Descriptive and inferential analyses were performed using Microsoft Excel 2021 and Stata/MP (version 17.0), respectively. Forty-three caregivers participated in the study. RESULTS AND CONCLUSION: Of those who participated, 98% had high levels of dietary knowledge. Caregivers' knowledge scores ( x ¯ $\bar{{\rm{x}}}$ = 17.9, standard deviation [SD] = 1.7) were positively correlated with educational level (r = 0.383, p = 0.013). High attitudinal scores ( x ¯ $\bar{{\rm{x}}}$ = 32.5, SD = 5.5) obtained by most caregivers (65%) revealed an overall positive attitude towards the galactosaemia diet. Negative perceptions of being unable to feed their child breast milk (49%) were apparent, and this perception was positively correlated with caregivers' intention to feed their child breast milk (r = 0.450, p = 0.003). Caregivers' concerns about the safety of their child in social settings (79%) and feeling that their child was excluded in social settings (49%) were clear barriers. A multidisciplinary approach to galactosaemia management is warranted, with healthcare interventions focusing on addressing caregivers' negative perceptions and barriers related to the diet to enable tailored support and facilitate lifelong compliance.


Subject(s)
Galactosemias , Child , Female , Humans , Galactosemias/metabolism , Caregivers , Galactose , Surveys and Questionnaires , Diet, Carbohydrate-Restricted
4.
Hum Reprod Update ; 29(2): 246-258, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36512573

ABSTRACT

BACKGROUND: Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galactose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spectrum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this complication either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored. OBJECTIVE AND RATIONALE: The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage. SEARCH METHODS: In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-reviewed articles and reviews using the following terms: 'classic galactosemia', 'gonadal damage', 'primary ovarian insufficiency', 'fertility', 'animal models' and 'fertility preservation' in combination with other keywords related to the subject area. All relevant publications until August 2022 have been critically evaluated and reviewed. OUTCOMES: A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of depression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphatidylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in 1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preservation option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influence the cascade of events are being explored at the (pre-)clinical level. WIDER IMPLICATIONS: Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression and efficiency of new treatment options.


Subject(s)
Galactosemias , Hypogonadism , Infertility , Pregnancy , Animals , Mice , Female , Humans , Galactosemias/diagnosis , Galactosemias/genetics , Galactosemias/metabolism , Fertility/physiology , Infertility/metabolism , Ovary/physiology , Hypogonadism/complications
5.
J Ovarian Res ; 15(1): 122, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36414970

ABSTRACT

Primary ovarian insufficiency is characterized by accelerated loss of primordial follicles, which results in ovarian failure and concomitant menopause before age 40. About 1-3% of females in the general population are diagnosed with POI; however, greater than 80% of females with the inherited disease Classic Galactosemia will develop POI. Classic Galactosemia is caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase. While dietary restriction of galactose is lifesaving in the neonatal period, the development of complications including primary ovarian insufficiency is not mitigated. Additionally, the pattern(s) of follicle loss have not been completely characterized. The chronic accumulation of aberrant metabolites such as galactose-1-phosphate and galactitol are suspected culprits in the development of the sequelae, yet the mechanisms remain elusive.Our group uses a GalT gene-trapped mouse model to study the pathophysiology of primary ovarian insufficiency in Classic Galactosemia. We recently showed that differences in the Integrated Stress Response pathway occur in mutant ovaries that likely contribute to their primary ovarian insufficiency phenotype. Using immunofluorescent staining of histological sections of ovaries at progressive ages, we saw evidence of altered Integrated Stress Response activity in granulosa cells and primordial oocytes consistent with accelerated primordial follicle growth activation, aberrant DNA damage and/or repair, and increased cellular stress/death. Overall, our findings indicate that abnormal Integrated Stress Response in the Classic Galactosemia model ovary results in accelerated primordial follicle growth activation, sometimes referred to as "burnout." These aberrant early events help further clarify when/how the primary ovarian insufficiency phenotype arises under galactosemic conditions.


