Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 290(1): F148-58, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16131647

ABSTRACT

The adaptation of the cortical collecting duct (CCD) to metabolic acidosis requires the polymerization and deposition in the extracellular matrix of the novel protein hensin. HCO3(-)-secreting beta-intercalated cells remove apical Cl-:HCO3(-) exchangers and may reverse functional polarity to secrete protons. Using intercalated cells in culture, we found that galectin-3 facilitated hensin polymerization, thereby causing their differentiation into the H+-secreting cell phenotype. We examined the expression of galectin-3 in the rabbit kidney and its relationship to hensin during metabolic acidosis. In control kidneys, galectin-3 was expressed in the cortical and medullary collecting ducts. In the outer cortex 26 +/- 3% of CCD cells expressed galectin-3 compared with 64 +/- 3% of the cells of the inner cortex. In the CCD, galectin-3 was rarely expressed in beta-intercalated cells, being primarily present in alpha-intercalated and principal cells. During metabolic acidosis, the intensity of cellular staining for galectin-3 increased and more cells began to express it; the percentage of CCD cells expressing galectin-3 increased from 26 +/- 3 to 66 +/- 3% in the outer cortex and from 64 +/- 3 to 78 +/- 4% in the inner cortex. This was particularly evident in beta-intercalated cells where expression was found in only 8 +/- 2% in control animals but in 75 +/- 2% during metabolic acidosis in the outer cortex and similarly for the inner cortex (26 +/- 6 to 90 +/- 7%). Importantly, both galectin-3 and hensin were found in the extracellular matrix of microdissected CCDs; and during metabolic acidosis, many more cells exhibited this extracellular colocalization. Thus galectin-3 may play several important roles in the CCD, including mediating the adaptation of beta-intercalated cells during metabolic acidosis.


Subject(s)
Acidosis/metabolism , Extracellular Matrix Proteins/metabolism , Galectin 3/metabolism , Kidney Tubules, Collecting/metabolism , Kidney/metabolism , Receptors, Scavenger/metabolism , Animals , Extracellular Matrix Proteins/ultrastructure , Galectin 3/physiology , Galectin 3/ultrastructure , Immunohistochemistry , Kidney Tubules, Collecting/cytology , Mice , Microscopy, Confocal , Rabbits , Rats , Receptors, Scavenger/ultrastructure
2.
J Biol Chem ; 279(12): 10841-7, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-14672941

ABSTRACT

Galectin-3 is unique among the galectin family of animal lectins in its biological activities and structure. Most members of the galectin family including galectin-1 possess apoptotic activities, whereas galectin-3 possesses anti-apoptotic activity. Galectin-3 is also the only chimera type galectin and consists of a nonlectin N-terminal domain and a C-terminal carbohydrate-binding domain. Recent sedimentation equilibrium and velocity studies show that murine galectin-3 is a monomer in the absence and presence of LacNAc, a monovalent sugar. However, quantitative precipitation studies in the present report indicate that galectin-3 precipitates as a pentamer with a series of divalent pentasaccharides with terminal LacNAc residues. Furthermore, the kinetics of precipitation are fast, on the order of seconds. This indicates that although the majority of galectin-3 in solution is a monomer, a rapid equilibrium exists between the monomer and a small percentage of pentamer. The latter, in turn, precipitates with the divalent oligosaccharides, resulting in rapid conversion of monomer to pentamer by mass action equilibria. Mixed quantitative precipitation experiments and electron microscopy suggest that galectin-3 forms heterogenous, disorganized cross-linking complexes with the multivalent carbohydrates. This contrasts with galectin-1 and many plant lectins that form homogeneous, organized cross-linked complexes. The results are discussed in terms of the biological properties of galectin-3.


Subject(s)
Carbohydrate Metabolism , Galectin 3/metabolism , Chemical Precipitation , Galectin 3/chemistry , Galectin 3/ultrastructure , Microscopy, Electron , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...