Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.468
Filter
1.
J Tradit Chin Med ; 44(3): 437-447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767627

ABSTRACT

OBJECTIVE: To evaluate the analgesic effects of total flavonoids of Longxuejie (Resina Dracaenae Cochinchinensis) (TFDB) and explore the possible analgesic mechanism associated with transient receptor potential vanilloid 1 (TRPV1). METHODS: Whole-cell patch clamp technique was used to observe the effects of TFDB on capsaicin-induced TRPV1 currents. Rat experiments in vivo were used to observe the analgesic effects of TFDB. Western blot and immunofluorescence experiments were used to test the change of TRPV1 expression in DRG neurons induced by TFDB. RESULTS: Results showed that TFDB inhibited capsaicin-induced TRPV1 receptor currents in acutely isolated dorsal root ganglion (DRG) neurons of rats and the half inhibitory concentration was (16.7 ± 1.6) mg/L. TFDB (2-20 mg/kg) showed analgesic activity in the phase Ⅱ of formalin test and (0.02-2 mg per paw) reduced capsaicin-induced licking times of rats. TFDB (20 mg/kg) was fully efficacious on complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia and capsaicin could weaken the analgesic effects. The level of TRPV1 expressions of DRG neurons was also decreased in TFDB-treated CFA-inflammatory pain rats. CONCLUSION: All these results indicated that the analgesic effect of TFDB may contribute to their modulations on both function and expression of TRPV1 channels in DRG neurons.


Subject(s)
Analgesics , Flavonoids , Ganglia, Spinal , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Rats , Flavonoids/pharmacology , Analgesics/pharmacology , Analgesics/chemistry , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neurons/drug effects , Neurons/metabolism , Pain/drug therapy , Pain/metabolism
2.
Biotechnol J ; 19(5): e2300734, 2024 May.
Article in English | MEDLINE | ID: mdl-38719571

ABSTRACT

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Subject(s)
DNA , Ganglia, Spinal , Nerve Growth Factor , Nerve Regeneration , Animals , Rats , PC12 Cells , DNA/chemistry , Ganglia, Spinal/cytology , Nerve Growth Factor/chemistry , Nerve Growth Factor/pharmacology , Nanostructures/chemistry , Neurons , Sciatic Nerve , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley
3.
J Neurosci Methods ; 407: 110143, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670536

ABSTRACT

BACKGROUND: Silicon-based micro-pillar substrates (MPS), as three-dimensional cell culture platforms with vertically aligned micro-patterned scaffolding structures, are known to facilitate high-quality growth and morphology of dorsal root ganglion (DRG) sensory neurons, promote neurite outgrowth and enhance neurite alignment. However, the electrophysiological aspects of DRG neurons cultured on silicon MPSs have not been thoroughly investigated, which is of greatest importance to ensure that such substrates do not disrupt neuronal homeostasis and function before their widespread adoption in diverse biomedical applications. NEW METHOD: We conducted whole-cell patch-clamp recordings to explore the electrophysiological properties of DRG neurons cultured on MPS arrays, utilizing a custom-made upright patch-clamp setup. RESULTS: Our findings revealed that DRG neurons exhibited similar electrophysiological responses on patterned MPS samples when compared to the control planar glass surfaces. Notably, there were no significant differences observed in the action potential parameters or firing patterns of action potentials between neurons grown on either substrate. COMPARISON WITH EXISTING METHODS: In the current study we for the first time confirmed that successful electrophysiological recordings can be obtained from the cells grown on MPS. CONCLUSION: Our results imply that, despite the potential alterations caused by the cumulative trauma of tissue harvest and cell dissociation, essential functional cell properties of DRG neurons appear to be relatively maintained on MPS surfaces. Therefore, vertically aligned silicon MPSs could be considered as a potentially effective three-dimensional system for supporting a controlled cellular environment in culture.


Subject(s)
Ganglia, Spinal , Patch-Clamp Techniques , Silicon , Ganglia, Spinal/physiology , Ganglia, Spinal/cytology , Animals , Patch-Clamp Techniques/instrumentation , Patch-Clamp Techniques/methods , Cells, Cultured , Action Potentials/physiology , Neurons/physiology , Neurons/cytology , Rats, Sprague-Dawley , Rats , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques, Three Dimensional/instrumentation , Electrophysiological Phenomena/physiology
4.
Adv Biol (Weinh) ; 8(5): e2400020, 2024 May.
Article in English | MEDLINE | ID: mdl-38548657

ABSTRACT

Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.