Subject(s)
Galactosemias , Primary Ovarian Insufficiency , Mice , Animals , Female , Humans , Galactosemias/genetics , Galactosemias/complications , Galactosemias/metabolism , Galactose , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/complications , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , Disease Models, Animal
6.
Orphanet J Rare Dis ; 17(1): 331, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056436

ABSTRACT

BACKGROUND: Galactose epimerase (GALE) deficiency is a rare hereditary disorder of galactose metabolism with only a few cases described in the literature. This study aims to present the data of patients with GALE deficiency from different countries included through the Galactosemia Network to further expand the existing knowledge and review the current diagnostic strategy, treatment and follow-up of this not well characterized entity. METHODS: Observational study collecting medical data from December 2014 to April 2022 of 22 not previously reported patients from 14 centers in 9 countries. Patients were classified as generalized or non-generalized based on their genotype, enzyme activities in different tissues and/or clinical picture and professional judgment of the treating physician. RESULTS: In total 6 patients were classified as generalized and 16 as non-generalized. In the generalized group, acute neonatal illness was reported in 3, cognitive and developmental delays were present in 5 and hearing problems were reported in 3. Four generalized patients were homozygous for the genetic variant NM_001008216.2:c.280G > A (p.Val94Met). In the non-generalized group, no clearly related symptoms were found. Ten novel genetic variants were reported in this study population. CONCLUSION: The phenotypic spectrum of GALE deficiency ranges from asymptomatic to severe. The generalized patients have a phenotype that is in line with the 9 described cases in the literature and prescribing dietary interventions is the cornerstone for treatment. In the non-generalized group, treatment advice is more difficult. To be able to offer proper counseling, in addition to red blood cell enzyme activity, genetic studies, transferrin glycoform analysis and enzymatic measurements in fibroblasts are recommended. Due to lack of facilities, additional enzymatic testing is not common practice in many centers nor a tailored long-term follow-up is performed.


Subject(s)
Galactosemias , Galactosemias/genetics , Galactosemias/metabolism , Genotype , Homozygote , Humans , Registries , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism
7.
Orphanet J Rare Dis ; 17(1): 138, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346295

ABSTRACT

BACKGROUND: Classic Galactosemia is a rare, autosomal recessive disease in which galactose is not metabolized properly due to severe deficiency/absence of the galactose-1-phosphate uridylyltransferase (GALT) enzyme, converting to an aberrant and toxic metabolite, galactitol. Newborn screening and timely galactose-restricted diet can resolve acute symptoms and decrease fatalities. However, despite this, significant chronic, progressive morbidities remain which have a real impact upon daily life. To better understand the burden of disease, 20 in-depth qualitative interviews were undertaken with adult patients (n = 12), and their caregivers (n = 8), enrolled in the ACTION-Galactosemia trial, part of a clinical program designed to investigate the safety and efficacy of AT-007 (govorestat) in reducing toxic galactitol and long-term clinical outcomes in Classic Galactosemia. RESULTS: Interviews revealed the substantial burden of Classic Galactosemia on patients and families. Most adults were not able to live independently, and all required support with day-to-day activities. Short- and long-term memory difficulties and tremors were identified as the most frequently experienced and challenging symptoms. Other difficulties such as fine motor skills and slow/slurred speech contribute to the significant impact on daily activities, affecting ability to communicate and interact with others. Symptoms were first noticed in early childhood and worsened with age. Classic Galactosemia impacted all areas of daily functioning and quality of life, leading to social isolation, anxiety, anger/frustration and depression. This demonstrates the significant burden of disease and challenges associated with Classic Galactosemia. CONCLUSIONS: The impact on both patients and caregivers underscores the severity of the unmet medical need and the importance of pharmacological intervention to halt or prevent disease progression. Any treatment that could reduce symptoms or slow functional decline would ease the burden of this condition on patients and caregivers.


Subject(s)
Galactosemias , Adult , Caregivers , Child, Preschool , Cost of Illness , Galactosemias/metabolism , Humans , Infant, Newborn , Quality of Life , UTP-Hexose-1-Phosphate Uridylyltransferase
8.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166389, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35301088

ABSTRACT

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.


