Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 974
Filter
1.
Nat Chem ; 16(6): 881-892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844638

ABSTRACT

Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein-carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure-function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.


Subject(s)
Gangliosides , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/metabolism , Gangliosides/chemistry , Gangliosides/metabolism , Sialyltransferases/metabolism , Sialyltransferases/chemistry , Sulfates/chemistry , Sulfates/metabolism , Glycomics/methods
3.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279335

ABSTRACT

Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.


Subject(s)
Brain Neoplasms , Gangliosides , Humans , Gangliosides/chemistry , Brain , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry
5.
Biochim Biophys Acta Biomembr ; 1866(2): 184253, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37979667

ABSTRACT

The effects of polyethylene glycol- (PEG) modified lipids and gangliosides on the Ca2+ induced interaction between liposomes composed of palmitoyl-oleoyl phosphatidylethanolamine (POPE) and palmitoyl-oleoyl phosphatidylserine (POPS) was investigated at physiological ionic strength. Förster resonance energy transfer (FRET) studies complemented with dynamic light scattering (DLS) and cryo-transmission electron microscopy (Cryo-EM) show that naked liposomes tend to adhere, rupture, and collapse on each other's surfaces upon addition of Ca2+, eventually resulting in the formation of large multilamellar aggregates and bilayer sheets. Noteworthy, the presence of gangliosides or PEGylated lipids does not prevent the adhesion-rupture process, but leads to the formation of small, long-lived bilayer fragments/disks. PEGylated lipids seem to be more effective than gangliosides at stabilizing these structures. Attractive interactions arising from ion correlation are proposed to be a driving force for the liposome-liposome adhesion and rupture processes. The results suggest that, in contrast with the conclusions drawn from previous solely FRET-based studies, direct liposome-liposome fusion is not the dominating process triggered by Ca2+ in the systems studied.


Subject(s)
Gangliosides , Liposomes , Liposomes/chemistry , Gangliosides/chemistry , Polyethylene Glycols/chemistry , Calcium/chemistry , Phosphatidylserines/chemistry
6.
ACS Appl Mater Interfaces ; 16(1): 84-94, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38128131

ABSTRACT

A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA1, GM1, GT1b, and GQ1b, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.


Subject(s)
Lipid Bilayers , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Proteins , Gangliosides/chemistry
7.
Anal Bioanal Chem ; 415(29-30): 7269-7279, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857739

ABSTRACT

Gangliosides are specialized glycosphingolipids most abundant in the central nervous system. Their complex amphiphilic structure is essential to the formation of membrane lipid rafts and for molecular recognition. Dysfunction of lipid rafts and ganglioside metabolism has been linked to cancer, metabolic disorders, and neurodegenerative disorders. Changes in ganglioside concentration and diversity during the progression of disease have made them potential biomarkers for early detection and shed light on disease mechanisms. Chemical derivatization facilitates whole ion analysis of gangliosides while improving ionization, providing rich fragmentation spectra, and enabling multiplexed analysis schemes such as stable isotope labeling. In this work, we report improvement to our previously reported isobaric labeling methodology for ganglioside analysis by increasing buffer concentration and removing solid-phase extraction desalting for a more complete and quantitative reaction. Identification and quantification of gangliosides are automated through MS-DIAL with an in-house ganglioside derivatives library. We have applied the updated methodology to relative quantification of gangliosides in six mouse brain regions (cerebellum, pons/medulla, midbrain, thalamus/hypothalamus, cortex, and basal ganglia) with 2 mg tissue per sample, and region-specific distributions of 88 ganglioside molecular species are described with ceramide isomers resolved. This method is promising for application to comparative analysis of gangliosides in biological samples.


Subject(s)
Brain , Gangliosides , Mice , Animals , Gangliosides/chemistry , Brain/metabolism , Mesencephalon/chemistry , Cerebellum
8.
Langmuir ; 39(33): 11694-11707, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552772

ABSTRACT

Gangliosides, forming a class of lipids complemented by sugar chains, influence the lateral distribution of membrane proteins or membrane-binding proteins, act as receptors for viruses and bacterial toxins, and mediate several types of cellular signaling. Gangliosides incorporated into supported lipid bilayers (SLBs) have been widely applied as a model system to examine these biological processes. In this work, we explored how ganglioside composition affects the kinetics of SLB formation using the vesicle rupturing method on a solid surface. We imaged the attachment of vesicles and the subsequent SLB formation using the time-lapse total internal reflection fluorescence microscopy technique. In the early phase, the ganglioside type and concentration influence the adsorption kinetics of vesicles and their residence/lifetime on the surface before rupturing. Our data confirm that a simultaneous rupturing of neighboring surface-adsorbed vesicles forms microscopic lipid patches on the surface and it is triggered by a critical coverage of the vesicles independent of their composition. In the SLB growth phase, lipid patches merge, forming a continuous SLB. The propagation of patch edges catalyzes the process and depends on the ganglioside type. Our pH-dependent experiments confirm that the polar/charged head groups of the gangliosides have a critical role in these steps and phases of SLB formation kinetics.