Subject(s)
Axons , Cell Differentiation , Ganglia, Spinal , Animals , Ganglia, Spinal/pathology , Ganglia, Spinal/cytology , Axons/pathology , Neurons/pathology , Humans , Mice , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/physiopathology , Quantitative Phase Imaging
5.
Exp Neurol ; 376: 114750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492636

ABSTRACT

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.


Subject(s)
Axons , Extracellular Vesicles , Ganglia, Spinal , Homeodomain Proteins , MicroRNAs , Nerve Regeneration , Schwann Cells , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Regeneration/physiology , Nerve Regeneration/genetics , Extracellular Vesicles/metabolism , Axons/physiology , Schwann Cells/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Skin/metabolism , Kruppel-Like Factor 4 , Mice, Inbred C57BL , Stem Cells/metabolism
6.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38442711

ABSTRACT

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Subject(s)
Ganglia, Spinal , Sensory Receptor Cells , Single-Cell Gene Expression Analysis , Animals , Mice , Ganglia, Spinal/cytology , Sensory Receptor Cells/cytology , Skin/innervation
7.
Nature ; 625(7995): 557-565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172636

ABSTRACT

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Subject(s)
Chondrocytes , NAV1.7 Voltage-Gated Sodium Channel , Osteoarthritis , Voltage-Gated Sodium Channel Blockers , Animals , Humans , Mice , Calcium/metabolism , Calcium Signaling/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Disease Progression , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , NAV1.7 Voltage-Gated Sodium Channel/deficiency , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Osteoarthritis/complications , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Pain/complications , Pain/drug therapy , Pain/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use
8.
J Pain ; 25(6): 104451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38154622

ABSTRACT

Human induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) and human dorsal root ganglia neurons (hDRG-N) are popular tools in the field of pain research; however, few groups make use of both approaches. For screening and analgesic validation purposes, important characterizations can be determined of the similarities and differences between hDRG-N and hiPSC-SNs. This study focuses specifically on the electrophysiology properties of hDRG-N in comparison to hiPSC-SNs. We also compared hDRG-N and hiPSC-SNs from both male and female donors to evaluate potential sex differences. We recorded neuronal size, rheobase, resting membrane potential, input resistance, and action potential waveform properties from 83 hiPSCs-SNs (2 donors) and 108 hDRG-N neurons (8 donors). We observed several statistically significant electrophysiological differences between hDRG-N and hiPSC-SNs, such as size, rheobase, input resistance, and several action potential waveform properties. Correlation analysis also revealed many properties that were positively or negatively correlated, some of which were differentially correlated between hDRG-N and hiPSC-SNs. This study shows several differences between hDRG-N and hiPSC-SNs and allows a better understanding of the advantages and disadvantages of both for use in pain research. We hope this study will be a valuable resource for pain researchers considering the use of these human in vitro systems for mechanistic studies and/or drug development projects. PERSPECTIVE: hiPSC-SNs and hDRG-N are popular tools in the field of pain research. This study allows for a better functional understanding of the pros and cons of both tools.


Subject(s)
Ganglia, Spinal , Induced Pluripotent Stem Cells , Sensory Receptor Cells , Humans , Female , Induced Pluripotent Stem Cells/physiology , Male , Ganglia, Spinal/physiology , Ganglia, Spinal/cytology , Sensory Receptor Cells/physiology , Adult , Action Potentials/physiology , Sex Characteristics , Middle Aged , Cells, Cultured , Electrophysiological Phenomena/physiology
9.
Int J Biol Macromol ; 246: 125518, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37353122