Subject(s)
Galactosemias , Galactose/metabolism , Galactose/pharmacology , Galactosemias/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sphingolipids/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
9.
Nutrients ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615667

ABSTRACT

Galactosemia is an inborn metabolic disorder caused by a deficient activity in one of the enzymes involved in the metabolism of galactose. The first description of galactosemia in newborns dates from 1908, ever since complex research has been performed on cell and animal models to gain more insights into the molecular and clinical bases of this challenging disease. In galactosemia, the newborn appears to be born in proper health, having a window of opportunity before developing major morbidities that may even be fatal following ingestion of milk that contains galactose. Galactosemia cannot be cured, but its negative consequences on health can be avoided by establishing precocious diagnosis and treatment. All the foods that contain galactose should be eliminated from the diet when there is a suspicion of galactosemia. The neonatal screening for galactosemia can urge early diagnosis and intervention, preventing complications. All galactosemia types may be detected during the screening of newborns for this disorder. The major target is, however, galactose-1-phosphate uridyltransferase (GALT) deficiency galactosemia, which is diagnosed by applying a combination of total galactose and GALT enzyme analysis as well as, in certain programs, mutation screening. Most critically, infants who exhibit symptoms suggestive of galactosemia should undergo in-depth testing for this condition even when the newborn screening shows normal results. The decision to enroll global screening for galactosemia among the specific population still faces many challenges. In this context, the present narrative review provides an updated overview of the incidence, clinical manifestations, diagnosis, therapy, and prognosis of galactosemia, questioning under the dome of these aspects related to the disease the value of its neonatal monitoring.


Subject(s)
Galactosemias , Humans , Animals , Infant, Newborn , Galactosemias/diagnosis , Galactosemias/genetics , Galactosemias/metabolism , Neonatal Screening/methods , Galactose/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Mutation
10.
Molecules ; 26(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34641605

ABSTRACT

Classic galactosemia is an inborn error of metabolism associated with mutations that impair the activity and the stability of galactose-1-phosphate uridylyltransferase (GALT), catalyzing the third step in galactose metabolism. To date, no treatments (including dietary galactose deprivation) are able to prevent or alleviate the long-term complications affecting galactosemic patients. Evidence that arginine is able to improve the activity of the human enzyme expressed in a prokaryotic model of classic galactosemia has induced researchers to suppose that this amino acid could act as a pharmacochaperone, but no effects were detected in four galactosemic patients treated with this amino acid. Given that no molecular characterizations of the possible effects of arginine on GALT have been performed, and given that the samples of patients treated with arginine are extremely limited for drawing definitive conclusions at the clinical level, we performed computational simulations in order to predict the interactions (if any) between this amino acid and the enzyme. Our results do not support the possibility that arginine could function as a pharmacochaperone for GALT, but information obtained by this study could be useful for identifying, in the future, possible pharmacochaperones for this enzyme.


Subject(s)
Arginine/chemistry , Arginine/metabolism , Galactosemias/genetics , Galactosemias/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/chemistry , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , Binding Sites , Catalytic Domain , Computer Simulation , Humans , Molecular Chaperones/chemistry , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation
11.
J Inherit Metab Dis ; 44(4): 871-878, 2021 07.
Article in English | MEDLINE | ID: mdl-33720431

ABSTRACT

Classic galactosemia (CG) is a rare inborn error of metabolism that results from profound deficiency of galactose-1-P uridylyltransferase (GALT). Despite early detection and rapid and lifelong dietary restriction of galactose, which is the current standard of care, most patients grow to experience a broad range of complications that can include motor difficulties. The goal of this study was to characterize hand fine motor control deficit among children and adults with classic galactosemia (CG). Specifically, we used Neuroglyphics software to collect digital Archimedes spiral drawings on a touch screen from 57 volunteers with CG (cases) and 80 controls. Hand fine motor control was scored as root mean square (RMS) of spirals drawn relative to an idealized template. Presence of tremor was defined as a peak in periodicity of changes in drawing speed or direction in the 4-8 Hz range. We observed a highly significant difference (P < .001) in RMS scores between cases and controls, with almost 51% of cases showing at least 1 of 4 spirals scoring outside the 95th percentile for controls. The corresponding prevalence for controls was 10%. Similarly, more than 35% of cases, and almost 14% of controls, showed at least 1 of 4 spirals with a tremor amplitude above the 95th % cutoff for controls. Our results both confirm and extend what is known about hand fine motor control deficit among children and adults with CG and establish digital assessment as a useful approach to quantify this outcome.