Subject(s)
Bacterial Toxins , Lipid Bilayers , Lipid Bilayers/chemistry , Kinetics , Gangliosides/chemistry , Microscopy, Fluorescence
9.
J Phys Chem B ; 127(31): 6940-6948, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37523476

ABSTRACT

SARS-CoV-2 spike glycoprotein is anchored by gangliosides. The sialic acid in the ganglioside headgroup is responsible for virus attachment and entry into host cells. We used coarse-grained (CG) molecular dynamics simulations to expand on our previous study of GM1 interaction with two different orientations of the SARS-CoV-2 S1 subunit N-terminal domain (NTD) and to confirm the role of sialic acid receptors in driving the viral receptor; GM3 was used as another ganglioside on the membrane. Because of the smaller headgroup, sialic acid is crucial in GM3 interactions, whereas GM1 interacts with NTD via both the sialic acid and external galactose. In line with our previous findings for NTD orientations in GM1 binding, we identified two orientations, "compact" and "distributed", comprising sugar receptor-interacting residues in GM3-embedded lipid bilayers. Gangliosides in closer proximity to the compact NTD orientation might cause relatively greater restrictions to penetrate the bilayer. However, the attachment of a distributed NTD orientation with more negative interaction energies appears to facilitate GM1/GM3 to move quickly across the membrane. Our findings likely shed some light on the orientations that the NTD receptor acquires during the early phases of interaction with GM1 and GM3 in a membrane environment.


Subject(s)
COVID-19 , G(M3) Ganglioside , Humans , G(M1) Ganglioside/chemistry , G(M3) Ganglioside/chemistry , Gangliosides/chemistry , N-Acetylneuraminic Acid , SARS-CoV-2/metabolism
10.
Biophys Chem ; 300: 107073, 2023 09.
Article in English | MEDLINE | ID: mdl-37413816

ABSTRACT

Aggregation of Aß peptides is a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, monomeric Aß is susceptible to conformational excursions, especially in the presence of important interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles do carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aß N-terminal region modulate oligomerization of Aß temporally, and dictate the stability and maturation of oligomers. These results demonstrate the selectivity of sugar distributions on the membrane surface toward oligomerization of Aß and thus implicate cell-selective enrichment of oligomers.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Sugars , Gangliosides/chemistry , Gangliosides/metabolism , Alzheimer Disease/metabolism , Protein Binding , Peptide Fragments/chemistry
11.
J Phys Chem Lett ; 14(25): 5791-5797, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37327454

ABSTRACT

Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.


Subject(s)
Gangliosides , Sphingomyelins , Gangliosides/chemistry , Glycosphingolipids , G(M1) Ganglioside , Molecular Dynamics Simulation
12.
ACS Infect Dis ; 9(7): 1346-1361, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37145972

ABSTRACT

Multiple recent reports indicate that the S protein of SARS-CoV-2 specifically interacts with membrane receptors and attachment factors other than ACE2. They likely have an active role in cellular attachment and entry of the virus. In this article, we examined the binding of SARS-CoV-2 particles to gangliosides embedded in supported lipid bilayers (SLBs), mimicking the cell membrane-like environment. We show that the virus specifically binds to sialylated (sialic acid (SIA)) gangliosides, i.e., GD1a, GM3, and GM1, as determined from the acquired single-particle fluorescence images using a time-lapse total internal reflection fluorescence (TIRF) microscope. The data of virus binding events, the apparent binding rate constant, and the maximum virus coverage on the ganglioside-rich SLBs show that the virus particles have a higher binding affinity toward the GD1a and GM3 compared to the GM1 ganglioside. Enzymatic hydrolysis of the SIA-Gal bond of the gangliosides confirms that the SIA sugar unit of GD1a and GM3 is essential for virus attachment to the SLBs and even the cell surface sialic acid is critical for the cellular attachment of the virus. The structural difference between GM3/GD1a and GM1 is the presence of SIA at the main or branched chain. We conclude that the number of SIA per ganglioside can weakly influence the initial binding rate of SARS-CoV-2 particles, whereas the terminal or more exposed SIA is critical for the virus binding to the gangliosides in SLBs.


Subject(s)
COVID-19 , Gangliosides , Humans , Gangliosides/chemistry , N-Acetylneuraminic Acid/metabolism , G(M1) Ganglioside/chemistry , G(M1) Ganglioside/metabolism , SARS-CoV-2/metabolism
13.
Carbohydr Polym ; 312: 120795, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059535

ABSTRACT

Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.


Subject(s)
Glycosphingolipids , Tandem Mass Spectrometry , Humans , Animals , Glycosphingolipids/chemistry , G(M1) Ganglioside/analysis , Gangliosides/analysis , Gangliosides/chemistry , Milk, Human/chemistry , Goats
14.
Methods Mol Biol ; 2625: 65-69, 2023.
Article in English | MEDLINE | ID: mdl-36653632

ABSTRACT

This chapter focuses on identifying gangliosides in the optic nerve of the mouse using mass spectrometry techniques. The described protocol will also permit the characterization of the sample's lipidome. Two deuterium-labeled ganglioside standards and a general lipid class standard will be utilized for extraction efficiency and quantification. Using reversed-phase high-performance liquid chromatography (HPLC) coupled to a Q Exactive mass spectrometer, the samples will be analyzed. The method will consist of both an untargeted approach and a targeted approach with a ganglioside-specific inclusion list.