ABSTRACT

Silk fibroin (SF) as a natural polymer has a long history of application in various regenerative medicine fields, but there are still many shortcomings in silk fibroin for using as nerve scaffolds, which limit its clinical application in peripheral nerve regeneration (PNR). In this work, a multi-scale and multi-level metformin (MF)-loaded silk fibroin scaffold with anisotropic micro-nano composite topology was prepared by micromolding electrospinning for accelerating PNR. The scaffolds were characterized for morphology, wettability, mechanical properties, degradability, and drug release, and Schwann cells (SCs) and dorsal root ganglia (DRG) were cultured on the scaffolds to assess their effects on neural cell behavior. Finally, the gene expression differences of neural cells cultured on scaffolds were analyzed by gene sequencing and RT-qPCR to explore the possible signaling pathways and mechanisms. The results showed that the scaffolds had excellent mechanical properties and hydrophilicity, slow degradation rate and drug release rate, which were enough to support the repair of peripheral nerve injury for a long time. In Vitro cell experiments showed that the scaffolds could significantly promote the orientation of SCs and axons extension of DRG. Gene sequencing and RT-qPCR revealed that the scaffolds could up-regulate the expression of genes related to SCs proliferation, adhesion, migration, and myelination. In summary, the scaffolds hold great potential for promoting PNR at the micro/nano multiscale and physical/chemical levels and show promising application for the treatment of peripheral nerve injury in the future.


Subject(s)
Fibroins , Metformin , Peripheral Nerve Injuries , Fibroins/administration & dosage , Fibroins/chemistry , Peripheral Nerve Injuries/therapy , Anisotropy , Protein Conformation, beta-Strand , Animals , Rats , Cell Line , Metformin/administration & dosage , Schwann Cells , Ganglia, Spinal/cytology , Sciatic Nerve/injuries
10.
Zhen Ci Yan Jiu ; 48(4): 372-7, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37186202

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture (EA) combined with acellular nerve allograft (ANA) on the morphological structure of spinal ganglion cells and the protein expressions of nerve growth factor (NGF) and phosphorylated protein kinase B (p-Akt) in rats with sciatic nerve injury (SNI), so as to explore the protective mechanism of EA combined with ANA on spinal ganglia. METHODS: SPF male SD rats were randomly divided into normal, model, single ANA bridging (bridging) and EA + ANA (combination) groups, with 10 rats in each group. The SNI rat model was established by right sciatic nerve transection. Rats in the bridging group were bridged with ANA to the two broken ends of injured sciatic nerves. Rats in the combination group were treated with EA at "Yanglingquan" (GB34) and "Huantiao" (GB30) 2 d after ANA bridging, with dilatational wave, frequency of 1 Hz/20 Hz, intensity of 1 mA, 15 min/d, 7 d as a course of treatment for 4 consecutive courses. Sciatic function index (SFI) was observed by footprint test. Wet weight ratio of tibialis anterior muscle was calculated after weighing. Morphology of rat spinal ganglion cells was observed after Nissl staining. The protein expressions of NGF and p-Akt were detected by immunofluorescence and Western blot. RESULTS: Compared with the normal group, the SFI and wet weight ratio of tibialis anterior muscle were significantly decreased (P<0.05), the number of Nissl bodies in spinal ganglion cells was significantly reduced (P<0.05) with dissolution and incomplete structure, the protein expressions of NGF and p-Akt in ganglion cells were significantly decreased (P<0.05) in the model group. Following the interventions and in comparison with the model group, the SFI and the wet weight ratio of tibialis anterior muscle were significantly increased (P<0.05), the damage of Nissl bodies in ganglion cells was reduced and the number was obviously increased (P<0.05), and the protein expressions of NGF and p-Akt in ganglion cells were significantly increased (P<0.05) in the bridging and combination groups. Compared with the bridging group, the SFI and the wet weight ratio of tibialis anterior muscle were increased (P<0.05), the morphology of Nissl bodies in ganglion cells was more regular and the number was increased (P<0.05), the protein expressions of NGF and p-Akt in spinal ganglion cells were significantly increased (P<0.05) in the combination group. CONCLUSION: EA combined with ANA can improve the SFI and the wet weight ratio of tibialis anterior muscle in SNI rats, improve the morphology and structure of Nissl bodies in spinal ganglion cells, and increase the protein expressions of NGF and p-Akt in spinal ganglion, so as to play a protective role on spinal ganglia.