Subject(s)
Galactose/metabolism , Galactosemias/metabolism , Galactosephosphates/metabolism , Adolescent , Adult , Animals , Case-Control Studies , Child , Female , Galactosemias/genetics , Humans , Male , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Young Adult
12.
J Inherit Metab Dis ; 44(1): 272-281, 2021 01.
Article in English | MEDLINE | ID: mdl-32882063

ABSTRACT

Classic galactosemia (CG) is a rare metabolic disorder that results from profound deficiency of galactose-1-P uridylyltransferase (GALT). Despite early detection by newborn screening and rapid and lifelong dietary restriction of galactose, which is the current standard of care, most patients grow to experience a broad constellation of long-term complications. The mechanisms underlying these complications remain unclear and likely differ by tissue. Here we conducted a pilot study testing the safety and efficacy of GALT gene replacement using our recently-described GALT-null rat model for CG. Specifically, we administered AAV9.CMV.HA-hGALT to seven GALT-null rat pups via tail vein injection on day 3 of life; eight GALT-null pups injected with PBS served as the negative control, and four GALT+ heterozygous pups injected with PBS served as the positive control. All pups were returned to their nursing mothers, weighed daily, and euthanized for tissue collection 2 weeks later. Among the AAV9-injected pups in this study, we achieved GALT levels in liver ranging from 64% to 595% wild-type, and in brain ranging from 3% to 42% wild-type. In liver, brain, and blood samples from these animals we also saw a striking drop in galactose, galactitol, and gal-1P. Finally, all treated GALT-null pups showed dramatic improvement in cataracts relative to their mock-treated counterparts. Combined, these results demonstrate that GALT restoration in both liver and brain of GALT-null rats by neonatal tail vein administration using AAV9 is not only attainable but effective.


Subject(s)
Cataract/therapy , Dependovirus/genetics , Galactose/metabolism , Galactosemias/therapy , Genetic Therapy/methods , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Animals , Animals, Newborn , Brain/metabolism , Cataract/metabolism , Dependovirus/metabolism , Disease Models, Animal , Galactosemias/genetics , Galactosemias/metabolism , Liver/metabolism , Pilot Projects , Rats
13.
Biochimie ; 183: 13-17, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33181226

ABSTRACT

Type IV galactosemia is a recently discovered inherited metabolic disease. It is caused by mutations in the GALM gene which result in reduced activity of the enzyme galactose mutarotase. This enzyme catalyses the interconversion of the α- and ß-anomers of d-galactose and some other monosaccharides. Human galactose mutarotase is monomeric and its structure is largely composed of ß-sheets. The catalytic mechanism requires a histidine residue acting as an acid, and a glutamate acting as a base. Together, these residues open the pyranose ring of d-galactose enabling free rotation of the bond between the first two carbon atoms in the monosaccharide. This can cause reversal of the configuration of the hydroxyl group attached to carbon 1. Type IV galactosemia manifests with similar symptoms to type II galactosemia (galactokinase deficiency), i.e. early onset cataracts. However, as a recently discovered disease, the longer-term consequences are unknown. The physiological role, if any, of galactose mutarotase's reactions with other monosaccharides are not yet known. The possible associations with other proteins also require further investigation.