Subject(s)
Chromatography, Reverse-Phase , Gangliosides , Mice , Animals , Gangliosides/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Reverse-Phase/methods , Optic Nerve/chemistry
15.
J Biol Chem ; 299(3): 102923, 2023 03.
Article in English | MEDLINE | ID: mdl-36681125

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.


Subject(s)
Glycosphingolipids , Pancreatic Neoplasms , Humans , Chromatography, Liquid , Chromatography, Thin Layer , Gangliosides/chemistry , Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/physiopathology , Sulfoglycosphingolipids/chemistry , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/physiopathology , Tandem Mass Spectrometry , Biomarkers, Tumor/metabolism
16.
Glycoconj J ; 40(3): 269-276, 2023 06.
Article in English | MEDLINE | ID: mdl-36695939

ABSTRACT

The structure and properties of a group of gangliosides modified by mild alkaline treatment are discussed. We will present the occurrence and the structure of gangliosides carrying the N-acetyneuraminic acid O-acetylated in position 9, the Neu5,9Ac2, and of gangliosides carrying a sialic acid that forms a lactone ring. Starting from biochemical data we will discuss the possible biochemical role played by these gangliosides in the processes of cell signaling and maintenance of brain functions.


Subject(s)
Gangliosides , N-Acetylneuraminic Acid , Gangliosides/chemistry , Sialic Acids/chemistry , Acetylation
17.
Methods Mol Biol ; 2613: 89-100, 2023.
Article in English | MEDLINE | ID: mdl-36587073

ABSTRACT

Synthetic methodologies for gangliosides have evolved over the past three decades. The strategies for constructing ganglioside skeletons can generally be classified as late-stage ceramide coupling, the glucosyl ceramide cassette strategy, or late-stage sialylation. Using these synthetic strategies, numerous natural gangliosides and their structural analogs, including functional probes, have been synthesized. This chapter describes the synthetic strategies for gangliosides and provides examples of the total synthesis of several gangliosides using each strategy.


Subject(s)
Gangliosides , Glucosylceramides , Gangliosides/chemistry , Ceramides/chemistry
18.
Adv Neurobiol ; 29: 305-332, 2023.
Article in English | MEDLINE | ID: mdl-36255680

ABSTRACT

Gangliosides are a large group of complex lipids found predominantly in the outer layer of the plasma membrane of cells, particularly abundant in nerve endings. Their half-life in the nervous system is short, and their membrane composition and content are strictly connected to their metabolism. The neobiosynthesis of gangliosides starts in the endoplasmic reticulum and is completed in the Golgi apparatus, whereas catabolism occurs primarily in lysosomes. However, the final content of gangliosides in the plasma membrane is defined by other cellular processes.This chapter will discuss structural changes in the oligosaccharide chains of gangliosides, induced by the activity of plasma membrane-associated glycohydrolases and glycosyltransferases. Some of the plasma membrane enzymes originate from fusion processes between intracellular fractions and the plasma membrane, while, others display a different structure. Several of these plasma membrane enzymes have been characterized and some of them seem to have a specific role in the nervous system.


Subject(s)
Gangliosides , Glycosyltransferases , Humans , Gangliosides/chemistry , Gangliosides/metabolism , Cell Membrane/metabolism , Glycosyltransferases/metabolism , Glycoside Hydrolases/metabolism , Nervous System
19.
Adv Neurobiol ; 29: 419-448, 2023.
Article in English | MEDLINE | ID: mdl-36255683

ABSTRACT

Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.


Subject(s)
Glycolipids , Lactosylceramides , Animals , Humans , Mice , Glucosylceramides , Gangliosides/chemistry , Gangliosides/metabolism , Neurons/metabolism
20.
Adv Neurobiol ; 29: 479-495, 2023.
Article in English | MEDLINE | ID: mdl-36255685

ABSTRACT

Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) are acute immune-mediated neuropathies, often preceded by an infection. Anti-glycolipid antibodies are frequently detected in patients' sera in the acute-phase. In particular, IgG anti-GQ1b antibodies are positive in as high as 90% of MFS cases. Anti-glycolipid antibodies are useful for the diagnosis of GBS and MFS. In addition, those antibodies may be directly involved in the pathogenetic mechanisms by binding specifically to the regions where the target glycolipid antigen is densely localized. This was proven by the development of animal models of anti-glycolipid antibody-mediated neuropathies. The presence of antibodies that specifically recognize a new conformational epitope formed by two gangliosides (ganglioside complex) in the acute-phase sera of some GBS patients suggested existence of a carbohydrate-carbohydrate interaction between glycolipids. Further intensive research is needed to clarify this point.


Subject(s)
Guillain-Barre Syndrome , Miller Fisher Syndrome , Animals , Glycolipids , Gangliosides/chemistry , Immunoglobulin G , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL
...