Subject(s)
Allografts , Electroacupuncture , Ganglia, Spinal , Peripheral Nerve Injuries , Sciatic Nerve , Animals , Male , Rats , Allografts/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Peripheral Nerve Injuries/therapy , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Sciatic Nerve/injuries
11.
Int J Toxicol ; 42(1): 4-18, 2023.
Article in English | MEDLINE | ID: mdl-36308016

ABSTRACT

Previous studies using monotypic nerve cell cultures have shown that nanoparticles induced neurotoxic effects on nerve cells. Interactions between neurons and Schwann cells may protect against the neurotoxicity of nanoparticles. In this study, we developed a co-culture model consisting of immortalized rat dorsal root ganglion (DRG) neurons and rat Schwann cells and employed it to investigate our hypothesis that co-culturing DRG neurons with Schwann cells imparts protection on them against neurotoxicity induced by silver or gold nanoparticles. Our results indicated that neurons survived better in co-cultures when they were exposed to these nanoparticles at the higher concentrations compared to when they were exposed to these nanoparticles at the same concentrations in monotypic cultures. Synapsin I expression was increased in DRG neurons when they were co-cultured with Schwann cells and treated with or without nanoparticles. Glial fibrillary acidic protein (GFAP) expression was increased in Schwann cells when they were co-cultured with DRG neurons and treated with nanoparticles. Furthermore, we found co-culturing with Schwann cells stimulated neurofilament polymerization in DRG neurons and produced the morphological differentiation. Silver nanoparticles induced morphological disorganization in monotypic cultures. However, there were more cells displaying normal morphology in co-cultures than in monotypic cultures. All of these results suggested that co-culturing DRG neurons with Schwann cells imparted some protection on them against neurotoxicity induced by silver or gold nanoparticles, and altering the expression of neurofilament-L, synapsin I, and GFAP could account for the phenomenon of protection in co-cultures.


Subject(s)
Coculture Techniques , Metal Nanoparticles , Neurons , Animals , Rats , Cells, Cultured , Coculture Techniques/methods , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Gold/toxicity , Metal Nanoparticles/toxicity , Neurons/metabolism , Schwann Cells/metabolism , Silver/toxicity , Synapsins/pharmacology
12.
Neuron ; 110(4): 559-561, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35176237

ABSTRACT

Transfer between cells is an unexpected addition to the mitochondrial life cycle. In this issue of Neuron, Van der Vlist et al. now provide evidence that M2-macrophages infiltrating sensory ganglia resolve pain by transferring particles containing mitochondria to neurons-thus boosting nociceptors back to normal function.


Subject(s)
Ganglia, Spinal , Nociceptors , Ganglia, Spinal/cytology , Humans , Mitochondria , Neurons , Nociceptors/metabolism , Pain/physiopathology
13.
Physiol Rep ; 10(3): e15176, 2022 02.
Article in English | MEDLINE | ID: mdl-35133080

ABSTRACT

Sedentary lifestyle, chronic disease, or microgravity can cause muscle deconditioning that then has an impact on other physiological systems. An example is the nervous system, which is adversely affected by decreased physical activity resulting in increased incidence of neurological problems such as chronic pain. We sought to better understand how this might occur by conducting RNA sequencing experiments on muscle biopsies from human volunteers in a 5-week bed-rest study with an exercise intervention arm. We also used a computational method for examining ligand-receptor interactions between muscle and human dorsal root ganglion (DRG) neurons, the latter of which play a key role in nociception and are generators of signals responsible for chronic pain. We identified 1352 differentially expressed genes (DEGs) in bed rest subjects without an exercise intervention but only 132 DEGs in subjects with the intervention. Among 591 upregulated muscle genes in the no intervention arm, 26 of these were ligands that have receptors that are expressed by human DRG neurons. We detected a specific splice variant of one of these ligands, placental growth factor (PGF), in deconditioned muscle that binds to neuropilin 1, a receptor that is highly expressed in DRG neurons and known to promote neuropathic pain. We conclude that exercise intervention protects muscle from deconditioning transcriptomic changes, and prevents changes in the expression of ligands that might sensitize DRG neurons, or act on other cell types throughout the body. Our work creates a set of actionable hypotheses to better understand how deconditioned muscle may influence the function of sensory neurons that innervate the entire body.


Subject(s)
Bed Rest/adverse effects , Exercise , Ganglia, Spinal/physiology , Muscle, Skeletal/metabolism , Transcriptome , Adult , Female , Ganglia, Spinal/cytology , Humans , Male , Middle Aged , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Sensory Receptor Cells/physiology
14.
Nat Commun ; 13(1): 728, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132099

ABSTRACT

Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization.