Subject(s)
Carbohydrate Epimerases , Galactose , Galactosemias , Mutation , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Galactose/chemistry , Galactose/genetics , Galactose/metabolism , Galactosemias/genetics , Galactosemias/metabolism , Humans , Protein Conformation, beta-Strand
14.
Mol Genet Metab ; 131(4): 370-379, 2020 12.
Article in English | MEDLINE | ID: mdl-33199205

ABSTRACT

BACKGROUND: Classical Galactosemia (CG) is an inherited disorder of galactose metabolism caused by a deficiency of the galactose-1-phosphate uridylyltransferase (GALT) enzyme resulting in neurocognitive complications. As in many Inborn Errors of Metabolism, the metabolic pathway of CG is well-defined, but the pathophysiology and high variability in clinical outcome are poorly understood. The aim of this study was to investigate structural changes of the brain of CG patients on MRI and their association with clinical outcome. METHODS: In this prospective cohort study an MRI protocol was developed to evaluate gray matter (GM) and white matter (WM) volume of the cerebrum and cerebellum, WM hyperintensity volume, WM microstructure and myelin content with the use of conventional MRI techniques, diffusion tensor imaging (DTI) and quantitative T1 mapping. The association between several neuroimaging parameters and both neurological and intellectual outcome was investigated. RESULTS: Twenty-one patients with CG (median age 22 years, range 8-47) and 24 controls (median age 30, range 16-52) were included. Compared to controls, the WM of CG patients was lower in volume and the microstructure of WM was impaired both in the whole brain and corticospinal tract (CST) and the lower R1 values of WM, GM and the CST were indicative of less myelin. The volume of WM lesions were comparable between patients and controls. The 9/16 patients with a poor neurological outcome (defined as the presence of a tremor and/or dystonia), demonstrated a lower WM volume, an impaired WM microstructure and lower R1 values of the WM indicative of less myelin content compared to 7/16 patients without movement disorders. In 15/21 patients with a poor intellectual outcome (defined as an IQ < 85) both GM and WM were affected with a lower cerebral and cerebellar WM and GM volume compared to 6/21 patients with an IQ ≥ 85. Both the severity of the tremor (as indicated by the Tremor Rating Scale) and IQ (as continuous measure) were associated with several neuroimaging parameters such as GM volume, WM volume, CSF volume, WM microstructure parameters and R1 values of GM and WM. CONCLUSION: In this explorative study performed in patients with Classical Galactosemia, not only WM but also GM pathology was found, with more severe brain abnormalities on MRI in patients with a poor neurological and intellectual outcome. The finding that structural changes of the brain were associated with the severity of long-term complications indicates that quantitative MRI techniques could be of use to explain neurological and cognitive dysfunction as part of the disease spectrum. Based on the clinical outcome of patients, the absence of widespread WM lesions and the finding that both GM and WM are affected, CG could be primarily a GM disease with secondary damage to the WM as a result of neuronal degeneration. To investigate this further the course of GM and WM should be evaluated in longitudinal research, which could also clarify if CG is a neurodegenerative disease.


Subject(s)
Galactosemias/metabolism , Gray Matter/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , White Matter/metabolism , Adolescent , Adult , Cerebellum/diagnostic imaging , Cerebellum/metabolism , Cerebellum/pathology , Cerebrum/diagnostic imaging , Cerebrum/metabolism , Cerebrum/pathology , Female , Galactosemias/diagnostic imaging , Galactosemias/genetics , Galactosemias/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Myelin Sheath/genetics , Myelin Sheath/metabolism , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroimaging/methods , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
15.
Oxid Med Cell Longev ; 2020: 7145656, 2020.
Article in English | MEDLINE | ID: mdl-32655772

ABSTRACT

Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.


Subject(s)
Galactose/toxicity , Oxidative Stress/physiology , Skin Aging/drug effects , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cellular Senescence/drug effects , Collagen/metabolism , Galactosemias/etiology , Galactosemias/metabolism , Galactosemias/pathology , Galactosemias/therapy , Glycosylation , Humans , Oxidative Stress/drug effects , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin Aging/pathology
16.
Adv Clin Exp Med ; 29(4): 499-504, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32356415

ABSTRACT

BACKGROUND: The pathogenesis of classical galactosemia, a rare metabolic disorder associated with developmental complications in neonates and children due to inherited deficiency of galactose-1-phosphate (Gal-1-P) uridylyltransferase (GALT), is known to be mediated by elevated Gal-1-P levels and involves a cascade of cytokines, reactive oxygen species (ROS) and growth factors. OBJECTIVES: To examine ex vivo the effect of Gal-1-P on the mitogenic activity of different growth factors, particularly insulin-like growth factor-1 (IGF-1), known to regulate growth and development from the fetal stage to adulthood. MATERIAL AND METHODS: Fibroblasts derived from the foreskin of 3-8-day-old healthy neonates were cultured for 1-14 days with 0-20 mM galactose or 0-10 mM Gal-1-P and then stimulated with 5% fetal bovine serum (FBS) or 50 ng/mL of platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF) or IGF-1 for 24 h. DNA synthesis was measured and protein expression of PDGFR, FGFR and IGF-1R was assessed with western blotting. RESULTS: Supra-physiological concentrations of galactose significantly decreased FBSand IGF-1-induced BrdU incorporation. The presence of Gal-1-P (5-10 mM) in culture medium for 7-14 days significantly (p < 0.01) decreased IGF-1-, PDGFand FBS-stimulated DNA synthesis. While treatment with Gal-1-P selectively and significantly (p < 0.01) reduced the protein expression of IGF-1 receptor, galactose treatment did not have any marked effect on examined growth factor receptors. CONCLUSIONS: This study demonstrates that Gal-1-P impairs IGF-1 activity through IGF-1-receptor impairment, thereby providing a new insight into the molecular mechanisms of galactosemia pathogenesis.


Subject(s)
Fibroblasts/drug effects , Galactosemias/pathology , Galactosephosphates/metabolism , Insulin-Like Growth Factor I/metabolism , Cells, Cultured , Fibroblasts/metabolism , Galactosemias/blood , Galactosemias/metabolism , Humans , Infant, Newborn , Insulin-Like Growth Factor I/genetics
17.
Mol Genet Metab ; 129(3): 171-176, 2020 03.
Article in English | MEDLINE | ID: mdl-31954591

ABSTRACT

BACKGROUND: The high variability in clinical outcome of patients with Classical Galactosemia (CG) is poorly understood and underlines the importance of prognostic biomarkers, which are currently lacking. The aim of this study was to investigate if residual galactose metabolism capacity is associated with clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. METHODS: Galactose Metabolite Profiling (GMP) was used to determine residual galactose metabolism in fibroblasts of CG patients. The association between the galactose index (GI) defined as the ratio of the measured metabolites [U13C]Gal-1-P/ [13C6]UDP-galactose, and both intellectual and neurological outcome and galactose-1-phosphate (Gal-1-P) levels was investigated. RESULTS: GMP was performed in fibroblasts of 28 patients and 3 control subjects. The GI of the classical phenotype patients (n = 22) was significantly higher than the GI of four variant patients detected by newborn screening (NBS) (p = .002), two homozygous p.Ser135Leu patients (p = .022) and three controls (p = .006). In the classical phenotype patients, 13/18 (72%) had a poor intellectual outcome (IQ < 85) and 6/12 (50%) had a movement disorder. All the NBS detected variant patients (n = 4) had a normal intellectual outcome (IQ ≥ 85) and none of them has a movement disorder. In the classical phenotype patients, there was no significant difference in GI between patients with a poor and normal clinical outcome. The NBS detected variant patients had significantly lower GI levels and thus higher residual galactose metabolism than patients with classical phenotypes. There was a clear correlation between Gal-1-P levels in erythrocytes and the GI (p = .001). CONCLUSIONS: The GI was able to distinguish CG patients with varying geno- and phenotypes and correlated with Gal-1-P. The data of the NBS detected variant patients demonstrated that a higher residual galactose metabolism may result in a more favourable clinical outcome. Further research is needed to enable individual prognostication and treatment in all CG patients.


Subject(s)
Fibroblasts/metabolism , Galactose/metabolism , Galactosemias/diagnosis , Galactosemias/metabolism , Cohort Studies , Female , Galactosemias/genetics , Galactosemias/physiopathology , Galactosephosphates/metabolism , Genotype , Homozygote , Humans , Infant, Newborn , Intellectual Disability/diagnosis , Male , Movement Disorders/diagnosis , Neonatal Screening , Phenotype
18.
J Inherit Metab Dis ; 43(3): 392-408, 2020 05.
Article in English | MEDLINE | ID: mdl-31808946

ABSTRACT

Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.