Subject(s)
Chronic Pain/physiopathology , Nociceptors/metabolism , Presynaptic Terminals/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcium/metabolism , Chronic Pain/genetics , Chronic Pain/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , Inflammation , Long-Term Potentiation , Long-Term Synaptic Depression , Mice , Mice, Transgenic , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Potassium Channels, Calcium-Activated/genetics , Potassium Channels, Calcium-Activated/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Synaptic Transmission
15.
J Ethnopharmacol ; 285: 114896, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34896207

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: 'Cold feeling' is a subjective feeling of unusual coldness that aggravates fatigue, stiffness, and other symptoms, thereby reducing quality of life. Tokishakuyakusan (TSS) is a Kampo medicine reported to improve cold feeling and is used to treat symptoms aggravated by cold feeling. However, the mechanism of action of TSS is unclear. Cold feeling may involve reduced blood flow and subsequent inhibition of heat transport. Therefore, elucidating the effects of TSS on blood flow is one of the most important research topics for clarifying the mechanism of action of TSS. AIM OF THE STUDY: We aimed to evaluate the effect of TSS on recovery from lowered body temperature by the immersion of rats in cold water and to clarify the involvement of blood flow in the action of TSS. MATERIALS AND METHODS: After female Wistar rats underwent 9 days of low room temperature stress loading (i.e. room temperature of 18 °C), they were subjected to immersion in cold water (15 °C) for 15 min. Body surface temperature, rectal temperature, and plantar temperature were measured before and after immersion in cold water. Blood flow was measured before and after immersion in cold water without low room temperature stress loading. TSS (0.5 g/kg or 1 g/kg) or the vehicle (i.e. distilled water) was orally administered once daily for 10 days for the measurement of body temperature or once 30 min before immersion in cold water for the measurement of blood flow. In addition, we examined the effect of TSS on calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) cells, the effect of TSS ingredients on transient receptor potential (TRP) channels, and the effect of TSS ingredients on the membrane potential of vascular smooth muscle cells and evaluated the mechanism of the effects of TSS on blood flow. RESULTS: Body temperature and blood flow decreased after immersion in cold water and then recovered over time. A comparison of body temperature at each timepoint or area under the curve showed that TSS (1 g/kg) accelerated the recovery of body surface temperature, rectal temperature, and blood flow. TSS significantly increased CGRP release from DRG cells, which disappeared after pretreatment with HC-030031 (a transient receptor potential ankyrin 1 [TRPA1] antagonist). The effects of seven TSS ingredients on TRP channels were examined. The agonistic effect on TRPA1 was observed for atractylodin, atractylodin carboxylic acid and levistolide A. Among the TSS ingredients, atractylodin carboxylic acid had significant hyperpolarising effects. CONCLUSIONS: The mechanism by which TSS accelerates the recovery of lowered body temperature in rats after immersion in cold water may involve the acceleration of the recovery of lowered blood flow. Increased CGRP release from DRG cells by TSS, TRPA1 activation by TSS ingredients, and membrane potential changes in vascular smooth muscle cells caused by TSS ingredients are part of the mechanism of action of TSS. These findings may partly contribute to the interpretation of the beneficial effects of TSS on cold feeling.


Subject(s)
Blood Circulation/drug effects , Body Temperature/drug effects , Cold Temperature , Drugs, Chinese Herbal/pharmacology , Animals , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Female , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Humans , Medicine, Kampo , Myocytes, Smooth Muscle/drug effects , Neurons/drug effects , Neurons/physiology , Rats , Rats, Wistar , Umbilical Arteries/cytology
16.
Toxicol Appl Pharmacol ; 434: 115821, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34896435

ABSTRACT

We examined whether combinations of Kv7 channel openers could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. Voltage clamp experiments were performed on subclassified nociceptors isolated from rat DRG (dorsal root ganglion). A stepped voltage protocol was applied (-55 to -40 mV; Vh = -60 mV; 1500 ms) and Kv7 evoked currents were subsequently isolated by linopirdine subtraction. Directly activated and voltage activated K+ currents were characterized in the presence and absence of Retigabine (5-100 µM) and/or Diclofenac (50-140 µM). Retigabine produced substantial voltage dependent effects and a maximal sustained current of 1.14 pA/pF ± 0.15 (ED50: 62.7 ± 3.18 µM). Diclofenac produced weak voltage dependent effects but a similar maximum sustained current of 1.01 ± 0.26 pA/pF (ED50: 93.2 ± 8.99 µM). Combinations of Retigabine and Diclofenac substantially amplified resting currents but had little effect on voltage dependence. Using a cholinergic challenge test (Oxotremorine, 10 µM) associated with our GWI rat model, combinations of Retigabine (5 uM) and Diclofenac (2.5, 20 and 50 µM) substantially reduced or totally abrogated action potential discharge to the cholinergic challenge. When combinations of Retigabine and Diclofenac were used to relieve pain-signs in our rat model of GWI, only those combinations associated with serious subacute side effects could relieve pain-like behaviors.


Subject(s)
Carbamates/pharmacology , Chronic Pain/drug therapy , KCNQ Potassium Channels/metabolism , Persian Gulf Syndrome/drug therapy , Phenylenediamines/pharmacology , Action Potentials/drug effects , Analgesics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diclofenac/pharmacology , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Gene Expression Regulation/drug effects , KCNQ Potassium Channels/genetics , Male , Neurons/drug effects , Oxotremorine/pharmacology , Rats , Rats, Sprague-Dawley
17.
AAPS J ; 24(1): 8, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873640

ABSTRACT

Lipidoid nanoparticles (LNPs) are the delivery platform in Onpattro, the first FDA-approved siRNA drug. LNPs are also the carriers in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While these applications have demonstrated that LNPs effectively deliver nucleic acids to hepatic and muscle cells, it is unclear if LNPs could be used for delivery of siRNA to neural cells, which are notoriously challenging delivery targets. Therefore, the purpose of this study was to determine if LNPs could efficiently deliver siRNA to neurons. Because of their potential delivery utility in either applications for the central nervous system and the peripheral nervous system, we used both cortical neurons and sensory neurons. We prepared siRNA-LNPs using C12-200, a benchmark ionizable cationic lipidoid along with helper lipids. We demonstrated using dynamic light scattering that the inclusion of both siRNA and PEG-lipid provided a stabilizing effect to the LNP particle diameters and polydispersity indices by minimizing aggregation. We found that siRNA-LNPs were safely tolerated by primary dorsal root ganglion neurons. Flow cytometry analysis revealed that Cy5 siRNA delivered via LNPs into rat primary cortical neurons showed uptake levels similar to Lipofectamine RNAiMAX-the gold standard commercial transfection agent. However, LNPs demonstrated a superior safety profile, whereas the Lipofectamine-mediated uptake was concomitant with significant toxicity. Fluorescence microscopy demonstrated a time-dependent increase in the uptake of LNP-delivered Cy5 siRNA in a human cortical neuron cell line. Overall, our results suggest that LNPs are a viable platform that can be optimized for delivery of therapeutic siRNAs to neural cells.


Subject(s)
Ganglia, Spinal/metabolism , Lipids/chemistry , Nanoparticles , Neurons/metabolism , RNA, Small Interfering/administration & dosage , RNAi Therapeutics , Transfection , Animals , Carbocyanines/metabolism , Fluorescent Dyes/metabolism , Ganglia, Spinal/cytology , Humans , MCF-7 Cells , Microscopy, Fluorescence , Nanotechnology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Time Factors
18.
Nat Commun ; 12(1): 6789, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815424

ABSTRACT

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.


Subject(s)
Elongation Factor 2 Kinase/metabolism , Peptide Elongation Factor 2/metabolism , Processing Bodies/metabolism , Ribosomes/metabolism , Animals , Cell Line, Tumor , Cryoelectron Microscopy , Elongation Factor 2 Kinase/genetics , Ganglia, Spinal/cytology , Humans , Male , Mice , Mice, Knockout , Nelfinavir/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/ultrastructure
19.
Int Immunopharmacol ; 101(Pt B): 108364, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34844873