Subject(s)
Galactosemias/genetics , Galactosemias/physiopathology , Animals , Disease Models, Animal , Galactokinase/genetics , Galactokinase/metabolism , Galactose/metabolism , Galactosemias/metabolism , Galactosemias/therapy , Genotype , Humans , Oxidative Stress , Phenotype , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
19.
J Inherit Metab Dis ; 43(3): 507-517, 2020 05.
Article in English | MEDLINE | ID: mdl-31845337

ABSTRACT

Classical galactosemia (CG) patients frequently develop long-term complications despite early dietary treatment. The highly variable clinical outcome is poorly understood and a lack of prognostic biomarkers hampers individual prognostication and treatment. The aim of this study was to investigate the association between residual galactose oxidation capacity and clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. The noninvasive 1-13 C galactose breath test was used to assess whole body galactose oxidation capacity. Participants received a 7 mg/kg oral dose of 1-13 C labelled galactose. The galactose oxidation capacity was determined by calculating the cumulative percentage dose of the administered galactose (CUMPCD) recovered as 13 CO2 in exhaled air. Forty-one CG patients (5-47 years) and four adult controls were included. The median galactose oxidation capacity after 120 minutes (CUMPCDT120) of 34 classical patients (0.29; 0.08-7.51) was significantly lower when compared to two homozygous p.Ser135Leu patients (9.44; 8.66-10.22), one heterozygous p.Ser135Leu patient 18.59, four NBS detected variant patients (13.79; 12.73-14.87) and four controls (9.29; 8.94-10.02). There was a clear correlation between Gal-1-P levels and CUMPCDT120 (P < .0005). In the classical patients, the differences in CUMPCDT120 were small and did not distinguish between patients with poor and normal clinical outcomes. The galactose breath test distinguished classical patients from homo- and heterozygous p.Ser135Leu and NBS detected variant patients, but was not able to predict clinical outcomes in classical patients. Future studies are warranted to enable individualised prognostication and treatment, especially in NBS variants with galactose oxidation capacities in the control range.


Subject(s)
Galactose/metabolism , Galactosemias/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , Adolescent , Adult , Breath Tests , Case-Control Studies , Child , Child, Preschool , Female , Galactosemias/genetics , Galactosephosphates , Genotype , Homozygote , Humans , Male , Middle Aged , Oxidation-Reduction , Phenotype , Siblings , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Young Adult
20.
J Inherit Metab Dis ; 43(3): 518-528, 2020 05.
Article in English | MEDLINE | ID: mdl-31845342

ABSTRACT

Classic galactosemia (CG) is a potentially lethal inborn error of metabolism, if untreated, that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme of the Leloir pathway of galactose metabolism. While newborn screening and rapid dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms of CG, by mid-childhood, most treated patients experience significant complications. The mechanisms underlying these long-term deficits remain unclear. Here we introduce a new GALT-null rat model of CG and demonstrate that these rats display cataracts, cognitive, motor, and growth phenotypes reminiscent of patients outcomes. We further apply the GALT-null rats to test how well blood biomarkers, typically followed in patients, reflect metabolic perturbations in other, more relevant tissues. Our results document that the relative levels of galactose metabolites seen in GALT deficiency differ widely by tissue and age, and that red blood cell Gal-1P, the marker most commonly followed in patients, shows no significant association with Gal-1P in other tissues. The work reported here establishes our outbred GALT-null rats as an effective model for at least four complications characteristic of CG, and sets the stage for future studies addressing mechanism and testing the efficacy of novel candidate interventions.


Subject(s)
Disease Models, Animal , Galactose/metabolism , Galactosemias/metabolism , Galactosephosphates/metabolism , Animals , Animals, Newborn , Female , Galactosemias/genetics , Male , Phenotype , Rats , Rats, Sprague-Dawley , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...