ABSTRACT

BACKGROUND: Treatment of chronic inflammatory pain remains a major goal in the clinic. It is thus of prime importance to characterize inherent pathophysiological pathways to design new therapeutic strategies and analgesics for pain management. Paeoniflorin (PF), a monoterpenoid glycoside from Paeonia lactiflora Pallas plants, possesses promising anti-nociceptive property. However, therapeutic effect and underlying mechanism of action of PF on inflammatory pain have not yet been fully elucidated. In this study, we aim to investigate the analgesic effect further and clarify its mechanism of action of PF on complete freund's adjuvant (CFA)-evoked inflammatory pain. METHODS: Twenty-four male mice were divided into 3 groups: sham, CFA, and CFA + PF groups (n = 8/group). Mice were treated with normal saline or PF (30 mg/kg) for 11 days. Footpad swelling (n = 8/group), mechanical (n = 8/group) and thermal hypersensitivity (n = 8/group) were measured to evaluate the analgesic effect of PF on CFA-injected mice. At the end of the animal experiment, blood and L4-L6 dorsal root ganglion neurons were collected to assess the therapeutic effect of PF on CFA-induced inflammatory pain. Next, hematoxylin and eosin, quantitative realtime PCR, ELISA, capsaicin and dimethyl succinate induced pain test (n = 8/group), motor coordination test (n = 8/group), tail flicking test (n = 8/group), pyruvate and succinate dehydrogenase assay (n = 6/group), immunohistochemical staining, were performed to clarify the action mechanism of PF on CFA-evoked inflammatory pain. Besides, the effect of PF on TRPV1 was evaluated by whole-cell patch clamp recording on primary neurons (n = 7). Finally, molecular docking further performed to evaluate the binding ability of PF to TRPV1. RESULTS: PF significantly relieved inflammatory pain (P < 0.001) and paw edema (P < 0.001) on a complete Freund adjuvant (CFA)-induced peripheral inflammatory pain model. Furthermore, PF inhibited neutrophil infiltration (P < 0.01), IL-1ß increase (P < 0.01), and pain-related peptide substance P release (P < 0.001). Intriguingly, CFA-induced succinate aggregation was notably reversed by PF via modulating pyruvate and SDH activity (P < 0.01). In addition, PF dampened the high expression of subsequent succinate receptor SUCNR1 (P < 0.01), HIF-1α (P < 0.05), as well as the activation of NLPR3 inflammasome (P < 0.05) and TRPV1 (P < 0.05). More importantly, both capsaicin and dimethyl succinate supplementation obviously counteracted the pain-relieving effect of PF and TRPV1 (P < 0.01 or P < 0.001). CONCLUSION: Our findings suggest that PF can significantly relieve CFA-induced paw swelling, as well as mechanical and thermal hyperalgesia. PF alleviated inflammatory pain partly through inhibiting the activation of TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. Furthermore, we found that PF exerted its analgesic effect without affecting motor coordination and pain-related cold ion-channels. In summary, this study may provide valuable evidence for the potential application of PF as therapeutic strategy for inflammatory pain treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Glucosides , Monoterpenes , Neurons , Receptors, G-Protein-Coupled , Succinic Acid , Animals , Male , Mice , Analgesics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Capsaicin , Freund's Adjuvant/toxicity , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Glucosides/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation , Monoterpenes/pharmacology , Neurons/drug effects , Receptors, G-Protein-Coupled/metabolism , Succinic Acid/metabolism , TRPV Cation Channels
20.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34762123

ABSTRACT

Nerve injury-induced changes of gene expression in dorsal root ganglion (DRG) are critical for neuropathic pain genesis. However, how these changes occur remains elusive. Here we report the down-regulation of zinc finger protein 382 (ZNF382) in injured DRG neurons after nerve injury. Rescuing this down-regulation attenuates nociceptive hypersensitivity. Conversely, mimicking this down-regulation produces neuropathic pain symptoms, which are alleviated by C-X-C motif chemokine 13 (CXCL13) knockdown or its receptor CXCR5 knockout. Mechanistically, an identified cis-acting silencer at distal upstream of the Cxcl13 promoter suppresses Cxcl13 transcription via binding to ZNF382. Blocking this binding or genetically deleting this silencer abolishes the ZNF382 suppression on Cxcl13 transcription and impairs ZNF382-induced antinociception. Moreover, ZNF382 down-regulation disrupts the repressive epigenetic complex containing histone deacetylase 1 and SET domain bifurcated 1 at the silencer-promoter loop, resulting in Cxcl13 transcriptional activation. Thus, ZNF382 down-regulation is required for neuropathic pain likely through silencer-based epigenetic disinhibition of CXCL13, a key neuropathic pain player, in DRG neurons.


Subject(s)
Chemokine CXCL13/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Ganglia, Spinal/cytology , Neuralgia/genetics , Transcription Factors/metabolism , Animals , Chemokine CXCL13/metabolism , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation , Gene Silencing , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Male , Mice, Inbred C57BL , Neuralgia/etiology , Neurons/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/physiopathology , Promoter Regions, Genetic , Receptors, CXCR5/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...